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Disorder-generated multifractals:

Intensity patterns in systems with disorder frequently display high variability over a
wide range of space or time scales, associated with huge fluctuations which can be
visually detected.

Intensity of a multifractal wavefunction at the point of Integer
Quantum Hall Effect.

Courtesy of F. Evers, A. Mirlin and A. Mildenberger.

Multifractality characterizes such patterns in a lattice of M = (L/a)d � 1 sites
by attributing different scaling of intensities hi ∼ Mxi at different lattice sites
i = 1, . . .M , with exponents xi forming a dense set such that

ρM(x) =
∑M
i=1 δ

(
lnhi
lnM − x

)
≈ cM(x)

√
lnMMf(x), M � 1 ,

which is frequently referred to as the multifractal Ansatz. Whereas the singularity
spectrum f(x) is typically self-averaging, there are essential sample-to-sample
fluctuations of the prefactor cM(x) in different realizations of disorder, as well as
fluctuations in the number and height of extreme peaks of the pattern. Those
fluctuations will be the subject of our interest.



From disorder-generated multifractals to log-correlated fields:

Disorder-generated multifractal patterns of intensities h(r) are typically self-similar

E {hq(r1)hs(r2)} ∝
(
L
a

)yq,s (|r1−r2|
a

)−zq,s
, q, s ≥ 0, a� |r1 − r2| � L

and spatially homogeneous

E {hq(r1)} ∼ 1
M

∑
r h

q(r) ∝
(
L
a

)d(ζq−1)

where ζq and f(x) are related by the Legendre transform:

f ′(y∗) = −q and ζq = f(y∗) + q y∗.

The consistency of the two conditions for |r1 − r2| ∼ a and |r1 − r2| ∼ L implies:

yq,s = d(ζq+s − 1), zq,s = d(ζq+s − ζq − ζs + 1)

If we now introduce the field V (r) = lnh(r)− E {lnh(r)} and exploit the identities
d
dsh

s|s=0 = lnh and ζ0 = 1 we arrive at the relation:

E {V (r1)V (r2)} = −g2 ln
|r1−r2|
L , g2 = d ∂2

∂s∂qζq+s|s=q=0

Conclusion: logarithm of a multifractal intensity is a log-correlated random field.
To understand statistics of high values and extremes of general logarithmically correlated
random fields we consider the simplest 1D case of such process: the Gaussian 1/f noise.



Ideal Gaussian periodic 1/f noise:

We will mainly study an idealized periodic model for Gaussian 1/f noise defined as

V (t) =
∑∞
n=1

1√
n

[
vne

int + vne
−int] , t ∈ [0, 2π)

where vn, vn are complex standard Gaussian i.i.d. with E{vnvn} = 1. It implies
the formal covariance structure:

E {V (t1)V (t2)} = −2 ln |2 sin t1−t2
2 |, t1 6= t2

The corresponding process is a random distribution and in applications should be
regularized. There are several alternative regularizations. E.g. one can replace the
function V (t), t ∈ [0, 2π) with a sequence of M � 1 random mean-zero Gaussian
variables Vk ≡ V

(
t = 2π

M k
)

with the covariance matrix E {VkVm} given by

E {VkVm} = −2 ln |2 sin π
M (k −m)|, Ckk = E

{
V 2
k

}
> 2 lnM, ∀k = 1, . . . ,M

One also may give bona fide mathematical definition as e.g. 1D "projection" of the 2D Gaussian Free
Field. We shall see that one may further consider aperiodic stationary logarithmically-correlated

processes as well as similar processes with stationary increments:

E {V (t1)V (t2)} ∝ − log |t1 − t2| or E
n

[V (t1)− V (t2)]
2
o
∝ log |t1 − t2|

The multifractal intensity pattern is then generated by setting hi = eVi for each
i = 1, . . . ,M .



Ideal Gaussian periodic 1/f noise:

An example of the 1/f signal sequence generated for M = 4096 for the discretized
version of periodic 1/f noise is given in the figure.

-15

-10

-5

 0

 5

 10

 15

 0  500  1000 1500  2000 2500 3000 3500 4000

V(t
) 

t

The upper line marks the typical value of the extreme value threshold Vm = 2 lnM − 3
2 ln lnM .

The lower line is the level 1√
2
Vm and blue dots mark points supporting Vi > 1√

2
Vm.

Questions we would like to answer: How many points are typically above a given level of

the noise? How strongly does this number fluctuate for M � 1 from one realization to the other?

How to understand the typical position Vm and statistics of the extreme values (maxima or minima),

etc. And, after all, what parts of the answers are universal and what is the universality class?



