Topological and arithmetic intersection numbers attached to real quadratic cycles

Henri Darmon, McGill University

Jan Vonk, McGill University

Workshop, IAS, November 8

This is joint work with Jan Vonk

Preamble

Arithmetic quotients of symmetric spaces, and topological cycles on them, often behave "as if" they were algebraic.

For instance, a modular curve $\mathbf{SL}_2(\mathbb{Z})\backslash\mathcal{H}$ is equipped with a canonical collection of:

- CM zero cycles, which *are* algebraic, and defined over ring class fields of imaginary quadratic fields.
- geodesic cycles attached to ideal classes of real quadratic quadratic fields, which are not algebraic.

Claim: These geodesic cycles (and their quaternionic analogues) encode the valuations of a richer collection of invariants, suitable for generating class fields of real quadratic fields.

Singular moduli

A singular modulus is a value of j(z) at a quadratic imaginary argument (CM point) in the Poincaré upper half plane \mathcal{H} .

The theory of complex multiplication asserts that these values are algebraic integers.

Examples:

$$j(i) = 1728;$$
 $j\left(\frac{1+\sqrt{-3}}{2}\right) = 0;$ $j\left(\frac{1+\sqrt{-7}}{2}\right) = -3375.$

$$j\left(\frac{1+\sqrt{-23}}{2}\right) = w$$
, where

$$w^3 + 3491750w^2 - 5151296875w + 12771880859375 = 0.$$

It generates the Hilbert class field of $\mathbb{Q}(\sqrt{-23})$.

Differences of singular moduli and their factorisations

Gross, Zagier (1984). For all τ_1, τ_2 quadratic imaginary, the quantity

$$J_{\infty}(\tau_1, \tau_2) := j(\tau_1) - j(\tau_2) \in H_{12} := H_{\tau_1} H_{\tau_2}$$

is a smooth algebraic integer with an explicit factorisation.

All the primes q dividing $\text{Norm}J_{\infty}(\tau_1, \tau_2)$ are $\leq D_1D_2/4$.

The valuation $\operatorname{ord}_q\operatorname{Norm} J_\infty(\tau_1,\tau_2)$ is related to the *topological intersection* of certain CM 0-cycles on a zero-dimensional Shimura variety, attached to the definite quaternion algebra ramified at q and ∞ .

Modular generating series

Let

$$J_{\infty}(D_1, D_2) := \prod J_{\infty}(\tau_1, \tau_2), \quad \operatorname{disc}(\tau_1) = D_1, \, \operatorname{disc}(\tau_2) = D_2,$$

Kudla, Rapoport, Yang. The quantity $c(D_2) := \log J_{\infty}(D_1, D_2)$ (with D_1 fixed) is the D_1D_2 -th fourier coefficient of a *mock modular form* of weight 3/2.

Real quadratic fields

If τ is a real quadratic irrationality, then $j(\tau)$ is not defined...!.

It is a part of "Kronecker's jugendtraum" or Hilbert's twelfth problem, to "make sense" of $j(\tau)$ in this setting.

Goals of this lecture: For τ_1 and τ_2 real quadratic,

- ullet construct $J_p(au_1, au_2)\stackrel{?}{\in} H_{12}$ by p-adic analytic means;
- relate $\operatorname{ord}_q J_p(\tau_1, \tau_2)$ to the *topological intersection* of certain real quadratic geodesics on Shimura curves.
- interpret the generating series for $\log_p J_p(\tau_1, \tau_2)$ in terms of certain "p-adic mock modular forms".

Drinfeld's p-adic upper-half plane

The Drinfeld p-adic upper half plane $\mathcal{H}_p := \mathbb{P}_1(\mathbb{C}_p) - \mathbb{P}_1(\mathbb{Q}_p)$ offers a tempting framework for "real multiplication theory", since, unlike \mathcal{H} , it contains an abundance of real quadratic irrationalities.

Definition

A point on $\tau \in \mathcal{H}_p$ is called a *real multiplication (RM) point* if it belongs to $\mathcal{H}_p \cap K$ for some real quadratic field K.

