
Local correctability of expander codes

Brett Hemenway Rafail Ostrovsky Mary Wootters

IAS

April 14, 2014

The point(s) of this talk

I Locally decodable codes are codes which admit sublinear time
decoding of small pieces of a message.

I Expander codes are a family of error correcting codes based
on expander graphs.

I In this work, we show that (appropriately instantiated)
expander codes are high-rate locally decodable codes.

I Only two families of codes known in this regime
[KSY’11,GKS’12].

I Expander codes (and the corresponding decoding algorithm
and analysis) are very different from existing constructions!

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Error correcting codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?xi?

Bob makes
only q queries

C(x)i?

Error correcting codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?xi?

Bob makes
only q queries

C(x)i?

Error correcting codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?xi?

Bob makes
only q queries

C(x)i?

Error correcting codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?xi?

Bob makes
only q queries

C(x)i?

Error correcting codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?

xi?

Bob makes
only q queries

C(x)i?

Locally decodable codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?

xi?

Bob makes
only q queries

C(x)i?

Locally decodable codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?

xi?

Bob makes
only q queries

C(x)i?

Locally decodable codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?

xi?

Bob makes
only q queries

C(x)i?

Locally correctable codes

Alice Bob

Noisy channel

message x ∈ Σk

codeword C(x) ∈ ΣN

corrupted codeword w ∈ ΣN

x?xi?

Bob makes
only q queries

C(x)i?

Locally correctable codes, sans stick figures

Definition
C is (q, δ, η)-locally correctable if for all i ∈ [N], for all x ∈ Σk ,
and for all w ∈ ΣN with d(w , C(x)) ≤ δN,

P {Bob correctly guesses C(x)i} ≥ 1− η.

Bob reads only q positions in the corrupted word, w .

Local correctability vs. local decodability

When C is linear, local correctability implies local decodability.

=
G x

C(x)

1
1

1
.
.
.

1
1

1

x

Local correctability vs. local decodability

When C is linear, local correctability implies local decodability.

=
G x

C(x)

1
1

1
.
.
.

1
1

1

x

Before we get too far
Some notation

For a code C : Σk → ΣN

I The message length is k, the length of the message.

I The block length is N, the length of the codeword.

I The rate is k/N.

I The locality is q, the number of queries Bob makes.

Goal: large rate, small locality.

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Example: Reed-Muller Codes

Alice

f (x , y) 7→ (f (0, 0), f (0, 1), f (1, 0), f (1, 1))

I Message: multivariate polynomial of total degree d ,

f ∈ Fq[z1, . . . , zm].

I Codeword: the evaluation of f at points in Fm
q :

C(f) = {f (~x)}~x∈Fm
q

Locally Correcting Reed Muller Codes

Points in Fm
q

message is f ∈ Fq[z1, . . . , zm]

codeword is {f (~x)}~x∈Fm
q

f (~z)

f (~v)

I We want to correct
C(f)~z = f (~z).

I Choose a random line through
~z , and consider the restriction

g(t) = f (~z + t~v)

to that line.

I This is a univariate polynomial,
and g(0) = f (~z).

I Query all of the points on the
line.

Locally Correcting Reed Muller Codes

Points in Fm
q

message is f ∈ Fq[z1, . . . , zm]

codeword is {f (~x)}~x∈Fm
q

f (~z)

f (~v)

I We want to correct
C(f)~z = f (~z).

I Choose a random line through
~z , and consider the restriction

g(t) = f (~z + t~v)

to that line.

I This is a univariate polynomial,
and g(0) = f (~z).

I Query all of the points on the
line.

Locally Correcting Reed Muller Codes

Points in Fm
q

message is f ∈ Fq[z1, . . . , zm]

codeword is {f (~x)}~x∈Fm
q

f (~z)

f (~v)

I We want to correct
C(f)~z = f (~z).

I Choose a random line through
~z , and consider the restriction

g(t) = f (~z + t~v)

to that line.

I This is a univariate polynomial,
and g(0) = f (~z).

I Query all of the points on the
line.

Locally Correcting Reed Muller Codes

Points in Fm
q

message is f ∈ Fq[z1, . . . , zm]

codeword is {f (~x)}~x∈Fm
q

f (~z)

f (~v)

I We want to correct
C(f)~z = f (~z).

