Sensors and Samples: A Homological Approach

Nick Cavanna, Kirk Gardner, and Don Sheehy
UConn

Topological Data Analysis Challenges

Topological Data Analysis Challenges

Complex (Complicated) Data

Topological Data Analysis Challenges

Complex (Complicated) Data collected as a

Topological Data Analysis Challenges

Complex (Complicated) Data collected as a Finite Sample

Topological Data Analysis Challenges

Complex (Complicated) Data collected as a Finite Sample of an

Topological Data Analysis Challenges

Complex (Complicated) Data collected as a Finite Sample of an
Unknown Space

Topological Data Analysis Challenges

Complex (Complicated) Data collected as a Finite Sample of an
Unknown Space after undergoing

Topological Data Analysis Challenges

Complex (Complicated) Data collected as a Finite Sample of an
Unknown Space after undergoing
Unknown Transformations

Topological Data Analysis Challenges

Complex (Complicated) Data collected as a

Finite Sample

 of anUnknown Space
after undergoing
Unknown Transformations

Unions of Balls

Unions of Balls

Finite Point Set

Unions of Balls

Finite Point Set

Union of Balls

Unions of Balls

Finite Point Set

Topologically uninteresting

Union of Balls

Potentially Interesting

Unions of Balls

Finite Point Set

Topologically uninteresting

Union of Balls

Potentially Interesting

Idea: Fill in the gaps in the ambient space. Examples: Molecules and Manifolds

Homology Inference

Homology Inference

Niyogi, Smale, Weinberger
The homology of a smooth manifold can be computed from a sufficiently dense finite sample by considering the union of balls centered at the samples.
Compute the homology by looking at the nerve (or Cech) complex.

Homology Inference

Niyogi, Smale, Weinberger
The homology of a smooth manifold can be computed from a sufficiently dense finite sample by considering the union of balls centered at the samples.
Compute the homology by looking at the nerve (or Cech) complex.
Questions:
What are the radii?
Is smoothness really necessary?

Sampling Compact Sets

Chazal and Lieutier

Infer the homology of compact sets assuming there are no critical points of the distance function nearby.

Sampling Compact Sets

Chazal and Lieutier

Infer the homology of compact sets assuming there are no critical points of the distance function nearby.

Sampling Compact Sets

Chazal and Lieutier

Infer the homology of compact sets assuming there are no critical points of the distance function nearby.

Weak Feature Size: distance to nearest critical point.

Sampling Compact Sets

Chazal and Lieutier

Infer the homology of compact sets assuming there are no critical points of the distance function nearby.

Weak Feature Size: distance to nearest critical point.

Key idea: Use persistence to eliminate noise.

Homological Sensor Networks

de Silva and Ghrist

Domain: compact $\mathcal{D} \subset \mathbb{R}^{d}$
Boundary: $\mathcal{B}=\operatorname{bdy} \mathcal{D}$
Sensors: $P \subset \mathcal{D}$
Fence nodes: $Q=P \cap \mathcal{B}^{\alpha}$
Coverage Area: P^{α}
No Coordinates
Only know nbhd at radii $\alpha / \sqrt{2}$ and 3α.
Goal: Certify $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.
Check d-dimensional persistent relative homology of Rips complexes.

The (Vietoris-)Rips Filtration encodes the topology of a metric space when viewed at different scales.
Input: A finite metric space (P, \mathbf{d}).
Output: A sequence of simplicial complexes $\left\{R_{\alpha}\right\}$
such that $\sigma \in R_{\alpha}$ iff $\mathbf{d}(p, q) \leq 2 \alpha$ for all $p, q \in \sigma$.

The (Vietoris-)Rips Filtration encodes the topology of a metric space when viewed at different scales.
Input: A finite metric space (P, \mathbf{d}).
Output: A sequence of simplicial complexes $\left\{R_{\alpha}\right\}$ such that $\sigma \in R_{\alpha}$ iff $\mathbf{d}(p, q) \leq 2 \alpha$ for all $p, q \in \sigma$.

