DIFFERENTIALLY PRIVATE ALGORITHMS Some Primitives and Paradigms

Kunal Talwar Google Brain

DIFFERENTIAL PRIVACY RECAP

•

Databases d and $d' \in D^n$ are neighbors if they differ in one individual's contribution

 (ε, δ) -Differential Privacy: For all d, d' neighbors, the distribution of M(d) is (nearly) the same as the distribution of M(d'): $\forall S, \qquad \Pr[M(d) \in S] \leq \exp(\varepsilon) \cdot \Pr[M(d') \in S] + \delta$

DIFFERENTIAL PRIVACY RECAP

Composition: Allows us to bound privacy cost of sequence of DP algorithms

$$T$$
 runs of (ε, δ) -DP algorithm: $\left(\varepsilon\sqrt{T\ln\frac{1}{\delta}}, \delta(T+1)\right)$ -DP

END-TO-END LEARNING A MODEL

Input: MNIST dataset containing handwritten digits, labeled 0-9

Goal: Learn to label fresh digits

Input: A range of feasible dates for an event.
Input: Conference center availability

Input: For each possible attendee, dates when they are available.

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Н							
G							
F							
Е							
D							
С							
В							
А							

Input: A range of feasible dates for an event.
Input: Conference center availability

Input: For each possible attendee, dates when they are available.

Goal: Find a date when most people are available

```
For each feasible date t:

If Conference Center available on t:

Count[t] = number of people available on t

else:

Count[t] = 0
```

Output $argmax_t$ Count[t]

Input: A range of feasible dates for an event.
Input: Conference center availability

Input: For each possible attendee, dates when they are available.

Goal: Find a date when most people are available

```
For each feasible date t:

If Conference Center available on t:

Count[t] = number of people available on t

else:

Count[t] = 0
```

Output $argmax_t$ Count[t]

Input: A range of feasible dates for an event.
Input: Conference center availability

Input: For each possible attendee, dates when they are available.

```
For each feasible date t:

If Conference Center available on t:

Count[t] = SAN(number of people available on t)

else:

Count[t] = 0

Output argmax_t Count[t]
```

Input: A range of feasible dates for an event.
Input: Conference center availability

Input: For each possible attendee, dates when they are available.

```
SAN(
For each feasible date t:
    If Conference Center available on t:
        Count[t] = number of people available on t
    else:
        Count[t] = 0
Output argmax_t Count[t])
```

PRIMITIVES

Simple San(.) 's for some simple functions

f(d) = Number of people in d available on date t

f(d) = Number of people in d available on date t

$$\operatorname{San}(f(d)) = f(d) + \operatorname{Lap}(\frac{1}{\varepsilon})$$

$$Laplace\left(\frac{1}{\varepsilon}\right)$$
$$Density(y) \propto \exp(-\varepsilon |y|)$$

f(d) = Number of people in d available on date t

$$\operatorname{San}(f(d)) = f(d) + \operatorname{Lap}(\frac{1}{\varepsilon})$$

$$|f(d) - f(d')| \le 1$$

Going from d to d' shifts distribution by 1.

$$Laplace\left(\frac{1}{\varepsilon}\right)$$
$$Density(y) \propto \exp(-\varepsilon |y|)$$

$$f(d)$$
 = Number of people in d available on date t

$$\operatorname{San}(f(d)) = f(d) + \operatorname{Lap}(\frac{1}{\varepsilon})$$

$$|f(d) - f(d')| \le 1$$

$$Density(y) \propto \exp(-\varepsilon |y - f(d')|)$$

f(d) = Number of people in d available on date t

$$\operatorname{San}(f(d)) = f(d) + \operatorname{Lap}(\frac{1}{\varepsilon})$$

$$|f(d) - f(d')| \le 1$$

SANITIZING A LOW SENSITIVITY FUNCTION

$$f(d)$$
 = Arbitrary sensitivity-1 function $|f(d) - f(d')| \le 1$

$$\operatorname{San}(f(d)) = f(d) + \operatorname{Lap}(\frac{1}{\varepsilon})$$

How large is this noise?

