Local correctability of expander codes

Brett Hemenway Rafail Ostrovsky Mary Wootters

IAS

April 14, 2014

The point(s) of this talk

- Locally decodable codes are codes which admit sublinear time decoding of small pieces of a message.
- Expander codes are a family of error correcting codes based on expander graphs.
- In this work, we show that (appropriately instantiated) expander codes are high-rate locally decodable codes.
- Only two families of codes known in this regime [KSY'11,GKS'12].
- Expander codes (and the corresponding decoding algorithm and analysis) are very different from existing constructions!

1 Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

1 Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

1 Local correctability

Definitions and notation

Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

Locally decodable codes

Locally decodable codes

Locally decodable codes

Locally correctable codes

Locally correctable codes, sans stick figures

Definition

C is (q, δ, η) -locally correctable if for all $i \in [N]$, for all $x \in \Sigma^k$, and for all $w \in \Sigma^N$ with $d(w, C(x)) \leq \delta N$,

 $\mathbb{P} \{ \text{Bob correctly guesses } \mathcal{C}(x)_i \} \geq 1 - \eta.$

Bob reads only q positions in the corrupted word, w.

Local correctability vs. local decodability

When $\ensuremath{\mathcal{C}}$ is *linear*, local correctability implies local decodability.

 $\mathcal{C}(x)$

Local correctability vs. local decodability

When ${\mathcal C}$ is *linear*, local correctability implies local decodability.

 $\mathcal{C}(x)$

Before we get too far

Some notation

For a code $\mathcal{C}:\Sigma^k o \Sigma^N$

- ► The **message length** is *k*, the length of the message.
- ► The **block length** is *N*, the length of the codeword.
- The rate is k/N.
- ► The **locality** is *q*, the number of queries Bob makes.

Goal: large rate, small locality.

1 Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contributio

2 Expander codes

3 Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

Example: Reed-Muller Codes

▶ **Message:** multivariate polynomial of total degree *d*,

$$f \in \mathbb{F}_q[z_1,\ldots,z_m].$$

• **Codeword:** the evaluation of f at points in \mathbb{F}_a^m :

$$\mathcal{C}(f) = \{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_q^m}$$

message is $f \in \mathbb{F}_q[z_1, \dots, z_m]$ codeword is $\{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_q^m}$

• We want to correct $C(f)_{\vec{z}} = f(\vec{z}).$

message is $f \in \mathbb{F}_q[z_1, \dots, z_m]$ codeword is $\{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_q^m}$

- We want to correct $C(f)_{\vec{z}} = f(\vec{z}).$
- Choose a random line through *z*, and consider the restriction

$$g(t)=f(\vec{z}+t\vec{v})$$

to that line.

- We want to correct $C(f)_{\vec{z}} = f(\vec{z}).$
- Choose a random line through *z*, and consider the restriction

$$g(t) = f(\vec{z} + t\vec{v})$$

to that line.

► This is a *univariate* polynomial, and g(0) = f(z).

- We want to correct $C(f)_{\vec{z}} = f(\vec{z}).$
- Choose a random line through *z*, and consider the restriction

$$g(t)=f(\vec{z}+t\vec{v})$$

to that line.

- ► This is a *univariate* polynomial, and g(0) = f(z).
- Query all of the points on the line.

Resulting parameters

- ▶ Rate is $\binom{m+d}{m}/q^m$ (we needed d = O(q), so we can decode)
- Locality is q (the field size)
- If we choose m constant, we get:
 - Rate is constant, but less than 1/2.
 - Locality is $N^{1/m} = N^{\varepsilon}$.

1 Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

Reed-Muller Codes have locality N^{ε} and constant rate, but rate is less than 1/2.

Reed-Muller Codes have locality N^{ε} and constant rate, but rate is less than 1/2.

Are there locally decodable codes with locality N^{ε} , and rate arbitrarily close to 1?

Rate \rightarrow 1 and locality N^{ε} :

 Multiplicity codes [Kopparty, Saraf, Yekhanin 2011]

 Lifted codes [Guo, Kopparty, Sudan 2012]

Rate \rightarrow 1 and locality N^{ε} :

 Multiplicity codes [Kopparty, Saraf, Yekhanin 2011]

Lifted codes
 [Guo, Kopparty, Sudan 2012]

These have decoders similar to RM: the queries form a good code.

Rate \rightarrow 1 and locality N^{ε} :

- Multiplicity codes [Kopparty, Saraf, Yekhanin 2011]
- Lifted codes
 [Guo, Kopparty, Sudan 2012]

These have decoders similar to RM: the queries form a good code.

Another regime:

Rate bad $\left(N/2^{2^{O(\sqrt{\log(N)})}} \right)$, but locality 3:

 Matching vector codes

 [Yekhanin 2008,
 Efremenko 2009, ...]

These decoders are different:

- The queries cannot tolerate any errors.
- There are so few queries that they are probably all correct.