The (Vietoris-)Rips Filtration encodes the topology of a metric space when viewed at different scales.
Input: A finite metric space (P, \mathbf{d}).
Output: A sequence of simplicial complexes $\left\{R_{\alpha}\right\}$ such that $\sigma \in R_{\alpha}$ iff $\mathbf{d}(p, q) \leq 2 \alpha$ for all $p, q \in \sigma$.

The (Vietoris-)Rips Filtration encodes the topology of a metric space when viewed at different scales.
Input: A finite metric space (P, \mathbf{d}).
Output: A sequence of simplicial complexes $\left\{R_{\alpha}\right\}$ such that $\sigma \in R_{\alpha}$ iff $\mathbf{d}(p, q) \leq 2 \alpha$ for all $p, q \in \sigma$.

The (Vietoris-)Rips Filtration encodes the topology of a metric space when viewed at different scales.
Input: A finite metric space (P, \mathbf{d}).
Output: A sequence of simplicial complexes $\left\{R_{\alpha}\right\}$ such that $\sigma \in R_{\alpha}$ iff $\mathbf{d}(p, q) \leq 2 \alpha$ for all $p, q \in \sigma$.

The (Vietoris-)Rips Filtration encodes the topology of a metric space when viewed at different scales.
Input: A finite metric space (P, \mathbf{d}).
Output: A sequence of simplicial complexes $\left\{R_{\alpha}\right\}$ such that $\sigma \in R_{\alpha}$ iff $\mathbf{d}(p, q) \leq 2 \alpha$ for all $p, q \in \sigma$.

The Topological Coverage Criterion

Theorem 1^{*} Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a connected set whose boundary \mathcal{B} is a smooth manifold with injectivity radius at least 4α. If

$$
\mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rips}_{3 \alpha}(Q)\right)\right) \neq 0,
$$

then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.
*based on de Silva and Ghrist 07

The Topological Coverage Criterion

Theorem 1^{*} Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a connected set whose boundary \mathcal{B} is a smooth manifold with injectivity radius at least 4α. If

$$
\mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rip}_{3 \alpha}(Q)\right)\right) \neq 0,
$$

then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.
Theorem 2 Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a set whose boundary is \mathcal{B}. If

$$
j_{*}=\mathrm{H}_{0}\left(\left(\mathcal{D} \backslash \mathcal{B}^{4 \alpha}\right) \hookrightarrow\left(\mathcal{D} \backslash \mathcal{B}^{2 \alpha}\right)\right)
$$

is an isomorphism and $\operatorname{rank} \mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rip}_{3 \alpha}(Q)\right)\right)=\operatorname{rank} j_{*}$, then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.

*based on de Silva and Ghrist 07

The Topological Coverage Criterion

Theorem 1^{*} Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a connected set whose boundary \mathcal{B} is a smooth manifold with injectivity radius at least 4α. If

$$
\mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rip}_{3 \alpha}(Q)\right)\right) \neq 0,
$$

then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.
Theorem 2 Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a set whose boundary is \mathcal{B}. If
Shape conditions
is an isomorphism and
rank $\mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rips}_{3 \alpha}(Q)\right)\right)=\operatorname{rank} j_{*}$, then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.

*based on de Silva and Ghrist 07

The Topological Coverage Criterion

Theorem 1^{*} Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a connected set whose boundary \mathcal{B} is a smooth manifold with injectivity radius at least 4α. If

$$
\mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rip}_{3 \alpha}(Q)\right)\right) \neq 0,
$$

then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.
Theorem 2 Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a set whose boundary is \mathcal{B}. If
Shape conditions
is an isomorphism and
$\operatorname{rank} \mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rips}_{3 \alpha}(Q)\right)\right)=\operatorname{rank} j_{*}$, then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.

$$
j_{*}=\mathrm{H}_{0}\left(\left(\mathcal{D} \backslash \mathcal{B}^{4 \alpha}\right) \hookrightarrow\left(\mathcal{D} \backslash \mathcal{B}^{2 \alpha}\right)\right)
$$