I Choose a random line through
~z , and consider the restriction

g(t) = f (~z + t~v)

to that line.

I This is a univariate polynomial,
and g(0) = f (~z).

I Query all of the points on the
line.

Locally Correcting Reed Muller Codes

Points in Fm
q

message is f ∈ Fq[z1, . . . , zm]

codeword is {f (~x)}~x∈Fm
q

f (~z)

f (~v)

I We want to correct
C(f)~z = f (~z).

I Choose a random line through
~z , and consider the restriction

g(t) = f (~z + t~v)

to that line.

I This is a univariate polynomial,
and g(0) = f (~z).

I Query all of the points on the
line.

Resulting parameters

I Rate is (m+d
m)/qm (we needed d = O(q), so we can decode)

I Locality is q (the field size)

If we choose m constant, we get:

I Rate is constant, but less than 1/2.

I Locality is N1/m = Nε.

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Question:

Reed-Muller Codes have locality Nε and constant rate,
but rate is less than 1/2.

Are there locally decodable codes with locality Nε,
and rate arbitrarily close to 1?

Question:

Reed-Muller Codes have locality Nε and constant rate,
but rate is less than 1/2.

Are there locally decodable codes with locality Nε,
and rate arbitrarily close to 1?

Previous Work

Rate → 1 and locality Nε:

I Multiplicity codes
[Kopparty, Saraf, Yekhanin 2011]

I Lifted codes
[Guo, Kopparty, Sudan 2012]

These have decoders similar to RM:
the queries form a good code.

I Expander codes
[H., Ostrovsky, Wootters 2013]

Decoder is similar in spirit to low-
query decoders. The queries will not
form an error correcting code.

Another regime:

Rate bad
(
N/22O(

√
log(N))

)
,

but locality 3:

I Matching vector
codes
[Yekhanin 2008,
Efremenko 2009, ...]

These decoders are different:

I The queries cannot
tolerate any errors.

I There are so few queries
that they are probably all
correct.

Previous Work

Rate → 1 and locality Nε:

I Multiplicity codes
[Kopparty, Saraf, Yekhanin 2011]

I Lifted codes
[Guo, Kopparty, Sudan 2012]

These have decoders similar to RM:
the queries form a good code.

I Expander codes
[H., Ostrovsky, Wootters 2013]

Decoder is similar in spirit to low-
query decoders. The queries will not
form an error correcting code.

Another regime:

Rate bad
(
N/22O(

√
log(N))

)
,

but locality 3:

I Matching vector
codes
[Yekhanin 2008,
Efremenko 2009, ...]

These decoders are different:

I The queries cannot
tolerate any errors.

I There are so few queries
that they are probably all
correct.

Previous Work

Rate → 1 and locality Nε:

I Multiplicity codes
[Kopparty, Saraf, Yekhanin 2011]

I Lifted codes
[Guo, Kopparty, Sudan 2012]

These have decoders similar to RM:
the queries form a good code.

I Expander codes
[H., Ostrovsky, Wootters 2013]

Decoder is similar in spirit to low-
query decoders. The queries will not
form an error correcting code.

Another regime:

Rate bad
(
N/22O(

√
log(N))

)
,

but locality 3:

I Matching vector
codes
[Yekhanin 2008,
Efremenko 2009, ...]

These decoders are different:

I The queries cannot
tolerate any errors.

I There are so few queries
that they are probably all
correct.

Previous Work

Rate → 1 and locality Nε:

I Multiplicity codes
[Kopparty, Saraf, Yekhanin 2011]

I Lifted codes
[Guo, Kopparty, Sudan 2012]

These have decoders similar to RM:
the queries form a good code.

I Expander codes
[H., Ostrovsky, Wootters 2013]

Decoder is similar in spirit to low-
query decoders. The queries will not
form an error correcting code.

Another regime:

Rate bad
(
N/22O(

√
log(N))

)
,

but locality 3:

I Matching vector
codes
[Yekhanin 2008,
Efremenko 2009, ...]

These decoders are different:

I The queries cannot
tolerate any errors.

I There are so few queries
that they are probably all
correct.

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Tanner Codes [Tanner’81]

Given:

I A d-regular graph G with n vertices and N = nd
2 edges

I An inner code C0 with block length d over Σ

We get a Tanner code C.

I C has block length N and alphabet Σ.

