Local correctability of expander codes

Brett Hemenway Rafail Ostrovsky Mary Wootters

IAS
April 14, 2014

The point(s) of this talk

- Locally decodable codes are codes which admit sublinear time decoding of small pieces of a message.
- Expander codes are a family of error correcting codes based on expander graphs.
- In this work, we show that (appropriately instantiated) expander codes are high-rate locally decodable codes.
- Only two families of codes known in this regime [KSY'11,GKS'12].
- Expander codes (and the corresponding decoding algorithm and analysis) are very different from existing constructions!

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm
Example instantiation: finite geometry codes
(4) Conclusion

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes
4) Conclusion

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes
(4) Conclusion

Error correcting codes

Error correcting codes

```
\square\\\\\\\\
message }x\in\mp@subsup{\Sigma}{}{k
```


Error correcting codes

Error correcting codes

Bob

Error correcting codes

Locally decodable codes

Locally decodable codes

Locally decodable codes

Locally correctable codes

Locally correctable codes, sans stick figures

Definition

\mathcal{C} is (q, δ, η)-locally correctable if for all $i \in[N]$, for all $x \in \Sigma^{k}$, and for all $w \in \Sigma^{N}$ with $d(w, \mathcal{C}(x)) \leq \delta N$,
$\mathbb{P}\left\{\right.$ Bob correctly guesses $\left.\mathcal{C}(x)_{i}\right\} \geq 1-\eta$.
Bob reads only q positions in the corrupted word, w.

Local correctability vs. local decodability

When \mathcal{C} is linear, local correctability implies local decodability.

Local correctability vs. local decodability

When \mathcal{C} is linear, local correctability implies local decodability.

Before we get too far

Some notation

For a code $\mathcal{C}: \Sigma^{k} \rightarrow \Sigma^{N}$

- The message length is k, the length of the message.
- The block length is N, the length of the codeword.
- The rate is k / N.
- The locality is q, the number of queries Bob makes.

Goal: large rate, small locality.

Outline

(1) Local correctability

Definitions and notation

Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes
(4) Conclusion

Example: Reed-Muller Codes

- Message: multivariate polynomial of total degree d,

$$
f \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{m}\right]
$$

- Codeword: the evaluation of f at points in \mathbb{F}_{q}^{m} :

$$
\mathcal{C}(f)=\{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_{q}^{m}}
$$

Locally Correcting Reed Muller Codes

message is $f \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{m}\right]$
codeword is $\{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_{q}^{m}}$

Locally Correcting Reed Muller Codes

- We want to correct $\mathcal{C}(f)_{\vec{z}}=f(\vec{z})$.
message is $f \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{m}\right]$ codeword is $\{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_{q}^{m}}$

Locally Correcting Reed Muller Codes

- We want to correct $\mathcal{C}(f)_{\vec{z}}=f(\vec{z})$.
- Choose a random line through \vec{z}, and consider the restriction

$$
g(t)=f(\vec{z}+t \vec{v})
$$

to that line.
message is $f \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{m}\right]$
codeword is $\{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_{q}^{m}}$

Locally Correcting Reed Muller Codes

message is $f \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{m}\right]$ codeword is $\{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_{q}^{m}}$ $\mathcal{C}(f)_{\vec{z}}=f(\vec{z})$.

- Choose a random line through \vec{z}, and consider the restriction

$$
g(t)=f(\vec{z}+t \vec{v})
$$

to that line.

- This is a univariate polynomial, and $g(0)=f(\vec{z})$.

Locally Correcting Reed Muller Codes

message is $f \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{m}\right]$
codeword is $\{f(\vec{x})\}_{\vec{x} \in \mathbb{F}_{q}^{m}}$

- We want to correct $\mathcal{C}(f)_{\vec{z}}=f(\vec{z})$.
- Choose a random line through \vec{z}, and consider the restriction

$$
g(t)=f(\vec{z}+t \vec{v})
$$

to that line.

- This is a univariate polynomial, and $g(0)=f(\vec{z})$.
- Query all of the points on the line.