*based on de Silva and Ghrist 07

The Topological Coverage Criterion

Theorem 1^{*} Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a connected set whose boundary \mathcal{B} is a smooth manifold with injectivity radius at least 4α. If

$$
\mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rip}_{3 \alpha}(Q)\right)\right) \neq 0,
$$

then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.
Theorem 2 Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a set whose boundary is \mathcal{B}. If
Shape conditions
is an isomorphism and $\operatorname{rank} \mathrm{H}_{d}\left(\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \hookrightarrow\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rips}_{3 \alpha}(Q)\right)\right)=\operatorname{rank} j_{*}$, then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$. Coverage Guarantee

*based on de Silva and Ghrist 07

Key tricks

Key tricks

1 Alexander Duality - coverage to connectivity

Key tricks

1 Alexander Duality - coverage to connectivity
2 The Nerve Theorem - discretize the geoemtry

Key tricks

1 Alexander Duality - coverage to connectivity
2 The Nerve Theorem - discretize the geoemtry
3 Rips-Cech Interleaving - work without coordinates

Key tricks

1 Alexander Duality - coverage to connectivity
2 The Nerve Theorem - discretize the geoemtry
3 Rips-Cech Interleaving - work without coordinates
4 Persistent Homology - eliminate noise

Tricks: Alexander Duality

Tricks: Alexander Duality

$$
\mathrm{H}^{d}(\mathbf{D}, \mathbf{B}) \cong \mathrm{H}_{0}(\overline{\mathrm{~B}}, \overline{\mathrm{D}})
$$

Tricks: Alexander Duality

$$
\mathrm{H}^{d}(\mathrm{D}, \mathrm{~B}) \cong \mathrm{H}_{0}(\overline{\mathrm{~B}}, \overline{\mathrm{D}}) \cong \mathrm{H}_{0}(\mathcal{D} \backslash \mathcal{B})
$$

Tricks: Alexander Duality

$$
\mathrm{H}^{d}(\mathrm{D}, \mathrm{~B}) \cong \mathrm{H}_{0}(\overline{\mathrm{~B}}, \overline{\mathrm{D}}) \cong \mathrm{H}_{0}(\mathcal{D} \backslash \mathcal{B})
$$

Interleaving Rips and Cech Filtrations

$H_{*}\left(\operatorname{Rips}_{\alpha / \sqrt{2}}(P), \operatorname{Rips}_{\alpha / \sqrt{2}}(Q)\right) \longrightarrow H_{*}\left(\operatorname{Rips}_{3 \alpha}(P), \operatorname{Rips}_{3 \alpha}(Q)\right)$ interleaving

$$
H_{*}\left(\check{\mathrm{C}} e h_{\alpha}(P), \check{\mathrm{C}} e c h_{\alpha}(Q)\right) \rightarrow H_{*}\left(\check{\mathrm{C}} e \mathrm{Ch}_{3 \alpha}(P), \text { Čech }{ }_{3 \alpha}(Q)\right)
$$

Persistent Nerve Lemma \cong

$$
H_{*}\left(P^{\alpha}, Q^{\alpha}\right) \rightarrow H_{*}\left(P^{3 \alpha}, Q^{3 \alpha}\right)
$$

Suffices to look at offsets.

Tricks: Persistent Homology

Tricks: Persistent Homology

Tricks: Persistent Homology

As with Chazal and Lieutier, persistence eliminates spurious features near the boundary.

TCC Proof Idea I

TCC Proof Idea I

$$
P^{\alpha} \hookrightarrow \mathcal{D}^{2 \alpha}
$$

TCC Proof Idea I

$$
\begin{aligned}
& P^{\alpha} \hookrightarrow \mathcal{D}^{2 \alpha} \\
&\left(P^{\alpha}, Q^{\alpha}\right) \hookrightarrow\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right)
\end{aligned}
$$