Hope: A *p*-adic analogue of *j* leads to singular moduli for real quadratic $\tau \in \mathcal{H}_p$.

Question: What is this *p*-adic analogue?

Rigid meromorphic functions on \mathcal{H}_p

Classical setting: Meromorphic functions on $SL_2(\mathbb{Z})\backslash \mathcal{H}$.

The *p***-adic setting**: A *rigid meromorphic function* is a ratio of rigid analytic functions.

It is natural to consider rigid meromorphic functions with good transformation properties under $\mathbf{SL}_2(\mathbb{Z})$.

In fact it turns out to be appropriate to work with an even larger group of symmetries: the p-modular group

$$\Gamma := \mathbf{SL}_2(\mathbb{Z}[1/p]).$$

Functions on $\Gamma \backslash \mathcal{H}_p$

The action of Γ , or even of $\mathbf{SL}_2(\mathbb{Z})$, on \mathcal{H}_p is not discrete in the p-adic topology. The subgroup of translations $z\mapsto z+n$, with $n\in\mathbb{Z}$, already has non-discrete orbits!

Let $\mathcal{M} :=$ the space of rigid meromorphic functions on \mathcal{H}_p , endowed with the translation action of Γ :

$$f|\gamma = f\left(\frac{az+b}{cz+d}\right).$$

There are no non-constant $\mathbf{SL}_2(\mathbb{Z})$ or Γ -invariant elements in \mathcal{M} :

$$H^0(\Gamma,\mathcal{M})=\mathbb{C}_p.$$

Rigid meromorphic cocycles

Let $\mathcal{M}^{\times}:=$ the multiplicative group of non-zero elements of $\mathcal{M}.$

Since $H^0(\Gamma, \mathcal{M}^{\times}) = \mathbb{C}_p^{\times}$, consider its higher cohomology instead!

Definition

A rigid meromorphic cocycle is a class in $H^1(\Gamma, \mathcal{M}^{\times})$. It is said to be parabolic if its restrictions to the parabolic subgroups of Γ are trivial.

Elementary but key observation: rigid meromorphic cocycles can be meaningfully *evaluated* at RM points.

Evaluating a modular cocycle at an RM point

An element $au \in \mathcal{H}_{p}$ is an RM point if and only if

$$\operatorname{Stab}_{\Gamma}(\tau) = \langle \pm \gamma_{\tau} \rangle$$

is an infinite group of rank one.

Definition

If $J \in H^1(\Gamma, \mathcal{M}^{\times})$ is a rigid meromorphic cocycle, and $\tau \in \mathcal{H}_p$ is an RM point, then the *value* of J at τ is

$$J[\tau] := J(\gamma_{\tau})(\tau) \in \mathbb{C}_{p} \cup \{\infty\}.$$

The quantity $J[\tau]$ is a well-defined numerical invariant, independent of the cocycle representing the class of J, and

$$J[\gamma \tau] = J[\tau],$$
 for all $\gamma \in \Gamma$.

Rigid meromorphic cocycles and RM points

Let S be the standard matrix of order 2 in $SL_2(\mathbb{Z})$.

Theorem (Jan Vonk, D)

If J is a rigid meromorphic cocycle, then $j:=J(S)\in \mathcal{M}^{\times}$ has its poles concentrated in finitely many Γ -orbits of RM points.

 $H_{\tau} := \text{ring class field attached to the prime-to-} p\text{-part of } \operatorname{disc}(\tau).$

Definition

The field of definition of J, denoted H_J , is the compositum of H_τ as τ ranges over the poles of j(z).

The main conjecture of real multiplication

The main assertion of complex multiplication:

Theorem (Kronecker, ...)

Let J be a meromorphic modular function on $\mathbf{SL}_2(\mathbb{Z})\backslash \mathcal{H}$ with fourier coefficients in a field H_J .

For all imaginary quadratic $\tau \in \mathcal{H}$, the value $J(\tau)$ belongs to the compositum of H_J and H_{τ} .

Conjecture (Jan Vonk, D)

Let J be a rigid meromorphic cocycle on $\mathbf{SL}_2(\mathbb{Z}[1/p]) \setminus \mathcal{H}_p$, and let H_J denote its field of definition.