Expected magnitude $\frac{1}{\varepsilon}$

SANITIZING A LOW SENSITIVITY FUNCTION: GAUSSIAN

f(d) = Arbitrary sensitivity-1 function

$$|f(d) - f(d')| \le 1$$

Gaussian Distribution

$$San(f(d)) = f(d) + N(0, \sigma^2)$$

Satisfies (ε, δ) -DP for a suitable σ

SANITIZING A LOW SENSITIVITY FUNCTION: GAUSSIAN

f(d) = Arbitrary sensitivity-1 vector function

$$|f(d) - f(d')|_2 \le 1$$

Multi-dimensional Gaussian

$$San(f(d)) = f(d) + N(0, \sigma^2 \mathbb{I})$$

Satisfies (ε, δ) -DP for a suitable σ

SANITIZING A SELECTION: EXPONENTIAL

General Output space: a set *K* of options

Score function $q: D^n \times K \to \mathbb{R}$

 $|q(\mathbf{d}, k) - q(\mathbf{d}', k)| \le 1$, $\forall k \in K, \forall \mathbf{d}, \mathbf{d}'$ neighboring

E.g. Select a date to maximize number of attendees

SANITIZING A SELECTION: EXPONENTIAL

General Output space: a set *K* of options

Score function $q: D^n \times K \to \mathbb{R}$

 $|q(\mathbf{d}, k) - q(\mathbf{d}', k)| \le 1$, $\forall k \in K, \forall \mathbf{d}, \mathbf{d}'$ neighboring

E.g. Select a date to maximize number of attendees

 $San(argmax_k q(d, k))$: Pick $k \in K$ with probability $\propto exp(\varepsilon q(x, k))$

SANITIZING A SELECTION: EXPONENTIAL

General Output space: a set *K* of options

Score function $q: D^n \times K \to \mathbb{R}$

 $|q(\mathbf{d}, k) - q(\mathbf{d}', k)| \le 1$, $\forall k \in K, \forall \mathbf{d}, \mathbf{d}'$ neighboring

Satisfies 2ε -DP

 $\operatorname{San}(\operatorname{argmax}_k q(d, k)) : \operatorname{Pick} k \in K \text{ with probability } \propto \exp(\varepsilon q(x, k))$

Utility: $q(x, M(x)) \ge argmax_{k \in K} q(x, k) - O(\frac{\log k}{\varepsilon})$

PARADIGMS

Using San(.) 's for complex tasks

Input: A range of feasible dates for an event.
Input: Conference center availability

Input: For each possible attendee, dates when they are available.

Α							
В							
С							
D							
Е							
F							
G							
Н							
	Mon	Tue	Wed	Thu	Fri	Sat	Sun

Input: A range of feasible dates for an event.
Input: Conference center availability

Input: For each possible attendee, dates when they are available.

```
SAN(
For each feasible date t:

If Conference Center available on t:

Count[t] = number of people available on t

else:

Count[t] = 0

Output argmax_t Count[t])
```

Input: A range of feasible

dates for an event.

Input: Conference center

availability

Input: For each possible attendee, dates when they are available.

Mon	Tue	Wed	Thu	Fri	Sat	Sun

THE JUST-ADD-NOISE PARADIGM

Successful in numerous settings

- Releasing simple statistics
- Combinatorial Public Projects, Minimum cuts in graphs [Gupta-Ligett-McSherry-Roth-T.-09]
- Gradient Descent and Stochastic Gradient
 Descent [Wu-Kumar-Chaudhuri-Jha-Naughton-16]

Input: A number k

Input: For each person i, a vector v_i in \mathbb{R}^m , $|v_i|_2 \leq 1$

Goal: Output a rank-k projection Π maximizing the average squared projection length

 $\sum |\Pi v_i|_2^2$

```
000000000000000
/ | | | / 1 | / 7 | 1 | / / / / |
2222222222222
555555555555555
66666666666666
ファチ17ァファファファファ
8888888888888888
  999999
```

