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Unions of Balls

Finite Point Set Union of Balls

Topologically uninteresting Potentially Interesting

Idea: Fill in the gaps in the ambient space. 
Examples: Molecules and Manifolds
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Compute the homology by looking at 
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Homology Inference

Niyogi, Smale, Weinberger
The homology of a smooth manifold 
can be computed from a sufficiently 
dense finite sample by considering 
the union of balls centered at the 
samples. 
Compute the homology by looking at 
the nerve (or Cech) complex.

Questions:

What are the radii? 
Is smoothness really necessary?
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Sampling Compact Sets

Key idea: Use persistence 
to eliminate noise.

Chazal and Lieutier

Infer the homology of compact 
sets assuming there are no 
critical points of the distance 
function nearby.

Weak Feature Size: 
distance to nearest 

critical point.



Homological Sensor Networks

Domain: compact D ⇢ Rd

Boundary: B = bdyD
Sensors: P ⇢ D
Fence nodes: Q = P \ B↵

Coverage Area: P↵

No Coordinates
Only know nbhd at radii ↵/

p
2 and 3↵.

Goal: Certify D \ B2↵ ✓ P↵.

de Silva and Ghrist

Check d-dimensional persistent relative 
homology of Rips complexes.



The (Vietoris-)Rips Filtration encodes the topology 
of a metric space when viewed at different scales. 

Input: A finite metric space (P,d).
Output: A sequence of simplicial complexes {Rα}
such that σ ∈ Rα iff d(p, q) ≤ 2α for all p, q ∈ σ.
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The Topological Coverage Criterion

*based on de Silva and Ghrist 07

Theorem 1 Let D ⇢ Rd
be a connected set whose boundary B is a smooth

manifold with injectivity radius at least 4↵. If

Hd((Rips↵/
p
2(P ), Rips↵/

p
2(Q)) ,! (Rips3↵(P ), Rips3↵(Q))) 6= 0,

then D \ B2↵ ✓ P↵
.

Theorem 2 Let D ⇢ Rd
be a set whose boundary is B. If

j⇤ = H0((D \ B4↵) ,! (D \ B2↵))

is an isomorphism and

rank Hd((Rips↵/
p
2(P ), Rips↵/

p
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*

Shape conditions

TCC
Coverage Guarantee
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1 Alexander Duality - coverage to connectivity

2 The Nerve Theorem - discretize the geoemtry

3 Rips-Cech Interleaving - work without coordinates

4 Persistent Homology - eliminate noise
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Tricks: Alexander Duality
Hd(D,B) ⇠= H0(B̄, D̄) ⇠= H0(D \ B)



Interleaving Rips and Cech Filtrations

H⇤(Rips↵/
p
2(P ), Rips↵/

p
2(Q)) H⇤(Rips3↵(P ), Rips3↵(Q))

H⇤(Čech↵(P ), Čech↵(Q)) ! H⇤(Čech3↵(P ), Čech3↵(Q))

H⇤(P
↵, Q↵) ! H⇤(P

3↵, Q3↵)

⇠=⇠=

interleaving

Persistent Nerve Lemma

Suffices to look at offsets.
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Tricks: Persistent Homology

As with Chazal and Lieutier, 
persistence eliminates spurious 

features near the boundary.
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TCC Proof Idea I

P↵ ,! D2↵

(P↵, Q↵) ,! (D2↵,B2↵)

surjectivity implies coverage

a⇤ : H0(B2↵,D2↵) ! H0(Q↵, P↵)

a* injective implies “coverage”, i.e. (D \ B2↵ ✓ P↵)

[x] 6= 0 in H0(B2↵,D2↵)

Suppose there is an uncovered point x.

However, a⇤[x] = 0.

x 2 P

↵ \ (D \ B2↵)

Hd(D2↵,B2↵) ! Hd(P↵, Q↵)
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TCC Proof of Correctness I

Let �⇤ : imj⇤ ! imi⇤ be the homomorphsim induced by inclusion.

Lemma 1 If �⇤ is injective, then D \ B2↵ ✓ P↵
.

Lemma 2 If j⇤ is an isomorphism, then �⇤ is surjective.



TCC Proof of Correctness II
Lemma 2 If j⇤ is an isomorphism, then �⇤ is surjective.

x

y

Let x 2 P

↵ \Q3↵ so that [x] 2 im i⇤.
If x 2 B2↵, then [x] 2 im �⇤.
So, there is some y 2 B s.t. kx� yk  2↵.
By the triangle inequality, y 2 Q

↵ and so y 2 P

↵.
Thus, [x] = 0 in H0(Q↵

, P

↵) because @(xy) ⌘ x.



TCC Proof of Correctness III

Smoothness does matter in the de Silva-Ghrist proof.



TCC and WFS

Theorem 1 Let D ⇢ Rd
be a locally contractible, compact set, and let B be the

boundary of D with wfs(B) > 4↵. Let P ⇢ D↵
, and let Q = B↵ \ P . For any

integer k, let hk denote the homomorphism hk : Hk(P↵, Q↵) ! Hk(P 3↵, Q3↵)
induced by inclusion. Then, the following two statements hold.

1. If D ✓ P↵
, then im hk

⇠= Hk(D,B) for all integers k.

2. If im hd
⇠= Hd(D,B), then D \ B2↵ ⇢ P↵

.

Almost, but not quite converses.



Certified Homology Inference

U� = P \ B� = {p 2 P | d(p,B) > �}.

Lemma 3 Suppose the sample P ⇢ D↵
is such that D \ B2↵ ✓ P↵

as asserted

by the TCC. Let �, �, ", � be constants such that " � � � ↵ and � � "+ � + �,
we have If wfs(B) > � + �, then

rank(Hk(U
�
� ) ! Hk(U

"
� )) = dim(Hk(D)), for all integers k.



Certified Homology Inference

U� = P \ B� = {p 2 P | d(p,B) > �}.

Lemma 3 Suppose the sample P ⇢ D↵
is such that D \ B2↵ ✓ P↵

as asserted

by the TCC. Let �, �, ", � be constants such that " � � � ↵ and � � "+ � + �,
we have If wfs(B) > � + �, then

rank(Hk(U
�
� ) ! Hk(U

"
� )) = dim(Hk(D)), for all integers k.

Key Idea: 
Use TCC to certify coverage assuming the number of 
connected components is known. 
Then compute the higher Betti numbers by looking at the 
persistent homology of subsamples. 
Throw out points too close to the boundary.



k-Coverage
Lemma 2 If j⇤ is an isomorphism, then �⇤ is surjective.

x

y

Let x 2 P

↵
k \Q3↵

k so that [x] 2 im i⇤.

If x 2 B2↵, then [x] 2 im �⇤.
So, there is some y 2 B s.t. kx� yk  2↵.
By the triangle inequality, y 2 Q

↵
k and so y 2 P

↵
k .

Thus, [x] = 0 in H0(Q↵
k , P

↵
k ) because @(xy) ⌘ x.