Resulting parameters

- Rate is $\binom{m+d}{m} / q^{m}$ (we needed $d=O(q)$, so we can decode)
- Locality is q (the field size)

If we choose m constant, we get:

- Rate is constant, but less than $1 / 2$.
- Locality is $N^{1 / m}=N^{\varepsilon}$.

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes
(4) Conclusion

Question:

Reed-Muller Codes have locality N^{ε} and constant rate, but rate is less than $1 / 2$.

Question:

Reed-Muller Codes have locality N^{ε} and constant rate, but rate is less than $1 / 2$.

Are there locally decodable codes with locality N^{ε}, and rate arbitrarily close to 1 ?

Previous Work

Rate $\rightarrow 1$ and locality N^{ε} :

- Multiplicity codes
[Kopparty, Saraf, Yekhanin 2011]
- Lifted codes
[Guo, Kopparty, Sudan 2012]

Previous Work

Rate $\rightarrow 1$ and locality N^{ε} :

- Multiplicity codes
[Kopparty, Saraf, Yekhanin 2011]
- Lifted codes
[Guo, Kopparty, Sudan 2012]

These have decoders similar to RM: the queries form a good code.

Previous Work

Rate $\rightarrow 1$ and locality $N^{\varepsilon}:$

- Multiplicity codes [Kopparty, Saraf, Yekhanin 2011]
- Lifted codes
[Guo, Kopparty, Sudan 2012]

These have decoders similar to RM: the queries form a good code.

Another regime:
Rate bad $\left(N / 2^{2 O(\sqrt{\log (N)})}\right)$, but locality 3 :

- Matching vector codes [Yekhanin 2008, Efremenko 2009, ...]

These decoders are different:

- The queries cannot tolerate any errors.
- There are so few queries that they are probably all correct.

Previous Work

Rate $\rightarrow 1$ and locality $N^{\varepsilon}:$

- Multiplicity codes [Kopparty, Saraf, Yekhanin 2011]
- Lifted codes
[Guo, Kopparty, Sudan 2012]

These have decoders similar to RM: the queries form a good code.

- Expander codes [H., Ostrovsky, Wootters 2013]

> Decoder is similar in spirit to lowquery decoders. The queries will not form an error correcting code.

Another regime:
Rate bad $\left(N / 2^{2 O(\sqrt{\log (N)})}\right)$, but locality 3 :

- Matching vector codes [Yekhanin 2008, Efremenko 2009, ...]

These decoders are different:

- The queries cannot tolerate any errors.
- There are so few queries that they are probably all correct.

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm
Example instantiation: finite geometry codes
(4) Conclusion

Tanner Codes [Tanner'81]

Given:

- A d-regular graph G with n vertices and $N=\frac{n d}{2}$ edges
- An inner code \mathcal{C}_{0} with block length d over Σ

We get a Tanner code \mathcal{C}.

- \mathcal{C} has block length N and alphabet Σ.
- Codewords are labelings of edges of G.
- A labeling is in \mathcal{C} if the labels on each vertex form a codeword of \mathcal{C}_{0}.

Example [Tanner'81]

G is K_{8}, and \mathcal{C}_{0} is the [7, 4, 3]-Hamming code.

$$
N=\binom{8}{2}=28 \text { and } \Sigma=\{0,1\}
$$

Example [Tanner'81]

G is K_{8}, and \mathcal{C}_{0} is the [7, 4, 3]-Hamming code.

A codeword of \mathcal{C} is a labeling of edges of G.

$(0,0,0,0,0,0,0,1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0,1,0,0,1,1) \in \mathcal{C} \subset\{0,1\}^{28}$

Example [Tanner'81]

G is K_{8}, and \mathcal{C}_{0} is the [7, 4,3]-Hamming code.

These edges form a codeword in the Hamming code

$(0,0,0,0,0,0,0,1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0,1,0,0,1,1) \in \mathcal{C} \subset\{0,1\}^{28}$

Encoding Tanner Codes

Encoding is Easy!