TCC Proof Idea I

$$
\begin{aligned}
P^{\alpha} & \hookrightarrow \mathcal{D}^{2 \alpha} \\
\left(P^{\alpha}, Q^{\alpha}\right) & \hookrightarrow\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) \\
H^{d}\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) & \rightarrow H^{d}\left(P^{\alpha}, Q^{\alpha}\right)
\end{aligned}
$$

TCC Proof Idea I

$$
\begin{aligned}
& P^{\alpha} \hookrightarrow \mathcal{D}^{2 \alpha} \\
&\left(P^{\alpha}, Q^{\alpha}\right) \hookrightarrow\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) \\
& H^{d}\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) \rightarrow H^{d}\left(P^{\alpha}, Q^{\alpha}\right) \\
& \text { surjectivity implies coverage }
\end{aligned}
$$

TCC Proof Idea I

$$
\begin{gathered}
P^{\alpha} \hookrightarrow \mathcal{D}^{2 \alpha} \\
\left(P^{\alpha}, Q^{\alpha}\right) \hookrightarrow\left(\mathbf{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) \\
H^{d}\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) \rightarrow H^{d}\left(P^{\alpha}, Q^{\alpha}\right) \\
\text { surjectivity implies coverage } \\
a_{*}: H_{0}\left(\overline{\mathrm{~B}^{2 \alpha}}, \overline{\mathrm{D}^{2 \alpha}}\right) \rightarrow H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right)
\end{gathered}
$$

TCC Proof Idea I

$$
\begin{aligned}
P^{\alpha} & \hookrightarrow \mathcal{D}^{2 \alpha} \\
\left(P^{\alpha}, Q^{\alpha}\right) & \mapsto\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) \\
H^{d}\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) & \rightarrow H^{d}\left(P^{\alpha}, Q^{\alpha}\right)
\end{aligned}
$$

surjectivity implies coverage

$$
\begin{gathered}
a_{*}: H_{0}\left(\overline{\mathrm{~B}^{2 \alpha}}, \overline{\mathrm{D}^{2 \alpha}}\right) \rightarrow H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right) \\
a * \text { injective implies "coverage", i.e. }\left(\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}\right)
\end{gathered}
$$

TCC Proof Idea I

$$
\begin{aligned}
P^{\alpha} & \hookrightarrow \mathcal{D}^{2 \alpha} \\
\left(P^{\alpha}, Q^{\alpha}\right) & \hookrightarrow\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) \\
H^{d}\left(\mathrm{D}^{2 \alpha}, \mathrm{~B}^{2 \alpha}\right) & \rightarrow H^{d}\left(P^{\alpha}, Q^{\alpha}\right)
\end{aligned}
$$

surjectivity implies coverage

$$
a_{*}: H_{0}\left(\overline{\mathrm{~B}^{2 \alpha}}, \overline{\mathrm{D}^{2 \alpha}}\right) \rightarrow H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right)
$$

$a *$ injective implies "coverage", i.e. ($\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$)

Suppose there is an uncovered point x.

$$
\left.\begin{array}{rl}
x & \in \overline{P^{\alpha}} \cap\left(\mathcal{D} \backslash \mathcal{B}^{2 \alpha}\right) \\
{[x]} & \neq 0 \text { in } H_{0}\left(\overline{\mathcal{B}^{2 \alpha},}, \mathcal{D}^{2 \alpha}\right.
\end{array}\right)
$$

However, $\mathbf{a}_{*}[\mathbf{x}]=0$.

TCC Proof Idea II

$$
\begin{gathered}
a_{*}: H_{0}\left(\overline{\mathrm{~B}^{2 \alpha}}, \overline{\mathrm{D}^{2 \alpha}}\right) \rightarrow H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right) \\
a * \text { injective implies "coverage", i.e. }\left(\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}\right)
\end{gathered}
$$

TCC Proof Idea II

$$
\begin{gathered}
a_{*}: H_{0}\left(\overline{\mathrm{~B}^{2 \alpha}}, \overline{\mathrm{D}^{2 \alpha}}\right) \rightarrow H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right) \\
a * \text { injective implies "coverage", i.e. }\left(\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}\right)
\end{gathered}
$$