Input: A number k

Input: For each person i, a vector v_i in \mathbb{R}^m , $|v_i|_2 \leq 1$

Goal: Output a rank-k projection Π maximizing the average squared projection length

 $\sum |\Pi v_i|_2^2$

Input: A number k

Input: For each person i, a vector v_i in \mathbb{R}^m , $|v_i|_2 \leq 1$

Goal: Output a rank-k projection Π maximizing the average squared projection length

 $\sum |\Pi v_i|_2^2$

A lot of work in DP PCA

[Blum-Dwork-McSherry-Nissim-04]

[McSherry-Mironov-09]

[Chaudhuri-Sarwate-Song-12]

[Hardt-Roth-12]

[Kapralov-T.-13]

[Hardt-Roth-13]

[Dwork-Thakurta-T.-Zhang-14]

Input: A number k

Input: For each person i, a vector v_i in \mathbb{R}^m , $|v_i|_2 \leq 1$

Goal: Output a rank-k projection Π maximizing the average squared projection length

$$\sum |\Pi v_i|_2^2$$

$$\mathbf{A} = \begin{bmatrix} v_1 \\ v_2 \\ \cdot \\ \cdot \\ \cdot \\ v_n \end{bmatrix}$$

Optimal Π given by top k eigenvectors of

$$C = A^T A = \sum_i v_i v_i^T$$

Input: A number k

Input: For each person i, a vector v_i in \mathbb{R}^m , $|v_i|_2 \leq 1$

Goal: Output a rank-k projection Π maximizing the average squared projection length

$$\sum |\Pi v_i|_2^2$$

Compute $C = \sum_{i} v_{i} v_{i}^{T}$ Output the top k eigenvectors of C

Input: A number k

Input: For each person i, a vector v_i in \mathbb{R}^m , $|v_i|_2 \leq 1$

Goal: Output a rank-k projection Π maximizing the average squared projection length

$$\sum |\Pi v_i|_2^2$$

 ${\cal C}$ viewed as an m^2 -dim. vector has senstivity 1

Compute $C = \sum_{i} v_{i} v_{i}^{T}$ Output the top k eigenvectors of C

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \rightarrow \begin{bmatrix} C_{11} \\ C_{12} \\ C_{21} \\ C_{22} \\ C_{23} \\ C_{31} \\ C_{32} \\ C_{33} \end{bmatrix}$$

Input: A number k

Input: For each person i, a vector v_i in \mathbb{R}^m , $|v_i|_2 \leq 1$

Goal: Output a rank-k projection Π maximizing the average squared projection length

 $\sum |\Pi v_i|_2^2$

Compute San ($C = \sum_i v_i v_i^T$) Output the top k eigenve for of C

Input: A number k

Input: For each person i, a vector v_i in \mathbb{R}^m , $|v_i|_2 \leq 1$

Goal: Output a rank-k projection Π maximizing the average squared projection length

$$\sum |\Pi v_i|_2^2$$

Compute San ($C = \sum_i v_i v_i^T$) Output the top k eigenve for of C

> Can prove strong error bounds Optimal under DP constraint

NOISE-UP-THE-RIGHT-OBJECT(S) PARADIGM

Find the "right" algorithm Sanitize the appropriate steps

- Recommendation Systems [McSherry-Mironov-09]
- Histogram Release [McSherry-Mironov-T.-10]
- Set Cover [Gupta-Ligett-McSherry-Roth-T.10]
- Gradient Descent [Chaudhuri-Sarwate-Song-12, Bassily-Thakurta-Smith-14]
- LASSO [T.-Thakurta-Zhang-15]

EXAMPLE: COUNT QUERIES

Input: A function $P: D \rightarrow [0,1]$

Input: For each person i, a row $d_i \in D$

Goal: Output sum of function evaluations

$$\sum_{i} P(d_i)$$

Input: k functions $P_1, P_2, ..., P_k: D \rightarrow [0,1]$

Input: For each person i, a row $d_i \in D$

Goal: Output number of rows that satisfy each predicate

$$\left\{ \sum_{i} P_{j}(d_{i}) \right\}_{j \in [k]}$$

Input: A vector function $P: D \rightarrow [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum_{i} P(d_i)$$

k-dimensional vector query Noise = l_2 Sensitivity = \sqrt{k}

San (Compute $\sum_{i} P(d_{i})$) Output it

Input: A vector function $P: D \rightarrow [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum_{i} P(d_i)$$

Noise = l_2 Sensitivity = \sqrt{k}

Can we do better? In general: NO. Lower bounds via discrepancy.