I Codewords are labelings of edges of G .

I A labeling is in C if the labels on each vertex form a codeword
of C0.

Example [Tanner’81]
G is K8, and C0 is the [7, 4, 3]-Hamming code.

N =
(8

2

)
= 28 and Σ = {0, 1}

A codeword of C is a labeling of edges of G .These edges form a codeword in the Hamming code

red 7→ 0

blue 7→ 1

(0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1) ∈ C ⊂ {0, 1}28

Example [Tanner’81]
G is K8, and C0 is the [7, 4, 3]-Hamming code.

N =
(8

2

)
= 28 and Σ = {0, 1}

A codeword of C is a labeling of edges of G .

These edges form a codeword in the Hamming code

red 7→ 0

blue 7→ 1

(0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1) ∈ C ⊂ {0, 1}28

Example [Tanner’81]
G is K8, and C0 is the [7, 4, 3]-Hamming code.

N =
(8

2

)
= 28 and Σ = {0, 1}A codeword of C is a labeling of edges of G .

These edges form a codeword in the Hamming code

red 7→ 0

blue 7→ 1

(0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1) ∈ C ⊂ {0, 1}28

Encoding Tanner Codes
Encoding is Easy!

1. Generate parity-check matrix
Requires:

I Edge-vertex incidence matrix of graph
I Parity-check matrix of inner code

2. Calculate a basis for the kernel of the parity-check matrix

3. This basis defines a generator matrix for the linear Tanner
Code

4. Encoding is just multiplication by this generator matrix

Linearity
If the inner code C0 is linear, so is the Tanner code C

I C0 = Ker(H0) for some parity check matrix H0.

x ∈ C0 ⇐⇒ H0 x
= 0

I So codewords of the Tanner code C also are defined by linear
constraints:

v ↔ y

y ∈ C ⇐⇒ ∀v ∈ G , H0

y |Γ(v)

= 0

Linearity
If the inner code C0 is linear, so is the Tanner code C

I C0 = Ker(H0) for some parity check matrix H0.

x ∈ C0 ⇐⇒ H0 x
= 0

I So codewords of the Tanner code C also are defined by linear
constraints:

v ↔ y

y ∈ C ⇐⇒ ∀v ∈ G , H0

y |Γ(v)

= 0

Example: vertex edge incidence matrix of K8

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

1
ro

w
fo

r
ea

ch
ve

rt
ex

1 column for each edge

I Columns have weight 2
(Each edge hits two vertices)

I Rows have weight 7
(Each vertex has degree seven)