Characteristic polynomial of random CUE matrix and periodic 1/f noise:

Let UN be aN×N unitary matrix, chosen at random from the unitary group U(N).
Introduce its characteristic polynomial pN(θ) = det

(
1− UN e−iθ

)
and further

consider VN(θ) = −2 log |pN(θ)|. Following Hughes, Keating & O’Connell 2001
one can employ the following representation

V
(U)
N (θ) = −2 log |pN(θ)| =

∑∞
n=1

1√
n

[
e−inθv

(N)
n + comp. conj.

]
where v

(N)
n = 1√

n
Tr
(
U−nN

)
.

According to Diaconis & Shahshahani 1994 the coefficients v
(N)
n1 , . . . , v

(N)
nk for

any fixed finite set n1, . . . , nk tend in the limit N → ∞ to i.i.d. complex gaussian
variables with zero mean and variance E{|ζn|2} = 1. This suggests that for finite
N Log-Mod of the characteristic polynomial of CUE matrices is just a certain
regularization of the stationary random Gaussian Fourier series of the form

V (t) =
∑∞
n=1

1√
n

[
vne

int + vne
−int] , t ∈ [0, 2π)

where vn, vn are complex standard Gaussian i.i.d. with E{vnvn} = 1. It implies

E {V (t1)V (t2)} = 2
∑∞
n=1

1
n cosn(t1 − t2) ≡ −2 ln |2 sin t1−t2

2 |, t1 6= t2.



Characteristic polynomial of random GUE matrix and aperiodic 1/f noise:

Let H be a N × N Hermitian GUE random matrix: P(H) ∝ exp
{
−N2 TrH

2
}

such that the mean eigenvalue density ρN(u) = E
{

1
NTrδ(u−H)

}
tends to the

Wigner semicircular law in x ∈ (−2, 2). Introduce its characteristic polynomial
πN(x) = det (x−H). Let Tn(u) = cos (n arccosu) be Tschebyshev polynomials
orthogonal in u ∈ (−1, 1) with the weight 1/

√
1− u2. It turns out that the following

representation is valid:

fN(x) = E {log |πN(x)|} − log |πN(x)| =
∑∞
n=1

2√
n

[
w

(N)
n +R

(N)
n

]
Tn
(
x
2

)
where w

(N)
n =

√
2
n

[
Tr
{
Tn
(
H
2

)}
−N

∫∞
−∞ Tn

(
u
2

)
ρN(u) du

]
.

According to Johansson 1998 in the limitN →∞ the coefficientsw(N)
n1
, . . . , w(N)

nk
tend to a set of

i.i.d. real gaussian variables with zero mean and unit variance. We also can show that R(N)
n → 0 in

probability. This suggests that for finiteN Log-Mod of the characteristic polynomial of GUE matrices

is just a certain regularization of a random Gaussian series of the form

f(x) =
P∞

n=1

q
2
n wn Tn

`
x
2

´
, x ∈ (−2, 2)

where wn are real standard Gaussian i.i.d variables. It implies

E {f(x1)f(x2)} =
P∞

n=1
2
n Tn

`x1
2

´
Tn
`x2

2

´
≡ − ln |x1 − x2|, x1 6= x2.



Mesoscopic regime of GUE and fractional Brownian motion with H = 0:

Define parameter dN such that 1� dN � N for N � 1, and consider for η > 0

W
(η)
N,x(t) = − log

∣∣∣∣ det
(
H− x− t+iη

dN

) ∣∣∣∣+ log
∣∣∣∣ det

(
H− x− iη

dN

) ∣∣∣∣,
One can show that

W
(η)
N,x(t) = 1√

π

∫∞
0

dω√
ω
e−ηω

[
vN,x(ω) e

iωt−1
2 + vN,x(ω) e

−iωt−1
2

]
where vN,x(ω) = 1√

ω
eixdN ω Tr

[
e−iωdNH

]
.

It can be further verified that for N → ∞ and x ∈ (−2, 2) the Fourier coefficients
vN,x(ω) tend to the standard complex Gaussian "white noise":

E{vN,x(ω)} → 0, E{vN,x(ω1) vN,x(ω2)} → δ (ω1 − ω2)

which implies that W (η)
N,x(t)→ B

(η)
0 (t) such that

E
{[
B

(η)
0 (t1)−B(η)

0 (t2)
]2}

= 1
π ln (t1−t2)2+4η2

4η2 .

This is a properly regularized limit H → 0 of the Fractional Brownian Motion

BH(t) such that E {BH(t1)BH(t2)} = σ2
H
2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
.