For all real quadratic $\tau \in \mathcal{H}_p$, the value $J[\tau]$ belongs to the compositum of H_J and H_τ .

Example of rigid meromorphic cocycles

For real quadratic $au \in \mathcal{H}_p$, the orbit Γau is dense in \mathcal{H}_p .

The set $\Sigma_{\tau} := \{ w \in \Gamma \tau \text{ such that } ww' < 0 \}$ is discrete.

Theorem (Vonk, D)

Let p=2,3,5,7,11,17,19,23,29,31,41,47,59, or 71. (I.e., p divides the cardinality of the Monster sporadic group!) For each real quadratic $\tau \in \mathcal{H}_p$, there is a unique rigid meromorphic cocycle J_{τ}^+ for which $j_{\tau}^+:=J_{\tau}^+(S)$ is given by

$$j_{\tau}^{+}(z) \sim \prod_{\substack{w \in \Sigma_{\tau} \ |w|_{\rho} \leq 1}} \left(\frac{z-w}{z-\rho w}\right)^{\operatorname{sgn}(w)} imes \prod_{\substack{w \in \Sigma_{\tau} \ |w|_{\rho} > 1}} \left(\frac{z/w-1}{z/\rho w-1}\right)^{\operatorname{sgn}(w)}.$$

Computational aspects

Rigid meromorphic cocycles are amenable to explicit numerical calculations on the computer, for the following reasons:

- The rigid meromorphic cocycle J is completely determined by a single rigid analytic function $j:=J(S)\in\mathcal{O}_{\mathcal{H}_p}$.
- The value $J[\tau]$ can be expressed as a product of values of the form j(w) where w belongs to the "standard affinoid" $\mathcal{A} \subset \mathcal{H}_p$, namely, the complement of the p+1 mod p residue discs centered at the points in $\mathbb{P}_1(\mathbb{F}_p)$.
- The image of j(z) in the Tate algebra $\mathcal{O}_{\mathcal{A}}$ can be computed with an accuracy of p^{-M} in time that is polynomial in M.

An example

Let $\varphi = \frac{-1+\sqrt{5}}{2}$ be the golden ratio.

The *p*-adic J_{φ}^+ for p=2,3,7,13,17,23, or 47, is the "simplest instance" of a rigid meromorphic cocycle.

The RM point $\tau=\sqrt{223}$ of discriminant 223 has class number 6, and $J_{\varphi}^+[\sqrt{223}]$ appears to satisfy:

$$p = 7. \quad 282525425x^6 + 27867770x^5 + 414793887x^4 - 128906260x^3 + 414793887x^2 + 27867770x + 282525425,$$

$$p=13. \quad 464800x^6+1275520x^5+1614802x^4+1596283x^3+\\ 1614802x^2+1275520x+464800,$$

$$p = 47$$
. $4x^6 + 4x^5 + x^4 - 2x^3 + x^2 + 4x + 4$.

An aside on rational modular cocycles

Rigid meromorphic cocycles are analogous to *rational modular* cocycles: elements $\Phi \in H^1(\mathbf{SL}_2(\mathbb{Z}), \mathcal{R}^{\times})$, where \mathcal{R}^{\times} is the multiplicative group of rational functions on \mathbb{P}_1 .

- These objects were studied and classified by Marvin Knopp, Avner Ash, Youngju Choie and Don Zagier.
- Bill Duke, Ozlem Imamoglu, Arpad Toth: the RM values of rational modular cocycles are related to the topological linking numbers of real quadratic geodesics on $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})$.

Classification of rigid meromorphic cocycles

Guided by the Knopp-Choie-Zagier classification, we have:

Theorem (Jan Vonk, D)

For any RM point $\tau \in \mathcal{H}_p$, there is a unique $J_{\tau} \in H^1(\Gamma, \mathcal{M}^{\times}/\mathbb{C}_p^{\times})$ whose poles are concentrated on $\Gamma \tau$.

Every rigid meromorphic cocycle is a product of powers of finitely many of these J_{τ} , modulo scalars.

The definition of J_{τ} is very similar to that of J_{τ}^+ .