If $D \backslash B^{2 \alpha}$ is connected and a_{*} is surjective, then we can infer coverage by computing $H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right)$.

$$
\begin{gathered}
\text { TCC Proof Idea II } \\
a_{*}: H_{0}\left(\overline{\mathrm{~B}^{2 \alpha}}, \overline{\mathrm{D}^{2 \alpha}}\right) \rightarrow H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right) \\
a_{*} \text { injective implies "coverage", i.e. }\left(\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}\right)
\end{gathered}
$$

If $D \backslash B^{2 \alpha}$ is connected and a_{*} is surjective, then we can infer coverage by computing $H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right)$.

Problem: There could be "spurious" features.

$$
\begin{gathered}
\text { TCC Proof Idea II } \\
a_{*}: H_{0}\left(\overline{\mathrm{~B}^{2 \alpha}}, \overline{\mathrm{D}^{2 \alpha}}\right) \rightarrow H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right) \\
a_{*} \text { injective implies "coverage", i.e. }\left(\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}\right)
\end{gathered}
$$

If $D \backslash B^{2 \alpha}$ is connected and a_{*} is surjective, then we can infer coverage by computing $H_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right)$.

Problem: There could be "spurious" features.

TCC Proof of Correctness I

TCC Proof of Correctness I

$\mathrm{H}_{0}\left(\overline{\mathcal{B}^{4 \alpha}}, \overline{\mathcal{D}^{4 \alpha}}\right) \xrightarrow{j_{*}} \mathrm{H}_{0}\left(\overline{\mathcal{B}^{2 \alpha}}, \overline{\mathcal{D}^{2 \alpha}}\right)$
$\mathrm{H}_{0}\left(\overline{Q^{3 \alpha}}, \overline{P^{3 \alpha}}\right) \xrightarrow{i_{*}} \mathrm{H}_{0}\left(\frac{\downarrow}{Q^{\alpha}}, \overline{P^{\alpha}}\right)$

TCC Proof of Correctness I

$\mathrm{H}_{0}\left(\overline{\mathcal{B}^{4 \alpha}}, \overline{\mathcal{D}^{4 \alpha}}\right) \xrightarrow{j_{*}} \mathrm{H}_{0}\left(\overline{\mathcal{B}^{2 \alpha}}, \overline{\mathcal{D}^{2 \alpha}}\right)$

Let $\varphi_{*}: \mathrm{imj}_{*} \rightarrow \mathrm{imi}_{*}$ be the homomorphsim induced by inclusion.

TCC Proof of Correctness I

Let $\varphi_{*}: \mathrm{imj}_{*} \rightarrow \mathrm{imi}_{*}$ be the homomorphsim induced by inclusion.

Lemma 1 If ϕ_{*} is injective, then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$.
Lemma 2 If j_{*} is an isomorphism, then ϕ_{*} is surjective.

TCC Proof of Correctness II

Lemma 2 If j_{*} is an isomorphism, then ϕ_{*} is surjective.

Let $\left.x \in P^{\alpha}\right) Q^{3 \alpha}$ so that $[x] \in \operatorname{im} i_{\boldsymbol{x}_{*}}$ If $x \in \overline{\mathcal{B}^{2 \alpha}}$, then $[x] \in \operatorname{im} \phi_{*}$.
So, there is some $y \in \mathcal{B}$ s.t. $\|x-y\| \leq 2 \alpha$.
By the triangle inequality, $y \in \overline{Q^{\alpha}}$ and so $y \in \overline{P^{\alpha}}$.
Thus, $[x]=0$ in $\mathrm{H}_{0}\left(\overline{Q^{\alpha}}, \overline{P^{\alpha}}\right)$ because $\partial(\overline{x y}) \equiv x$.

TCC Proof of Correctness III

Smoothness does matter in the de Silva-Ghrist proof.