Input: A vector function

 $P:D\to [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum_{i} P(d_i)$$

Noise = l_2 Sensitivity = \sqrt{k}

Can we do better?
For Specific Queries?

Input: A vector function

 $P:D\to [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum_{i} P(d_i)$$

Noise = l_2 Sensitivity = \sqrt{k}

Can we do better?

$$P_1 = P_2 = \dots = P_k$$

Input: A vector function $P: D \rightarrow [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum_{i} P(d_i)$$

Noise = l_2 Sensitivity = \sqrt{k}

Can we do better?

$$P_1 = P_2 = \dots = P_k$$

Can we exploit dependencies?

Input: A vector function $P: D \rightarrow [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum_{i} P(d_i)$$

Noise = l_2 Sensitivity = \sqrt{k}

Can we exploit dependencies?

YES! Depends on the geometry of the vectors $\{P(d)\}_{d\in D}$

Input: A vector function

$$P:D\to [0,1]^k$$

Noise = l_2 Sensitivity = \sqrt{k}

Can we exploit dependencies?

YES! Depends on the geometry of the vectors $\{P(d)\}_{d \in D}$

Convex body $K = conv\{P(d): d \in D\}$

[Hardt-T.-10, Bhaskara-Dadush-Krishnaswamy-T.-12, Nikolov-T.-Zhang-12]

Input: A vector function

$$P:D\to [0,1]^k$$

Noise = l_2 Sensitivity = \sqrt{k}

Can we exploit dependencies?

YES! Depends on the geometry of the vectors $\{P(d)\}_{d \in D}$

Tailor the noise to the geometry of the query set

[Hardt-T.-10, Bhaskara-Dadush-Krishnaswamy-T.-12, Nikolov-T.-Zhang-12]

INTERLUDE: GEOMETRY & DISCREPANCY

- Lower bounds use Discrepancy
 - Hereditary Discrepancy
- Upper bounds use Geometry
 - Bourgain-Tzafriri Restricted Invertibility
- Upper and lower bounds match up to logarithmic factors

Leads to new connection between Discrepancy Theory and Geometry

$$HerDisc(A) \approx \gamma_2(A)$$

Polylogarithmic approximation to Hereditary Discrepancy Progress on the Tusnady problem

Input: A vector function

 $P:D\to [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum P(d_i)$$

Noise = l_2 Sensitivity = \sqrt{k}

What if $k \gg n$?

Different kind of dependencies

Input: A vector function

 $P:D\to [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum P(d_i)$$

What if $k \gg n$?

Different kind of dependencies

Input: A vector function $P: D \rightarrow [0,1]^k$

Input: For each person i, a row $d_i \in D$

Goal: Output sums of vector function evaluations

$$\sum P(d_i)$$

Noise = l_2 Sensitivity = \sqrt{k}

What if $k \gg n$?

Different kind of dependencies

Gives nearly optimal error:

 $\sim \sqrt{n} \log k$

USE-AVAILABLE-INFORMATION-TO-POSTPROCESS

Often answers must satisfy some constraints

Noised-up answers may violate them. Project to enforce constraint.