1. Generate parity-check matrix Requires:

- Edge-vertex incidence matrix of graph
- Parity-check matrix of inner code

2. Calculate a basis for the kernel of the parity-check matrix
3. This basis defines a generator matrix for the linear Tanner Code
4. Encoding is just multiplication by this generator matrix

Linearity

If the inner code \mathcal{C}_{0} is linear, so is the Tanner code \mathcal{C}

- $\mathcal{C}_{0}=\operatorname{Ker}\left(H_{0}\right)$ for some parity check matrix H_{0}.

$$
x \in \mathcal{C}_{0} \Longleftrightarrow H_{0} \quad x=0
$$

Linearity

If the inner code \mathcal{C}_{0} is linear, so is the Tanner code \mathcal{C}

- $\mathcal{C}_{0}=\operatorname{Ker}\left(H_{0}\right)$ for some parity check matrix H_{0}.

$$
x \in \mathcal{C}_{0} \Longleftrightarrow H_{0} \quad x=0
$$

- So codewords of the Tanner code \mathcal{C} also are defined by linear constraints:

Example: vertex edge incidence matrix of K_{8}

- Columns have weight 2
(Each edge hits two vertices)
- Rows have weight 7
(Each vertex has degree seven)

Example: parity-check matrix of a Tanner code

 K_{8} and the [7, 4, 3]-Hamming codeParity-check
of Hamming code

$\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$

$$
\begin{array}{lllllllllllllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}
$$

Edge-vertex incidence matrix of K_{8}

Example: parity-check matrix of a Tanner code

 K_{8} and the [7, 4, 3]-Hamming codeVertex 1

1	0	1	0	1	0	1
0	1	1	0	1	1	
0	0	0	1	1	1	1

0100000100000111110000000000

Example: parity-check matrix of a Tanner code

 K_{8} and the [7, 4, 3]-Hamming code

Example: parity-check matrix of a Tanner code

 K_{8} and the [7, 4, 3]-Hamming code

Example: parity-check matrix of a Tanner code

 K_{8} and the [7, 4, 3]-Hamming codeExample: parity-check matrix of a Tanner code K_{8} and the [7, 4, 3]-Hamming code

If the inner code has good rate, so does the outer code Say that \mathcal{C}_{0} is linear

- If \mathcal{C}_{0} has rate r_{0}, it satisfies $\left(1-r_{0}\right) d$ linear constraints.
- Each of the n vertices of G must satisfy these constraints.

If the inner code has good rate, so does the outer code

 Say that \mathcal{C}_{0} is linear- If \mathcal{C}_{0} has rate r_{0}, it satisfies $\left(1-r_{0}\right) d$ linear constraints.
- Each of the n vertices of G must satisfy these constraints.
\square
- \mathcal{C} is defined by at most $n \cdot\left(1-r_{0}\right) d$ constraints.

If the inner code has good rate, so does the outer code

 Say that \mathcal{C}_{0} is linear- If \mathcal{C}_{0} has rate r_{0}, it satisfies $\left(1-r_{0}\right) d$ linear constraints.
- Each of the n vertices of G must satisfy these constraints.
\square
- \mathcal{C} is defined by at most $n \cdot\left(1-r_{0}\right) d$ constraints.
- Length of $\mathcal{C}=N=\#$ edges $=n d / 2$

If the inner code has good rate, so does the outer code

 Say that \mathcal{C}_{0} is linear- If \mathcal{C}_{0} has rate r_{0}, it satisfies $\left(1-r_{0}\right) d$ linear constraints.
- Each of the n vertices of G must satisfy these constraints.
\square
- \mathcal{C} is defined by at most $n \cdot\left(1-r_{0}\right) d$ constraints.
- Length of $\mathcal{C}=N=\#$ edges $=n d / 2$
- The rate of \mathcal{C} is

$$
R=\frac{k}{N} \geq \frac{N-n \cdot\left(1-r_{0}\right) d}{N}=2 r_{0}-1 .
$$

Better rate bounds?

- The lower bound $R>2 r_{0}-1$ is independent of the ordering of edges around a vertex
- Tanner already noticed that order matters.