TCC and WFS

Theorem 1 Let $\mathcal{D} \subset \mathbb{R}^{d}$ be a locally contractible, compact set, and let \mathcal{B} be the boundary of \mathcal{D} with $\operatorname{wfs}(\mathcal{B})>4 \alpha$. Let $P \subset \mathcal{D}^{\alpha}$, and let $Q=B^{\alpha} \cap P$. For any integer k, let h_{k} denote the homomorphism $h_{k}: \mathrm{H}_{k}\left(P^{\alpha}, Q^{\alpha}\right) \rightarrow \mathrm{H}_{k}\left(P^{3 \alpha}, Q^{3 \alpha}\right)$ induced by inclusion. Then, the following two statements hold.

1. If $\mathcal{D} \subseteq P^{\alpha}$, then im $h_{k} \cong \mathrm{H}_{k}(\mathcal{D}, \mathcal{B})$ for all integers k.
2. If im $h_{d} \cong \mathrm{H}_{d}(\mathcal{D}, \mathcal{B})$, then $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subset P^{\alpha}$.

Almost, but not quite converses.

Certified Homology Inference

$$
U_{\beta}=P \backslash \mathcal{B}^{\beta}=\{p \in P \mid d(p, \mathcal{B})>\beta\} .
$$

Lemma 3 Suppose the sample $P \subset \mathcal{D}^{\alpha}$ is such that $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$ as asserted by the TCC. Let $\beta, \gamma, \varepsilon, \delta$ be constants such that $\varepsilon \geq \gamma \geq \alpha$ and $\beta \geq \varepsilon+\delta+\gamma$, we have If $\mathrm{wfs}(\mathcal{B})>\beta+\gamma$, then

$$
\operatorname{rank}\left(\mathrm{H}_{k}\left(U_{\beta}^{\gamma}\right) \rightarrow \mathrm{H}_{k}\left(U_{\delta}^{\varepsilon}\right)\right)=\operatorname{dim}\left(\mathrm{H}_{k}(\mathcal{D})\right) \text {, for all integers } k .
$$

Certified Homology Inference

$$
U_{\beta}=P \backslash \mathcal{B}^{\beta}=\{p \in P \mid d(p, \mathcal{B})>\beta\}
$$

Lemma 3 Suppose the sample $P \subset \mathcal{D}^{\alpha}$ is such that $\mathcal{D} \backslash \mathcal{B}^{2 \alpha} \subseteq P^{\alpha}$ as asserted by the TCC. Let $\beta, \gamma, \varepsilon, \delta$ be constants such that $\varepsilon \geq \gamma \geq \alpha$ and $\beta \geq \varepsilon+\delta+\gamma$, we have If $\operatorname{wfs}(\mathcal{B})>\beta+\gamma$, then

$$
\operatorname{rank}\left(\mathrm{H}_{k}\left(U_{\beta}^{\gamma}\right) \rightarrow \mathrm{H}_{k}\left(U_{\delta}^{\varepsilon}\right)\right)=\operatorname{dim}\left(\mathrm{H}_{k}(\mathcal{D})\right), \text { for all integers } k
$$

Key Idea:

Use TCC to certify coverage assuming the number of connected components is known.
Then compute the higher Betti numbers by looking at the persistent homology of subsamples.
Throw out points too close to the boundary.

k-Coverage

Lemma 2 If j_{*} is an isomorphism, then ϕ_{*} is surjective.

Let $x \in P_{k}^{\alpha} \backslash Q_{k}^{3 \alpha}$ so that $[x] \in \operatorname{im} i_{*}$.
If $x \in \overline{\mathcal{B}^{2 \alpha}}$, then $\{x\} \in \operatorname{im} \phi_{*}$.
So, there is some $y \in \mathcal{B}$ s.t. $\|x-y\| \leq 2 \alpha$.
By the triangle inequality, $y \in \overline{Q_{k}^{\alpha}}$ and so $y \in \overline{P_{k}^{\alpha}}$. Thus, $[x]=0$ in $\mathrm{H}_{0}\left(\overline{Q_{k}^{\alpha}}, \overline{P_{k}^{\alpha}}\right)$ because $\partial(\overline{x y}) \equiv x$.