Rate \rightarrow 1 and locality N^{ε} :

- Multiplicity codes [Kopparty, Saraf, Yekhanin 2011]
- Lifted codes
 [Guo, Kopparty, Sudan 2012]

These have decoders similar to RM: the queries form a good code.

Expander codes

[H., Ostrovsky, Wootters 2013]

Decoder is similar in spirit to lowquery decoders. The queries will *not* form an error correcting code. Another regime:

Rate bad $\left(N/2^{2^{O(\sqrt{\log(N)})}} \right)$, but locality 3:

 Matching vector codes

 [Yekhanin 2008,
 Efremenko 2009, ...]

These decoders are different:

- The queries cannot tolerate any errors.
- There are so few queries that they are probably all correct.

Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes Requirement for the inner code: smooth reconstruct Decoding algorithm Example instantiation: finite geometry codes

Tanner Codes [Tanner'81]

Given:

- A *d*-regular graph *G* with *n* vertices and $N = \frac{nd}{2}$ edges
- An inner code C_0 with block length d over Σ

We get a *Tanner code* C.

- C has block length N and alphabet Σ .
- Codewords are labelings of edges of *G*.
- ► A labeling is in C if the labels on each vertex form a codeword of C₀.

Example [Tanner'81] G is K_8 , and C_0 is the [7, 4, 3]-Hamming code.

$$\textit{N}={8 \choose 2}=28$$
 and $\pmb{\Sigma}=\{0,1\}$

Example [Tanner'81] G is K_{8} , and C_{0} is the [7, 4, 3]-Hamming code.

A codeword of C is a labeling of edges of G.

Example [Tanner'81] G is K_{8} , and C_{0} is the [7, 4, 3]-Hamming code.

These edges form a codeword in the Hamming code

Encoding Tanner Codes Encoding is Easy!

- 1. Generate parity-check matrix Requires:
 - Edge-vertex incidence matrix of graph
 - Parity-check matrix of inner code
- 2. Calculate a basis for the kernel of the parity-check matrix
- 3. This basis defines a generator matrix for the linear Tanner Code
- 4. Encoding is just multiplication by this generator matrix

Linearity

If the inner code \mathcal{C}_0 is linear, so is the Tanner code $\mathcal C$

• $C_0 = \text{Ker}(H_0)$ for some *parity check* matrix H_0 .

$$x \in \mathcal{C}_0 \iff H_0 \qquad x = 0$$

Linearity

If the inner code \mathcal{C}_0 is linear, so is the Tanner code $\mathcal C$

• $C_0 = \text{Ker}(H_0)$ for some *parity check* matrix H_0 .

$$x \in \mathcal{C}_0 \iff H_0 \qquad x = 0$$

So codewords of the Tanner code C also are defined by linear constraints:

Example: vertex edge incidence matrix of K_8

1 column for each edge

- Columns have weight 2 (Each edge hits two vertices)
- Rows have weight 7 (Each vertex has degree seven)

 $\begin{smallmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{smallmatrix}$

 $\begin{smallmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \end{smallmatrix}$

10 0 0 0 0 0 0 0 0 () () 0 () 00 Ó Ó Ō 0 0 0 0 0 1 0 0 U n Ô Ô Ň Ň n n n

- If C_0 has rate r_0 , it satisfies $(1 r_0)d$ linear constraints.
- ▶ Each of the *n* vertices of *G* must satisfy these constraints.

- If C_0 has rate r_0 , it satisfies $(1 r_0)d$ linear constraints.
- Each of the *n* vertices of *G* must satisfy these constraints.

∜

• C is defined by at most $n \cdot (1 - r_0)d$ constraints.

- ▶ If C_0 has rate r_0 , it satisfies $(1 r_0)d$ linear constraints.
- Each of the *n* vertices of *G* must satisfy these constraints.

∜

- C is defined by at most $n \cdot (1 r_0)d$ constraints.
- Length of C = N = # edges = nd/2

- If C_0 has rate r_0 , it satisfies $(1 r_0)d$ linear constraints.
- Each of the *n* vertices of *G* must satisfy these constraints.

∜

- C is defined by at most $n \cdot (1 r_0)d$ constraints.
- Length of C = N = # edges = nd/2
- The rate of C is

$$R = \frac{k}{N} \ge \frac{N - n \cdot (1 - r_0)d}{N} = 2r_0 - 1.$$

Better rate bounds?

- ► The lower bound R > 2r₀ − 1 is *independent* of the ordering of edges around a vertex
- Tanner already noticed that order matters.
 Let G be the complete bipartite graph with 7 vertices per side
 Let C₀ be the [7, 4, 3] hamming code
 Then different "natural" orderings achieve a Tanner code with
 - [49, 16, 9] $(\frac{16}{49} \approx .327)$
 - ▶ [49, 12, 16] ($\frac{12}{49} \approx .245$)
 - [49,7,17] ($\frac{7}{49} \approx .142$) Meets lower bound of $2 \cdot \frac{4}{7} 1$

When the underlying graph is an *expander graph*, the Tanner code is a *expander code*.