Remark: $H^1_{\mathrm{par}}(\Gamma, \mathbb{C}_p^{\times})$ is trivial, so a rigid meromorphic cocycle is determined by its image in $H^1(\Gamma, \mathcal{M}^{\times}/\mathbb{C}_p^{\times})$.

p-adic intersection numbers

The work of Duke, Imamoglu and Toth on linking number of modular geodesics immediately suggests the following definition:

Definition: The quantity $J_p(\tau_1, \tau_2) := J_{\tau_1}[\tau_2] \stackrel{!}{\in} H_{12}$ is called the *p-adic intersection number* of τ_1 and τ_2 .

Conjecture (Jan Vonk, D)

The quantity $J_p(\tau_1, \tau_2)$ behaves in many key respects like the classical $J_{\infty}(\tau_1, \tau_2) = j(\tau_1) - j(\tau_2)$ of Gross-Zagier.

A few values of $J_p(\sqrt{2}, \tau)$ with $\tau \in \mathbb{Z}[\sqrt{2}]$

τ	<i>p</i> = 3	p = 5	p = 13
$2\sqrt{2}$	$\frac{7+24\sqrt{-1}}{2\cdot 5^2}$	$\frac{-7+4\sqrt{-2}}{3^2}$	1
$4\sqrt{2}$	$\frac{-7+24\sqrt{-1}}{2\cdot 5^2}$	$\frac{-7+4\sqrt{-2}}{3^2}$	1
$7\sqrt{2}$	$\frac{-97247 + 24675\sqrt{-7}}{2^3 \cdot 11^4}$	$\frac{-2719 + 5763\sqrt{-7}}{2^7 \cdot 11^2}$	$\frac{31+3\sqrt{-7}}{2^5}$
8√2	$\tfrac{2047 + 3696\sqrt{-1}}{5^2 \cdot 13^2}$	$\tfrac{511 + 680\sqrt{-2}}{3^2 \cdot 11^2}$	$\frac{7+4\sqrt{-2}}{3^2}$
$11\sqrt{2}$	$\frac{-17005256513 + 1565252064\sqrt{-22}}{13^2 \cdot 19^4 \cdot 29^2}$	$\frac{28463 + 504\sqrt{-22}}{13^4}$	$\frac{-8071 + 2363\sqrt{-11}}{2 \cdot 3^2 \cdot 5^4}$
$16\sqrt{2}$	$\frac{985306661831273376 - 3358763261719606193\sqrt{-1}}{5^6 \cdot 13^2 \cdot 29^4 \cdot 37^4}$	$\frac{651578431 + 788458960\sqrt{-2}}{3^6 \cdot 11^6}$	$\frac{-7+4\sqrt{-2}}{3^2}$

Gross-Zagier factorisations

$$J_{\infty}(\tau_1, \tau_2) := j(\tau_1) - j(\tau_2) \in H_{12} = H_1 H_2.$$

Fix embeddings of H_{12} into \mathbb{C} and into $\bar{\mathbb{Q}}_q$, for each q.

We can then talk about $\operatorname{ord}_q J_{\infty}(\tau_1, \tau_2)$.

Gross and Zagier gave an algebraic formula for this quantity, involving the **definite** quaternion algebra $B_{q\infty}$ satisfying:

- $ullet B_{q\infty}\otimes \mathbb{R}\simeq H$, where H= Hamilton quaternions;
- $ullet B_{q\infty}\otimes \mathbb{Q}_q\simeq H_q$, the unique division algebra of rank 4 over \mathbb{Q}_q ;
- $ullet B_{q\infty}\otimes \mathbb{Q}_\ell \simeq M_2(\mathbb{Q}_\ell)$, for all $\ell
 eq \infty, q$.

Quaternionic embeddings

A CM point $\tau \in \mathcal{H}$ of discriminant D < 0 corresponds to an embedding of the order \mathcal{O} into $M_2(\mathbb{Z})$, the maximal order in the split quaternion algebra $M_2(\mathbb{Q})$.