Example: parity-check matrix of a Tanner code
K8 and the [7, 4, 3]-Hamming code

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

Parity-check
of Hamming code

Edge-vertex incidence matrix of K8

Vertex 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
1
0
0
0
0
0

1
1
0
0
0
0
0
1
0
0
0
0

0
0
1
0
0
0
0
0
1
0
0
0

1
0
1
0
0
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
0
0
1

0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
1
0
0
0
0

0
0
0
1
1
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
1
0
0
0
0
1
0

0
0
0
0
1
1
0
0
0
0
0
1

0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
0
0
1
0
0
1
0
0

0
0
0
0
0
0
1
0
0
0
1
0

0
0
0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0

0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0

Example: parity-check matrix of a Tanner code
K8 and the [7, 4, 3]-Hamming code

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

Parity-check
of Hamming code

Edge-vertex incidence matrix of K8

Vertex 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
1
0
0
0
0
0

1
1
0
0
0
0
0
1
0
0
0
0

0
0
1
0
0
0
0
0
1
0
0
0

1
0
1
0
0
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
0
0
1

0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
1
0
0
0
0

0
0
0
1
1
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
1
0
0
0
0
1
0

0
0
0
0
1
1
0
0
0
0
0
1

0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
0
0
1
0
0
1
0
0

0
0
0
0
0
0
1
0
0
0
1
0

0
0
0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0

0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0

Example: parity-check matrix of a Tanner code
K8 and the [7, 4, 3]-Hamming code

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

Parity-check
of Hamming code

Edge-vertex incidence matrix of K8

Vertex 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
1
0
0
0
0
0

1
1
0
0
0
0
0
1
0
0
0
0

0
0
1
0
0
0
0
0
1
0
0
0

1
0
1
0
0
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
0
0
1

0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
1
0
0
0
0

0
0
0
1
1
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
1
0
0
0
0
1
0

0
0
0
0
1
1
0
0
0
0
0
1

0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
0
0
1
0
0
1
0
0

0
0
0
0
0
0
1
0
0
0
1
0

0
0
0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0

0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0

Example: parity-check matrix of a Tanner code
K8 and the [7, 4, 3]-Hamming code

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

Parity-check
of Hamming code

Edge-vertex incidence matrix of K8

Vertex 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
1
0
0
0
0
0

1
1
0
0
0
0
0
1
0
0
0
0

0
0
1
0
0
0
0
0
1
0
0
0

1
0
1
0
0
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
0
0
1

0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
1
0
0
0
0

0
0
0
1
1
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
1
0
0
0
0
1
0

0
0
0
0
1
1
0
0
0
0
0
1

0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
0
0
1
0
0
1
0
0

0
0
0
0
0
0
1
0
0
0
1
0

0
0
0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0

0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0

Example: parity-check matrix of a Tanner code
K8 and the [7, 4, 3]-Hamming code

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

Parity-check
of Hamming code

Edge-vertex incidence matrix of K8

Vertex 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
1
0
0
0
0
0

1
1
0
0
0
0
0
1
0
0
0
0

0
0
1
0
0
0
0
0
1
0
0
0

1
0
1
0
0
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
0
0
1

0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
1
0
0
0
0

0
0
0
1
1
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
1
0
0
0
0
1
0

0
0
0
0
1
1
0
0
0
0
0
1

0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
0
0
1
0
0
1
0
0

0
0
0
0
0
0
1
0
0
0
1
0

0
0
0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0

0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0

Example: parity-check matrix of a Tanner code
K8 and the [7, 4, 3]-Hamming code

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

Parity-check
of Hamming code

Edge-vertex incidence matrix of K8

Vertex 1

1
1
0
0
0
0
0
0

1
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0

1
0
0
0
0
0
0
1

0
1
1
0
0
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
1
0
0
0
0
1
0

0
1
0
0
0
0
0
1

0
0
1
1
0
0
0
0

0
0
1
0
1
0
0
0

0
0
1
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
1
0
0
0
0
1

0
0
0
1
1
0
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
0
1
0

0
0
0
1
0
0
0
1

0
0
0
0
1
1
0
0

0
0
0
0
1
0
1
0

0
0
0
0
1
0
0
1

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
1

0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0

0
1
0
0
1
0
0
0
0
0

1
1
0
0
0
1
0
0
0
0

0
0
1
0
0
0
1
0
0
0

1
0
1
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
1

0
0
0
1
1
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
0
0
0
1
0

0
0
0
1
0
0
0
0
0
1

0
0
0
0
1
1
0
0
0
0

0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
0
0
1
0
0

0
0
0
0
1
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
1
0
0
0
0
0

1
1
0
0
0
0
0
1
0
0
0
0

0
0
1
0
0
0
0
0
1
0
0
0

1
0
1
0
0
0
0
0
0
1
0
0

0
1
1
0
0
0
0
0
0
0
1
0

1
1
1
0
0
0
0
0
0
0
0
1

0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
1
0
0
0
0

0
0
0
1
1
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0
0
1
0
0

0
0
0
1
0
1
0
0
0
0
1
0

0
0
0
0
1
1
0
0
0
0
0
1

0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
0
0
1
0
0
1
0
0

0
0
0
0
0
0
1
0
0
0
1
0

0
0
0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
0
1
0
1
0
0

0
0
0
0
0
0
0
1
0
0
1
0

0
0
0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
0
1
0
1
0

0
0
0
0
0
0
0
0
1
0
0
1

0
0
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
0
1
1

1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0

0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0

1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0

0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0

If the inner code has good rate, so does the outer code
Say that C0 is linear

I If C0 has rate r0, it satisfies (1− r0)d linear constraints.

I Each of the n vertices of G must satisfy these constraints.

⇓

I C is defined by at most n · (1− r0)d constraints.

I Length of C = N = # edges = nd/2

I The rate of C is

R =
k

N
≥ N − n · (1− r0)d

N
= 2r0 − 1.

If the inner code has good rate, so does the outer code
Say that C0 is linear

I If C0 has rate r0, it satisfies (1− r0)d linear constraints.