- Expander codes admit very fast decoding algorithms [Sipser and Spielman 1996]
- Further improvements in [Sipser'96, Zemor'01, Barg and Zemor'02,'05,'06]

Outline

Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

Outline

1 Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

Main Result

Given:

- ► a *d*-regular expander graph;
- ► an inner code of length *d* with **smooth reconstruction**.

Then:

 We will give a local-correcting procedure for this expander code.

Suppose that:

Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)

Suppose that:

Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)

Suppose that:

Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)
- From the (uncorrupted) queries, he can always recover c_i.

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)
- From the (uncorrupted) queries, he can always recover c_i.
- But! He doesn't need to tolerate any errors.

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)
- From the (uncorrupted) queries, he can always recover c_i.
- But! He doesn't need to tolerate any errors.

Then:

 We say that the code has a smooth reconstruction algorithm. Smooth reconstruction, sans stick figures

Definition

A code $C_0 \subset \Sigma^d$ has a *q*-query **smooth reconstruction algorithm** if, for all $i \in [d]$ and for all codewords $c \in C_0$:

- ▶ Bob can always determine c_i from a set of queries c_{i_1}, \ldots, c_{i_q}
- ▶ Each *c*_{*ii*} is (close to) uniformly distributed in [*d*].

Outline

1 Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes
 Requirement for the inner code: smooth reconstruction
 Decoding algorithm
 Example instantiation: finite geometry codes

4 Conclusion

Main Result

Given:

- ► a *d*-regular expander graph;
- ▶ an inner code of length *d* with smooth reconstruction.

Then:

 We will give a local-correcting procedure for this expander code.

Decoding algorithm: main idea

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

Idea: Query the leaves!

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

Idea: Query the leaves! Problems:

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

Idea: Query the leaves!

Problems:

There are errors on the leaves.

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!

Problems:

There are errors on the leaves.

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

Idea: Query the leaves!

- There are errors on the leaves.
- Errors on the leaves propagate.

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

Idea: Query the leaves!

- There are errors on the leaves.
- Errors on the leaves propagate.

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

Idea: Query the leaves!

- There are errors on the leaves.
- Errors on the leaves propagate.

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

Idea: Query the leaves!

- There are errors on the leaves.
- Errors on the leaves propagate.

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log(n))} \approx N^{\varepsilon}$ leaves.
- ► The leaves are (nearly) uniformly distributed in *G*.

Idea: Query the leaves!

- There are errors on the leaves.
- Errors on the leaves propagate.

Correcting the last layer

Correcting the last layer

Correcting the last layer

• **Now** the queries can tolerate a few errors.

False statement:

Now the queries can tolerate a few errors.

False statement:

Now the queries can tolerate a few errors.

False statement:

Now the queries can tolerate a few errors.

True statements:

- This is basically the only thing that can go wrong.
- Because everything in sight is (nearly) uniform, it probably won't go wrong.

Each leaf edge queries its symbol

Each leaf edge thinks to itself...

This only fails if there exist a *path* that is heavily corrupted. Heavily corrupted paths occur with exponentially small probability.

Outline

1 Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

4 Conclusion

One choice for inner code: based on affine geometry See [Assmus, Key '94,'98] for a nice overview

Let L₁,..., L_t be the r-dimensional affine subspaces of 𝔽^m_q, and consider the code with parity-check matrix H:

One choice for inner code: based on affine geometry

See [Assmus, Key '94,'98] for a nice overview

Let L₁,..., L_t be the r-dimensional affine subspaces of ℝ^m_q, and consider the code with parity-check matrix H:

query the q^r nonzeros in this row

- Smooth reconstruction: To learn a coordinate indexed by $\vec{x} \in \mathbb{F}_q^m$:
 - pick a random *r*-flat, L_i , containing \vec{x} .
 - query all of the points in L_i .

One choice for inner code: based on affine geometry See [Assmus, Key '94,'98] for a nice overview

- Let L_1, \ldots, L_t be the *r*-dimensional affine subspaces of \mathbb{F}_a^m ,
 - and consider the code with parity-check matrix H:

query the q^r nonzeros in this row

- Smooth reconstruction: To learn a coordinate indexed by $\vec{x} \in \mathbb{F}_{a}^{m}$:
 - pick a random *r*-flat, L_i , containing \vec{x} .
 - query all of the points in L_i .
- Observe: This is not a very good LCC!

One good instantiation

Graph:

Ramanujan graph

Inner code:

Finite geometry code

Results:

For any $\alpha, \epsilon > 0$, for infinitely many N, we get a code with block length N, which

- ▶ has rate 1α
- has locality $(N/d)^{\epsilon}$
- tolerates constant error rate

Outline

Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution

2 Expander codes

3 Local correctability of expander codes Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes

Summary

- When the inner code has smooth reconstruction, we give a local-decoding procedure for expander codes.
- This gives a new (and yet old!) family of linear locally correctable codes of rate approaching 1.

Open questions

- Can we use expander codes to achieve local correctability with lower query complexity?
- ▶ Can we use inner codes with rate < 1/2?

The end