Definition: An optimal embedding of \mathcal{O} into $B_{q\infty}$ is a pair (φ, R) where R is a maximal order in $B_{q\infty}$ and $\varphi: K \longrightarrow B_{q\infty}$ satisfies $\varphi(K) \cap R = \varphi(\mathcal{O})$.

The group $B_{q\infty}^{\times}$ acts on $\text{Emb}(\mathcal{O}, B_{q\infty})$ by conjugation:

$$b*(\varphi,R) = (b\varphi b^{-1}, bRb^{-1}).$$

$$\Sigma(\mathcal{O}, B_{a\infty}) := B_{a\infty}^{\times} \setminus \text{Emb}(\mathcal{O}, B_{a\infty}).$$

Key Fact: Both $\mathbf{SL}_2(\mathbb{Z}) \setminus \mathcal{H}^D$ and $\Sigma(\mathcal{O}, B_{q\infty})$ are endowed with simply transitive G_D -actions.

Arithmetic intersection multiplicities

• Given $(\varphi_1, R_1) \in \text{Emb}(\mathcal{O}_1, B_{q\infty})$ and $(\varphi_2, R_2) \in \text{Emb}(\mathcal{O}_2, B_{q\infty})$,

$$\text{let} \quad [\varphi_1, \varphi_2]_q = 0 \text{ if } R_1 \neq R_2,$$

and, if $R_1 = R_2 =: R$,

$$[\varphi_1, \varphi_2]_q := \operatorname{Max}_t$$
 such that $\varphi_1(\mathcal{O}_1) = \varphi_2(\mathcal{O}_2)$ in $R/q^{t-1}R$.

• Given $(\varphi_1, R_1) \in \Sigma(\mathcal{O}_1, B_{q\infty})$ and $(\varphi_2, R_2) \in \Sigma(\mathcal{O}_2, B_{q\infty})$, set

$$(\varphi_1, \varphi_2)_q := \sum_{b \in \mathcal{B}_{acc}^{\times}} [b\varphi_1 b^{-1}, \varphi_2]_q.$$

The Gross-Zagier factorisation

Theorem (Gross-Zagier)

Let $q \nmid D_1D_2$ be a prime. If D_1 or D_2 is a square modulo q, then $\operatorname{ord}_q J_{\infty}(\tau_1, \tau_2) = 0$. Otherwise, there exists bijections

$$\mathsf{SL}_2(\mathbb{Z}) \backslash \mathcal{H}^{D_1} \leftrightarrow \Sigma(\mathcal{O}_{D_1}, \mathcal{B}_{q\infty}), \qquad \mathsf{SL}_2(\mathbb{Z}) \backslash \mathcal{H}^{D_2} \leftrightarrow \Sigma(\mathcal{O}_{D_2}, \mathcal{B}_{q\infty}),$$

compatible with the G_{D_1} and G_{D_2} -actions, for which

$$\operatorname{ord}_q J_{\infty}(\tau_1, \tau_2) = (\varphi_1, \varphi_2)_q,$$

for all $\tau_1 \in \mathcal{H}^{D_1}$ and $\tau_2 \in \mathcal{H}^{D_2}$, associated to φ_1 and φ_2 respectively.

Factorisations of real quadratic singular moduli

We now consider the factorisation of $J_p(\tau_1,\tau_2)\stackrel{?}{\in} H_{12}=H_1H_2$.

Fix embeddings of H_{12} into \mathbb{C} and into $\bar{\mathbb{Q}}_q$, for each q.

We can then talk about ord_q $J_p(\tau_1, \tau_2)$.

Our conjectural formula for this quantity, involves... the **indefinite** quaternion algebra B_{qp} ramified at q and p:

- $ullet B_{qp}\otimes \mathbb{Q}_q\simeq H_q$, $B_{qp}\otimes \mathbb{Q}_p\simeq H_p$, the unique division algebra of rank 4 over \mathbb{Q}_q and \mathbb{Q}_p ;
- $ullet B_{qp}\otimes \mathbb{Q}_\ell \simeq M_2(\mathbb{Q}_\ell), ext{ for all } \ell
 eq p,q.$
- $ullet B_{qp}\otimes \mathbb{R}\simeq M_2(\mathbb{R});$

Shimura curves

Because B_{qp} in indefinite, it has a *unique* maximal order R, up to conjugation.