I Each of the n vertices of G must satisfy these constraints.

⇓

I C is defined by at most n · (1− r0)d constraints.

I Length of C = N = # edges = nd/2

I The rate of C is

R =
k

N
≥ N − n · (1− r0)d

N
= 2r0 − 1.

If the inner code has good rate, so does the outer code
Say that C0 is linear

I If C0 has rate r0, it satisfies (1− r0)d linear constraints.

I Each of the n vertices of G must satisfy these constraints.

⇓

I C is defined by at most n · (1− r0)d constraints.

I Length of C = N = # edges = nd/2

I The rate of C is

R =
k

N
≥ N − n · (1− r0)d

N
= 2r0 − 1.

If the inner code has good rate, so does the outer code
Say that C0 is linear

I If C0 has rate r0, it satisfies (1− r0)d linear constraints.

I Each of the n vertices of G must satisfy these constraints.

⇓

I C is defined by at most n · (1− r0)d constraints.

I Length of C = N = # edges = nd/2

I The rate of C is

R =
k

N
≥ N − n · (1− r0)d

N
= 2r0 − 1.

Better rate bounds?

I The lower bound R > 2r0 − 1 is independent of the ordering
of edges around a vertex

I Tanner already noticed that order matters.
Let G be the complete bipartite graph with 7 vertices per side
Let C0 be the [7, 4, 3] hamming code
Then different “natural” orderings achieve a Tanner code with

I [49, 16, 9] (16
49 ≈ .327)

I [49, 12, 16] (12
49 ≈ .245)

I [49, 7, 17] (7
49 ≈ .142) Meets lower bound of 2 · 4

7 − 1

Expander codes

When the underlying graph is an expander graph, the Tanner code
is a expander code.

I Expander codes admit very fast decoding algorithms
[Sipser and Spielman 1996]

I Further improvements in
[Sipser’96, Zemor’01, Barg and Zemor’02,’05,’06]

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Main Result

Given:

I a d-regular expander graph;

I an inner code of length d with smooth reconstruction.

Then:

I We will give a local-correcting procedure for this expander
code.

Smooth Reconstruction

Bob

ci?

ci !6= ci

codeword c ∈ ΣN

Bob makes
q queries

Suppose that:

I Each Bob’s q queries is
(close to) uniformly
distributed (they don’t need
to be independent!)

I From the (uncorrupted)
queries, he can always
recover ci .

I But! He doesn’t need to
tolerate any errors.

Then:

I We say that the code has a
smooth reconstruction
algorithm.

Smooth Reconstruction

Bob

ci?

ci !6= ci

codeword c ∈ ΣN

Bob makes
q queries

Suppose that:

I Each Bob’s q queries is
(close to) uniformly
distributed (they don’t need
to be independent!)

I From the (uncorrupted)
queries, he can always
recover ci .

I But! He doesn’t need to
tolerate any errors.

Then:

I We say that the code has a
smooth reconstruction
algorithm.

Smooth Reconstruction

Bob

ci?

ci !6= ci

codeword c ∈ ΣN

Bob makes
q queries

Suppose that:

I Each Bob’s q queries is
(close to) uniformly
distributed (they don’t need
to be independent!)

I From the (uncorrupted)
queries, he can always
recover ci .

I But! He doesn’t need to
tolerate any errors.

Then:

I We say that the code has a
smooth reconstruction
algorithm.

Smooth Reconstruction

Bob

ci?

ci !6= ci

codeword c ∈ ΣN

Bob makes
q queries

Suppose that:

I Each Bob’s q queries is
(close to) uniformly
distributed (they don’t need
to be independent!)

I From the (uncorrupted)
queries, he can always
recover ci .

I But! He doesn’t need to
tolerate any errors.

Then:

I We say that the code has a
smooth reconstruction
algorithm.

Smooth Reconstruction

Bob

ci?

ci !

6= ci

codeword c ∈ ΣN

Bob makes
q queries

Suppose that:

I Each Bob’s q queries is
(close to) uniformly
distributed (they don’t need
to be independent!)

I From the (uncorrupted)
queries, he can always
recover ci .

I But! He doesn’t need to
tolerate any errors.

Then:

I We say that the code has a
smooth reconstruction
algorithm.

Smooth Reconstruction

Bob

ci?ci !