Let G be the complete bipartite graph with 7 vertices per side Let \mathcal{C}_{0} be the [7, 4, 3] hamming code Then different "natural" orderings achieve a Tanner code with

- $[49,16,9]\left(\frac{16}{49} \approx .327\right)$
- $[49,12,16]\left(\frac{12}{49} \approx .245\right)$
- $[49,7,17]\left(\frac{7}{49} \approx .142\right)$ Meets lower bound of $2 \cdot \frac{4}{7}-1$

Expander codes

When the underlying graph is an expander graph, the Tanner code is a expander code.

- Expander codes admit very fast decoding algorithms [Sipser and Spielman 1996]
- Further improvements in
[Sipser'96, Zemor'01, Barg and Zemor'02,'05,'06]

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm
Example instantiation: finite geometry codes
4. Conclusion

Outline

(1) Local correctability

Definitions and notation Example: Reed-Muller codes Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes Requirement for the inner code: smooth reconstruction Decoding algorithm Example instantiation: finite geometry codes
(4) Conclusion

Main Result

Given:

- a d-regular expander graph;
- an inner code of length d with smooth reconstruction.

Then:

- We will give a local-correcting procedure for this expander code.

Smooth Reconstruction

codeword $c \in \Sigma^{N}$

Bob

Smooth Reconstruction

codeword $c \in \Sigma^{N}$

Bob

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)

Smooth Reconstruction

codeword $c \in \Sigma^{N}$

Bob

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)

Smooth Reconstruction

codeword $c \in \Sigma^{N}$

Bob

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)

Smooth Reconstruction

codeword $c \in \Sigma^{N}$

Bob

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)
- From the (uncorrupted) queries, he can always recover c_{i}.

Smooth Reconstruction

codeword $c \in \Sigma^{N}$

Bob makes q queries

Bob

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)
- From the (uncorrupted) queries, he can always recover c_{i}.
- But! He doesn't need to tolerate any errors.

Smooth Reconstruction

$$
\text { codeword } c \in \Sigma^{N}
$$

Bob makes q queries

Bob

Suppose that:

- Each Bob's q queries is (close to) uniformly distributed (they don't need to be independent!)
- From the (uncorrupted) queries, he can always recover c_{i}.
- But! He doesn't need to tolerate any errors.
Then:
- We say that the code has a smooth reconstruction algorithm.

Smooth reconstruction, sans stick figures

Definition
A code $\mathcal{C}_{0} \subset \Sigma^{d}$ has a q-query smooth reconstruction algorithm if, for all $i \in[d]$ and for all codewords $c \in \mathcal{C}_{0}$:

- Bob can always determine c_{i} from a set of queries $c_{i_{1}}, \ldots, c_{i_{q}}$
- Each $c_{i_{j}}$ is (close to) uniformly distributed in [d].

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm
Example instantiation: finite geometry codes
(4) Conclusion

Main Result

Given:

- a d-regular expander graph;
- an inner code of length d with smooth reconstruction.

Then:

- We will give a local-correcting procedure for this expander code.

Decoding algorithm: main idea

Decoding algorithm: main idea

The expander walk as a tree

(inner code has q-query reconstruction)

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!
Problems:

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!
Problems:

- There are errors on the leaves.

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!
Problems:

- There are errors on the leaves.

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!
Problems:

- There are errors on the leaves.
- Errors on the leaves propagate.

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!
Problems:

- There are errors on the leaves.
- Errors on the leaves propagate.

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!
Problems:

- There are errors on the leaves.
- Errors on the leaves propagate.

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!
Problems:

- There are errors on the leaves.
- Errors on the leaves propagate.

The expander walk as a tree

True Statements:

- The symbols on the leaves determine the symbol on the root.
- There are $q^{\mathcal{O}(\log (n))} \approx N^{\varepsilon}$ leaves.
- The leaves are (nearly) uniformly distributed in G.

Idea: Query the leaves!
Problems:

- There are errors on the leaves.
- Errors on the leaves propagate.

Correcting the last layer

Correcting the last layer

Correcting the last layer

- Edge we want to learn (not read)
- Edges to get us to uniform locations in the graph (not read)
- Edges for error correction (read)

Why should this help?