The group $\Gamma_{pq}=R_1^\times\subset \mathbf{SL}_2(\mathbb{R})$ acts discretely and co-compactly on \mathcal{H} ;

The Riemann surface $\Gamma_{pq} \setminus \mathcal{H}$ is called the *Shimura curve* attached to the pair (p,q).

Given embeddings $\varphi_1 \in \operatorname{Emb}(\mathcal{O}_1, R)$ and $\varphi_2 \in \operatorname{Emb}(\mathcal{O}_2, R)$, let γ_1 and γ_2 be the hyperbolic geodesics on \mathcal{H} joining the fixed points for $\varphi_1(\mathcal{O}_1^\times)$ and $\varphi_2(\mathcal{O}_2^\times)$ respectively.

The geodesics γ_1 and γ_2 map to closed geodesics $\bar{\gamma}_1$ and $\bar{\gamma}_2$ on the Shimura curve $\Gamma_{pq}\backslash\mathcal{H}$.

Topological intersections

 $[\gamma_1, \gamma_2]_{\infty} := \text{ signed intersection of } \gamma_1 \text{ and } \gamma_2.$

Fact. The topological intersection multiplicity of $\bar{\gamma}_1$ and $\bar{\gamma}_2$ on the Shimura curve $\Gamma_{pq} \backslash \mathcal{H}$ is

$$(ar{\gamma}_1,ar{\gamma}_2)_{\infty}:=\sum_{b\in\mathcal{O}_2^{ imes}\setminus\Gamma_{pq}/\mathcal{O}_1^{ imes}}[b\gamma_1b^{-1},\gamma_2]_{\infty}.$$

Definition. The *q*-weighted intersection number of φ_1 and φ_2 is

$$(\varphi_1,\varphi_2)_{q\infty}:=\sum_{b\in\mathcal{O}_2^\times\backslash\Gamma_{pq}/\mathcal{O}_1^\times}[b\varphi_1b^{-1},\varphi_2]_q\cdot[b\gamma_1b^{-1},\gamma_2]_\infty.$$

A Gross-Zagier-style factorisation

Conjecture (Jan Vonk, D)

Let $q \nmid D_1D_2$ be a prime. If D_1 or D_2 is a square modulo q, then $\operatorname{ord}_q J_p(\tau_1, \tau_2) = 0$. Otherwise, there exists bijections

$$\Gamma \backslash \mathcal{H}_p^{D_1} \leftrightarrow \Sigma(\mathcal{O}_{D_1}, R), \qquad \Gamma \backslash \mathcal{H}_p^{D_2} \leftrightarrow \Sigma(\mathcal{O}_{D_2}, R),$$

which are compatible with the G_{D_1} and G_{D_2} -actions, and for which

$$\operatorname{ord}_q J_p(\tau_1, \tau_2) = (\varphi_1, \varphi_2)_{q\infty},$$

for all $\tau_1 \in \mathcal{H}^{D_1}_p$ and $\tau_2 \in \mathcal{H}^{D_2}_p$, associated to φ_1 and φ_2 respectively.

An example

James Rickards has developed and implemented efficient algorithms for computing the q-weighted topological intersection numbers of real quadratic geodesics on Shimura curves.

An example: $D_1 = 13$, $D_2 = 285 = 3 \cdot 5 \cdot 19$, p = 2

Vonk, D: $J_2(\tau_1, \tau_2)$ satisfies (to 800 digits of 2-adic precision)

 $77360972841758936947502973998239x^4 + 140181070438890831721314135099803x^3$

 $+209895619549791255199413489899292x^2 + 140181070438890831721314135099803x$

+77360972841758936947502973998239,

James Rickards: $e_{q2} := \frac{1}{2} \sum_{\tau_1, \tau_2} |(\varphi_{\tau_1}, \varphi_{\tau_2})_{q\infty}|$ on $\Gamma_{2q} \setminus \mathcal{H}$.