6= ci

codeword c ∈ ΣN

Bob makes
q queries

Suppose that:

I Each Bob’s q queries is
(close to) uniformly
distributed (they don’t need
to be independent!)

I From the (uncorrupted)
queries, he can always
recover ci .

I But! He doesn’t need to
tolerate any errors.

Then:

I We say that the code has a
smooth reconstruction
algorithm.

Smooth Reconstruction

Bob

ci?ci !

6= ci

codeword c ∈ ΣN

Bob makes
q queries

Suppose that:

I Each Bob’s q queries is
(close to) uniformly
distributed (they don’t need
to be independent!)

I From the (uncorrupted)
queries, he can always
recover ci .

I But! He doesn’t need to
tolerate any errors.

Then:

I We say that the code has a
smooth reconstruction
algorithm.

Smooth reconstruction, sans stick figures

Definition
A code C0 ⊂ Σd has a q-query smooth reconstruction algorithm
if, for all i ∈ [d] and for all codewords c ∈ C0:

I Bob can always determine ci from a set of queries ci1 , . . . , ciq
I Each cij is (close to) uniformly distributed in [d].

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Main Result

Given:

I a d-regular expander graph;

I an inner code of length d with smooth reconstruction.

Then:

I We will give a local-correcting procedure for this expander
code.

Decoding algorithm: main idea

Want to
correct the label

on this edge

For this
diagram
q = 2

Decoding algorithm: main idea

Want to
correct the label

on this edge

For this
diagram
q = 2

Decoding algorithm: main idea

Want to
correct the label

on this edge

For this
diagram
q = 2

Decoding algorithm: main idea

Want to
correct the label

on this edge

For this
diagram
q = 2

Decoding algorithm: main idea

Want to
correct the label

on this edge

For this
diagram
q = 2

Decoding algorithm: main idea

Want to
correct the label

on this edge

For this
diagram
q = 2

The expander walk as a tree

Want to
correct the label

on this edge

O
(l

og
n

)

q-ary tree
(inner code has q-query reconstruction)

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!

Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

The expander walk as a tree

!

O
(l

og
n

)

q-ary tree

True Statements:

I The symbols on the leaves
determine the symbol on the root.

I There are qO(log(n)) ≈ Nε leaves.

I The leaves are (nearly) uniformly
distributed in G .

Idea: Query the leaves!
Problems:

I There are errors on the leaves.

I Errors on the leaves propagate.

Correcting the last layer

O
(l

og
n

)
O

(l
og

n
)

Edges to get us to uniform locations in the graph (not read)

Edge we want to learn (not read)

Edges for error correction (read)

Correcting the last layer

O
(l

og
n

)
O

(l
og

n
)

Edges to get us to uniform locations in the graph (not read)

Edge we want to learn (not read)

Edges for error correction (read)

Correcting the last layer

O
(l

og
n

)
O

(l
og

n
)

Edges to get us to uniform locations in the graph (not read)

Edge we want to learn (not read)

Edges for error correction (read)

Why should this help?

!

O
(l

og
n

)

q-ary tree

False statement:

I Now the queries can tolerate a few
errors.

True statements:

I This is basically the only thing that
can go wrong.

I Because everything in sight is
(nearly) uniform, it probably won’t
go wrong.

Why should this help?

!

O
(l

og
n

)

q-ary tree

False statement:

I Now the queries can tolerate a few
errors.

True statements:

I This is basically the only thing that
can go wrong.

I Because everything in sight is
(nearly) uniform, it probably won’t
go wrong.

Why should this help?

!

O
(l

og
n

)

q-ary tree

False statement:

I Now the queries can tolerate a few
errors.

True statements:

I This is basically the only thing that
can go wrong.

I Because everything in sight is
(nearly) uniform, it probably won’t
go wrong.

Why should this help?

!

O
(l

og
n

)

q-ary tree

False statement:

I Now the queries can tolerate a few
errors.

True statements:

I This is basically the only thing that
can go wrong.

I Because everything in sight is
(nearly) uniform, it probably won’t
go wrong.

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...Each second-level edge reads its symbol and thinks to itself...etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbol

Each leaf edge thinks to itself...Each second-level edge reads its symbol and thinks to itself...etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbol

Each leaf edge thinks to itself...

Each second-level edge reads its symbol and thinks to itself...etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...