- Now the queries can tolerate a few errors.

Why should this help?

False statement:

- Now the queries can tolerate a fow errors.

Why should this help?

False statement:

- Now the queries can tolerate a fow errors.

Why should this help?

False statement:

- Now the queries can tolerate a fow errors.

True statements:

- This is basically the only thing that can go wrong.
- Because everything in sight is (nearly) uniform, it probably won't go wrong.

Decoding algorithm

Decoding algorithm

Each leaf edge queries its symbol

Decoding algorithm

Each leaf edge thinks to itself...

Decoding algorithm

Each second-level edge reads its symbol and thinks to itself...

Decoding algorithm

Each second-level edge reads its symbol and thinks to itself...

Decoding algorithm

Each second-level edge reads its symbol and thinks to itself...

Decoding algorithm

Each second-level edge reads its symbol and thinks to itself...

Decoding algorithm

Each second-level edge reads its symbol and thinks to itself...

Decoding algorithm

Each second-level edge reads its symbol and thinks to itself...

Decoding algorithm

- If my correct value were 0 ,

etc.

Decoding algorithm

- If my correct value were 0 , there would be some path below me with $\Omega(\log (n))$ errors.
- If my correct value were 1 , there would be some path below me with ≥ 7 errors.

TRIUMPHANTLY RETURN 1!

This only fails if there exist a path that is heavily corrupted. Heavily corrupted paths occur with exponentially small probability.

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction
Decoding algorithm
Example instantiation: finite geometry codes
(4) Conclusion

One choice for inner code: based on affine geometry

See [Assmus, Key '94,'98] for a nice overview

- Let L_{1}, \ldots, L_{t} be the r-dimensional affine subspaces of \mathbb{F}_{q}^{m}, and consider the code with parity-check matrix H :

One choice for inner code: based on affine geometry

- Let L_{1}, \ldots, L_{t} be the r-dimensional affine subspaces of \mathbb{F}_{q}^{m}, and consider the code with parity-check matrix H :
query the q^{r} nonzeros in this row

$$
H_{i, \vec{x}}= \begin{cases}1 & \vec{x} \in L_{i} \\ 0 & \vec{x} \notin L_{i}\end{cases}
$$

- Smooth reconstruction: To learn a coordinate indexed by $\vec{x} \in \mathbb{F}_{q}^{m}$:
- pick a random r-flat, L_{i}, containing \vec{x}.
- query all of the points in L_{i}.

One choice for inner code: based on affine geometry

 See [Assmus, Key '94,'98] for a nice overview- Let L_{1}, \ldots, L_{t} be the r-dimensional affine subspaces of \mathbb{F}_{q}^{m}, and consider the code with parity-check matrix H :
query the q^{r} nonzeros in this row

$$
H_{i, \vec{x}}= \begin{cases}1 & \vec{x} \in L_{i} \\ 0 & \vec{x} \notin L_{i}\end{cases}
$$

- Smooth reconstruction: To learn a coordinate indexed by $\vec{x} \in \mathbb{F}_{q}^{m}$:
- pick a random r-flat, L_{i}, containing \vec{x}.
- query all of the points in L_{i}.
- Observe: This is not a very good LCC!

One good instantiation

Graph:

- Ramanujan graph

Inner code:

- Finite geometry code

Results:

For any $\alpha, \epsilon>0$, for infinitely many N, we get a code with block length N, which

- has rate $1-\alpha$
- has locality $(N / d)^{\epsilon}$
- tolerates constant error rate

Outline

(1) Local correctability

Definitions and notation
Example: Reed-Muller codes
Previous work and our contribution
(2) Expander codes
(3) Local correctability of expander codes

Requirement for the inner code: smooth reconstruction Decoding algorithm
Example instantiation: finite geometry codes
(4) Conclusion

Summary

- When the inner code has smooth reconstruction, we give a local-decoding procedure for expander codes.
- This gives a new (and yet old!) family of linear locally correctable codes of rate approaching 1.

Open questions

- Can we use expander codes to achieve local correctability with lower query complexity?
- Can we use inner codes with rate $<1 / 2$?

The end