1/f Noises, Disordered Energy Landscapes, and Burgers Turbulence:

In the area of Statistical Mechanics of Disordered Systems logarithmically
correlated fields and 1/f noises have been recently identified as potential energy
landscapes underlying an intriguing phenomenon of the freezing transition which
takes place at some finite temperature T = Tc ( Carpentier & Le Doussal
2001; YVF & Bouchaud 2008; YVF , Le Doussal & Rosso 2009). In a related
development, it was shown that a freezing transition shows up also in the problem of
decaying Burgers turbulence, i.e. analysis of the Burgers equation ∂tv+(v∇)v =
ν∇2v, ν > 0 with random initial conditions given by the gradient of the 1/f noise
(YVF, Le Doussal & Rosso 2010 & unpublished).

Though most of the above considerations are not yet rigorous, as the result we by
now have a qualitative, and sometimes, quite precise quantitative understanding of
statistics of high and extreme values of such random processes: the statistics of
the number of points in a pattern above a given level, and the distribution of the
highest intensity Vm in the pattern. In particular, for the periodic Gaussian 1/f
noise we have a prediction Vm = 2 lnM − 3

2 ln lnM − x, where x is a random
variable with the density p(x) = 2exK0(2ex/2). This is manifestly different from the
ubiquitous double-exponential Gumbel distribution pGumb(x) = − d

dx exp{−ex}
universally valid for maxima of short-range correlated random variables.



Statistics of the counting function NM(x) and threshold of extreme values:

By relating moments of the counting function NM(x) =
∫∞
x
ρM(y) dy for log-

correlated 1/f noise to Selberg integrals we conjecture that the probability density
for the (scaled) counting function n = NM(x)/Nt(x) is given by:

Px(n) = 4
x2 e
−n
− 4
x2
n
−
“

1+ 4
x2

”
, n� nc(x), 0 < x < 2 .

with nc →∞ for M →∞ and the characteristic scale Nt(x) given by

Nt(x) = Mf(x)

x
√
π lnM

1
Γ(1−x2/4)

= E {NM(x)} 1
Γ(1−x2/4)

, f(x) = 1− x2/4

Note: For x→ 2 the typical value of the counting function eE{lnNM(x)} ∼ Nt(x) and
hence is parametrically smaller than the mean value E {NM(x)}. In particular, the
position xm of the typical threshold of extreme values determined from the condition
Nt(x) ∼ 1 is given by

xm = 2− c ln lnM
lnM +O(1/ lnM) with c = 3/2.

In contrast, for short-ranged random sequences mean=typical. Had we instead
decided to use the condition E {NM(x)} ∼ 1 that would give the above but with
c = 3/2 → c = 1/2. The value c = 3

2 is conjectured to be a universal feature of
systems with logarithmic correlations (cf. Bramson & Zeitouni).



Threshold of extreme values for self-similar multifractal fields:
Apart from 1/f noise and its incarnations (like modulus of characteristic polynomials of random
matrices) the new universality class is believed to include: the 2D Gaussian free field,
branching random walks & polymers on disordered trees, modulus of zeta-function along
the critical line, fluctuations of shapes of random Young tableaux sampled with Plancherel
measure, some models in turbulence and financial mathematics and, with due modifications
the disorder-generated multifractals.

Namely, consider a multifractal random probability measure pi ∼ M−αi, i =
1, . . . ,M such that

∑M
i=1 pi = 1 characterized by a general non-parabolic

singularity spectrum f(α) with the left endpoint at α = α− > 0. Then very similar
consideration based on insights from Mirlin & Evers 2000 suggests that the extreme
value threshold should be given by pm = M−αm, where αm

αm ≈ α− + 3
2

1
f ′(α−)

ln lnM
lnM ⇒ − ln pm ≈ α− lnM + 3

2
1

f ′(α−) ln lnM
For branching random walks this is indeed rigorously proved: L. Addario-Berry & B. Reed
2009; E. Aidekon 2012
Work in progress: testing such a prediction for multifractal eigenvectors of a certain N × N
random matrix ensemble introduced by E. Bogomolny & O. Giraud, Phys. Rev. Lett. 106 044101
(2011). Preliminary numerics is supportive of the theory.