Each second-level edge reads its symbol and thinks to itself...

etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...

Each second-level edge reads its symbol and thinks to itself...

etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...

If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...

Each second-level edge reads its symbol and thinks to itself...

etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...

If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...

Each second-level edge reads its symbol and thinks to itself...

etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...

Each second-level edge reads its symbol and thinks to itself...

etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...

Each second-level edge reads its symbol and thinks to itself...

etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...Each second-level edge reads its symbol and thinks to itself...

etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Decoding algorithm

Each leaf edge queries its symbolEach leaf edge thinks to itself...Each second-level edge reads its symbol and thinks to itself...etc.

· · ·

This only fails if there exist a path that is heavily corrupted.
Heavily corrupted paths occur with exponentially small probability.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

I If my correct value were 0,
there would be some path
below me with 1 error.

I If my correct value were 1,
there would be some path
below me with 0 errors.

1 0 0 1 0 1 1 0

Local corrector:

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 1

(1, 1) 7→ 0

If I were 0...

0

0 0

⇒ path with two errors...
If I were 1...

1

0 1

⇒ or path with no errors.

1

1 0

If I were 1...
⇒ path with one error...

If I were 0...

0

1 1

⇒ or path with two errors.

I If my correct value were 0,
there would be some path
below me with ≥ 2 errors.

I If my correct value were 1,
there would be some path
below me with ≥ 0 errors.

I If my correct value were 0,
there would be some path
below me with Ω(log(n))
errors.

I If my correct value were 1,
there would be some path
below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

One choice for inner code: based on affine geometry
See [Assmus, Key ’94,’98] for a nice overview

I Let L1, . . . , Lt be the r -dimensional affine subspaces of Fm
q ,

and consider the code with parity-check matrix H:

qm

t

H

Hi ,~x =

{
1 ~x ∈ Li

0 ~x 6∈ Li

Li

~x ∈ Fm
q

query the qr nonzeros in this row

I Smooth reconstruction: To learn a coordinate indexed by
~x ∈ Fm

q :
I pick a random r -flat, Li , containing ~x .
I query all of the points in Li .

I Observe: This is not a very good LCC!

One choice for inner code: based on affine geometry
See [Assmus, Key ’94,’98] for a nice overview

I Let L1, . . . , Lt be the r -dimensional affine subspaces of Fm
q ,

and consider the code with parity-check matrix H:

qm

t

H

Hi ,~x =

{
1 ~x ∈ Li

0 ~x 6∈ Li

Li

~x ∈ Fm
q

query the qr nonzeros in this row

I Smooth reconstruction: To learn a coordinate indexed by
~x ∈ Fm

q :
I pick a random r -flat, Li , containing ~x .
I query all of the points in Li .

I Observe: This is not a very good LCC!

One choice for inner code: based on affine geometry
See [Assmus, Key ’94,’98] for a nice overview

I Let L1, . . . , Lt be the r -dimensional affine subspaces of Fm
q ,

and consider the code with parity-check matrix H:

qm

t

H

Hi ,~x =

{
1 ~x ∈ Li

0 ~x 6∈ Li

Li

~x ∈ Fm
q

query the qr nonzeros in this row

I Smooth reconstruction: To learn a coordinate indexed by
~x ∈ Fm

q :
I pick a random r -flat, Li , containing ~x .
I query all of the points in Li .

I Observe: This is not a very good LCC!

One good instantiation

Graph:

I Ramanujan graph

Inner code:

I Finite geometry code

Results:
For any α, ε > 0, for infinitely many N, we get a code with block
length N, which

I has rate 1− α
I has locality (N/d)ε

I tolerates constant error rate

Outline

1 Local correctability
Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes

4 Conclusion

Summary

I When the inner code has smooth reconstruction, we give a
local-decoding procedure for expander codes.

I This gives a new (and yet old!) family of linear locally
correctable codes of rate approaching 1.

Open questions

I Can we use expander codes to achieve local correctability with
lower query complexity?

I Can we use inner codes with rate < 1/2?

The end

Thanks!

	Local correctability
	Definitions and notation
	Example: Reed-Muller codes
	Previous work and our contribution

	Expander codes
	Local correctability of expander codes
	Requirement for the inner code: smooth reconstruction
	Decoding algorithm
	Example instantiation: finite geometry codes

	Conclusion

