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Set-up

G a topological (finite) group, with Borel sigma algebra %
Z(G) the set of Borel probability measures on G
For u,v € 2(G), f € C(G),

<f,u*V>=/G/Gf(xy)du(><)dV(y)

Consider, for p € Z(G), the large n behavior of 1*" as a weak-* limit
in one of several function spaces, e.g. L>°(G), Lipschitz functions,
Sobolev spaces, etc., and also the growth of supp(u*")

@ We seek quantitative statements, e.g. a rate of convergence
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Example: riffle shuffling

Let N > 1 and consider the following random walk on the symmetric
group &y (Gilbert-Shannon-Reeds)
@ 4 is the distribution on Gy given by
» Choose 1 < n < N according to the binomial distribution
N
Prob(n) = %
» Conditioned on the value of n, the measure is uniform over all
permutations which preserve the relative order of the first n and last
N — n cards
e Convergence to uniform is observed after 3 log, N + O(1) steps in the
total variation (L) metric [1], [2]
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Motivation

Rich source of Markov chains which can be rigorously analyzed
Useful in computational group theory software
Source of expander graphs [3] with applications in number theory [4]

Gives a simplified model for the dynamics of e.g. flows in linear groups

Non-commutative analogues of the classical theorems of probability
theory in Euclidean space

@ Central and local limit theorems

@ Simple random walk
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Sample theorem

Let Un(Z), m > 3 be the upper triangular group of m x m matrices

1 zZz Z --- Z

0 1 ZzZ - 7

Um(Z): :
1 Z

0 0 0 1

mxm

® Zi m denotes the upper right corner (central) coordinate.

@ M, is the matrix with 1 at jth position in the first super-diagonal,
M =1+¢ ® ejt1.

o Measure (i € #(Un(Z)) is uniform on the set {/y,, M, ..., ME .}
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Sample theorem

Theorem (Diaconis, H. 2015)

2
Let m > 3 and let ¢ > 0. As prime p — oo, for n ~ cpm—1

D

x mod p

1
i (Z1,m = x mod p) — - < e ‘.

Our method can handle more general measures and (in progress) gives a

local limit theorem extending [5] to discrete nilpotent groups, e.g. for all
a,b,ceZ,

1 a ¢ 1 ﬁ %
s 01 b =v 0 1 X + 0(n27°).
0 01 0 O 1

where v is the density function of a Gaussian measure on Usz(R).
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Ideas in the proof

o Let w = wyws--- wp, be a typical word on generators. We use a
product group action on segments of generators to demonstrate
smoothness in the measure at various scales

GO GO GO
—— %
W1 - Wi Wil - Wok s - WIM—1)k+1 " " WMk

via commutator calculus.

@ For n > 5 the separate factors in the product group act non-locally
(dependently). The non-local behavior is eliminated by applying the
Gowers-Cauchy-Schwarz inequality to the characteristic function of
the central coordinate.

@ Stronger rates are achieved via concentration of measure techniques
(Azuma's inequality).
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Survey of recent work

@ Varju [5] gives a quantitative local limit theorem for random walk on
the group Isom(IR") of isometries of R”, with applications to
self-similar measures [3]

@ Helfgott-Seress-Zuk [1] show that for random g, h € &, the mixing
time of random walk generated by {g, h,g=*, h~1} is
O(n*(log n)°M)

o Pillai-Smith [4] show a total-variation mixing time of O(nlog n) for
the Kac random walk (modelling a Boltzman gas) on the n-sphere

Techniques include: spectral gap estimates, coupling, comparison with
classical Markov chains
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Open problems

@ Classical limit and local limit theorems on Lie groups make restrictive
conditions on the generating measure, e.g. that it be absolutely
continuous w.r.t. Haar measure, or have support generating a dense
subgroup. Can these be removed?

@ The distance to uniformity with lower order error term is known for
some examples of conjugation invariant measures. It's desirable to
extend these results to less symmetric measures. For instance, it
would be nice to demonstrate a sharp phase transition in L! for the
Kac walk; presently a mean field version is known [2].

e Green and Tao [6] give quantitative equidistribution results for
polynomial sequences in a nilmanifold. It's desirable to have similar
results for unipotent flows on other homogeneous spaces.
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Thanks for listening!
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