Distribution of the absolute maximum: partition function approach:

Given the sequence{Vi, i = 1, . . . ,M} we are interested in finding the distribution
of V(m) = max(V1, . . . , VM) that is

P (v) = Prob(V(m) < v) = Prob(Vi < v, ∀i) = E
{∏M

i=1 θ(v − Vi)
}

Next we use: limq→∞ exp
[
−e−q(v−Vi)

]
=
{

1 v > Vi
0 v < Vi

≡ θ(v − Vi)

which immediately shows that:

P (v) = Prob(V(m) < v) = limq→∞E {exp [−e−qvZq]} , where Zq =
∑
i=1 e

qVi

In the limit lnM � 1 moments of Zq for |q| < 1 can be again related to Selberg integrals,
which allows to extract the function Gq(v) = E

˘
exp

ˆ
−e−qvZq

˜¯
for q < 1:

Gq(v) = gq (v − cq lnM) where cq =
“
q + 1

q

”
and gq(v) =

R∞
0
dt exp

n
−t− e−qvt−q

2
o

One may further notice that not only cq = cq−1 but the whole function satisfies a quite
remarkable duality relation

gq(v) = 1 +
P∞

n=1
(−1)n

n!

h
e−nqvΓ(1− nq2) + e−n

v
qΓ
“

1− n
q2

”i
= g1

q
(x)

THIS HOWEVER STILL DOES NOT ALLOW TO CONTINUE TO q > 1!



Freezing conjecture and the distribution of extremes:

Using certain analogy with the Derrida-Spohn model of polymers on disordered
trees we conjecture the following freezing scenario: for the log−circular model the
same sort of freezing transition takes place at q = 1. Namely, the function

gq<1(v) =
∫∞

0
dt exp

{
−t− e−qvt−q2

}
freezes to the q−independent profile gq=1(v) = 2e−v/2K1(2e−v/2) in the whole
"glassy" phase q > 1.

Consequences:
(i) The latter profile then is precisely the distribution P (v) of the (shifted) absolute
maximum: Vm = 2 lnM− 3

2 ln lnM+v. This distribution is manifestly non-Gumbel,
and shows the tail behaviour: P (v → −∞) ≈ 1− |v|ev

(ii) The probability density of the partition function Zq in the whole regime q > 1 must
display a power-law forward tail of the form:

Pq>1(Z) ∝ Z−(1+1
q) lnZ

We conjecture that such a tail, including the meaningful log-factor, is to be universal
for the whole class of logarithmically correlated processes.



Numerics for the maxima of CUE characteristic polynomials:

Figure 1: Density of maxima for CUE polynomials ( N = 50, 106samples ) compared to periodic 1/f noise

prediction p(v) = 2evK0(2ev/2).



From 1/f noise to Riemann ζ(1/2 + it):

As is well-known, zeroes of the Riemann zeta-function ζ(s) along the "critical line"
s = 1/2 + it, t ∈ R behave statistically as a sequence of eigenvalues of random
Hermitian GUE matrices (Montgomery 1983). Following the ideas of Keating &
Snaith 2000 one can expect that log-mod of the Riemann zeta-function ζ(1/2 + it)
locally resembles log-mod of CUE characteristic polynomial, and hence a (non-
periodic) version of the 1/f noise, see also P. Bourgade 2010. One can exploit this
fact to predict statistics of moments and high values of the Riemann zeta along the
critical line using the previously exposed ideas (YVF, Keating 2012).

Our approach to statistics of ζ(1/2 + it):

We expect a single unitary matrix of size NT = log (T/2π) � 1 to model the
Riemann zeta ζ(1/2 + it), statistically, over a range of T ≤ t ≤ T + 2π. We thus
suggest splitting the critical line into ranges of length 2π, and making the statistics
of ζ(1/2 + it) over the many ranges.

There are roughly NT zeros in each range of length 2π. At heights T ∼ 1022− 1028

we used samples that spans ≈ 107 zeros.



Our predictions for ζ(1/2 + it) and CUE characteristic polynomials:

We expect

log ζmax(T ) ≈ logNT − 3
4 log logNT − 1

2 x, NT = log (T/2π)

where x is distributed with a probability density behaving in the tail as ρ(x→ −∞) ≈ |x| ex.
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Figure 2: Statistics of maxima for CUE polynomials (left: N = 50, 106samples ) and |ζ(1/2 + it)| (right:

NT = 65, 105 samples ) compared to periodic 1/f noise prediction p(x) = 2exK0(2ex/2).



Summary:

I. Disorder-generated multifractal patterns are intimately connected to log-
correlated random fields.
II. log-mod of characteristic polynomials of random matrices on the global scale
are examples of log-correlated Gaussian 1/f noises. The same objects on
mesoscopic scale are examples of Fractional Brownian Motion with H = 0.
III. Exploiting the methods of statistical mechanics of disordered systems
we attempted to understand the statistics of minima/maxima of the CUE
characteristic polynomial over various intervals, as well as the related
moments and high values.
IV. The above picture can be translated into making non-trivial conjectures
about statistics of moments and high values of (i) the Riemann zeta along the
critical line (ii) a more general class of disorder-generated multifractal fields.