- Contingency Table Release [Barak-Chaudhuri-Dwork-Kale-McSherry-T.-2007]
- Unattributed Histograms [Hay-Rastogi-Miklau-Suciu-09]
- Degree Distribution [Hay-Li-Miklau-Jensen-09]
- Bayesian Inference [McSherry-Williams-10]
- Covariance matrix release [Sheffet-16]

USE-AVAILABLE-INFORMATION-TO-PREPROCESS

Often we know some property of database that makes problem easier Use information to transform query to an easier one

- Releasing graph statistics, Graph synthesis [Proserpio-Goldberg-McSherry-13]
- Graph properties under node privacy [Blocki-Blum-Datta-Sheffet-13, Kasiviswanathan-Nissim-Raskhodnikova-Smith-13, Chen-Zhou-13, Raskhodnikova-Smith-15]
- Propose-Test-Release framework [Dwork-Lei-09]

END-TO-END LEARNING A MODEL

Input: MNIST dataset containing handwritten digits, labeled 0-9

Goal: Learn to label fresh digits

END-TO-END LEARNING A MODEL

Input: Neural Network architecture.

Input: MNIST dataset containing handwritten digits, labeled 0-9

Goal: Learn parameters of a model to label fresh digits

END-TO-END LEARNING A MODEL

Input: Neural Network architecture.

Input: MNIST dataset containing handwritten digits, labeled 0-9

Goal: Learn parameters θ of a model to minimize loss

 ∇

MAKING DEEP NETWORKS PRIVATE

- Just-add-noise paradigm fails
 - Sensitivity is large

- Noise-up-the-right-objects paradigm
 - Can take standard non-private algorithm and add appropriate noise
 - Naïve analysis results in large privacy cost

STOCHASTIC GRADIENT DESCENT

Start at a random point θ For $t = 1 \dots T$:

Pick a small batch of examples

Compute average Gradient g of Loss for examples in batch

Move in that direction: $\theta \leftarrow \theta - \eta g$

STOCHASTIC GRADIENT DESCENT

Start at a random point θ For $t=1 \dots T$:

Pick a small batch of examples

San (Compute average Gradient g of
Loss for examples in batch)

Move in that direction: $\theta \leftarrow \theta - \eta g$ Naïve privacy analysis:

Bound privacy cost of each step Use Strong composition

Tusually huge. Get bad bounds

PRIVACY AMPLIFICATION BY SAMPLING

- Take your favorite (ε, δ) –DP San
- Run it on a random q fraction of the data

• This new San is $(2q\varepsilon, q\delta)$ -DP

STOCHASTIC GRADIENT DESCENT

Start at a random point θ For $t=1\dots T$:

Pick a small batch of examples

San (Compute average Gradient g of
Loss for examples in batch)

Move in that direction: $\theta \leftarrow \theta - \eta g$ Sampling by amplification helps.

We prove a stronger composition theorem for such mechanisms

STOCHASTIC GRADIENT DESCENT

San(Compute PCA of data)
Start at a random point θ For $t=1 \dots T$:
Pick a small batch of examples
San (Compute av. Gradient g of Loss
for PCA-projected examples in batch)
Move in that a position: $\theta \leftarrow \theta - \eta g$

Sampling by amplification helps.

We prove a stronger composition theorem for such mechanisms

END-TO-END MODEL TRAINING

95 % accuracy with $(2, 10^{-5})$ -DP

NOISE-ON-SAMPLE PARADIGM

SGD is the most common learning method for a large class of problems
Other algorithms such as EM can also be made private using this approach

- Convex loss Empirical Risk Minimization [Bassily-Thakurta-Smith-14]
- Topic Modeling [Park-Foulds-Chaudhuri-Welling-16]
- Expectation Maximization [Park-Foulds-Chaudhuri-Welling-16]
- Variational Inference [Jalko-Dikmen-Honkela-16, Park-Foulds-Chaudhuri-Welling-16]

OTHER PARADIGMS

- Sparse Vector Technique
- Smoothed Sensitivity
- Aggregation
- Roll-up-your-sleeves

- Local Differential Privacy
- Multiparty Differential Privacy
- Privacy under Continual Observation
- Weaker privacy models

SUMMARY

•

A sampling of primitives and paradigms

A lot of tasks can be done with little loss in utility

Noise addition does not work ≠ DP does not work

Deep connections to other fields of study