But: 77360972841758936947502973998239 =

 $7^7 \cdot 19^2 \cdot 31^2 \cdot 73 \cdot 109^2 \cdot 151^2 \cdot 163 \cdot 397 \cdot 457 \cdot 463.$

Norms of singular moduli

Let $q \equiv 3 \pmod{4}$ be a prime, and for all *negative D*,

$$J_{\infty}(-q,D) := \prod_{\substack{\operatorname{disc}(au_1) = -q, \ \operatorname{disc}(au_2) = D}} J_{\infty}(au_1, au_2) \ \in \ \mathbb{Z}.$$

Gross-Zagier, Kudla-Rapoport-Yang: The quantity $c(D) := \log J_{\infty}(-q, -D)$ for D > 0 is the D-th fourier coefficient of a non-holomorphic modular form of weight 3/2.

This assertion is a very special case of the "Kudla program", predicting that quantities like c(D), which describe the arithmetic intersections of natural cycles on Shimura varieties, can be packaged into a modular generating series.

The incoherent Eisenstein series of Kudla-Rapoport-Yang

Let $\chi_q:(\mathbb{Z}/q\mathbb{Z})^{\times}\longrightarrow \pm 1$ be the odd quadratic Dirichlet character.

Non-homomorphic Eisenstein series:

$$E_{-}(\tau,s) = y^{s/2} \sum_{(c,d)} (c\tau + d)^{-1} |c\tau + d|^{-s} \Phi_{q}^{-}(c,d).$$

Functional equation: $E_{-}(\tau, -s) \sim -E_{-}(\tau, s)$.

Hence $E_{-}(\tau, 0) = 0$.

Definition. The *incoherent Eisenstein series* of Kudla-Rapoport-Yang is the derivative

$$\Phi_{KRY} := \frac{d}{ds} (E_{-}(\tau, s))_{s=0}.$$

It is a non-holomorphic modular form of weight one.

The theorem of Kudla-Rapoport Yang

Theorem (Kudla, Rapoport, Yang)

The quantity $c(D) := \log J_{\infty}(-q, -D)$ is essentially the Dth fourier coefficient of $\Phi_{KRY}(4\tau) \times \theta(\tau)$, where $\theta(q)$ is the standard unary theta series of weight 1/2.

This theorem has been extended to the setting where weight one theta-series are replaced by a weight one cusp form g, by Bill Duke+Yingkun Li, Stephan Ehlen, Maryna Viazovska, and Pierre Charollois+Yingkun Li.

The role of the incoherent Eisenstein series of weight one of KRY is played by a *mock modular form of weight one having g as its* shadow.

Twisted norms of real quadratic singular moduli

Now let $\psi: G_q \longrightarrow L^{\times}$ be any class character, q = 1 + 4m.

The set $\Gamma \setminus \mathcal{H}_p^{\mathrm{disc}=q}$ is endowed with a simple transitive G_q -action, and can thus be identified with G_q .

For all positive D, let

$$J_p(\psi,D) := \prod_{\substack{\mathrm{disc}(\tau_1) = q \\ \mathrm{disc}(\tau_2) = D}} J_p(\tau_1,\tau_2)^{\psi^{-1}(\tau_1)} \quad \stackrel{?}{\in} \quad (H_q^{\times} \otimes L)^{\psi}.$$

Conjecture (Jan Vonk, D)

The quantity $c_{\psi}(D) := \log_p J_p(\psi, D)$ is the Dth fourier coefficient of a "p-adic mock modular form" of weight 3/2.

A p-adic Kudla-Rapoport-Yang theorem

Theorem (Alan Lauder, Victor Rotger, D)

There exists a "p-adic mock modular form" Φ_{ψ} of weight one whose fourier coefficients are the p-adic logarithms of elements of $(H_q^{\times} \otimes L)^{\psi}$. It exhibits many of the same properties as Φ_{KRY} and of the forms arising in Duke-Li, Ehlen, Viazovska, Charollois-Li...

The modular form Φ_{ψ} is simply the derivative, with respect to the weight, of a Hida family of modular forms specialising to θ_{ψ_o} in weight one, where $\psi_o/\psi_o'=\psi$.

The proof of the theorem is very different, and *substantially simpler* from the approaches of Kudla-Rapoport-Yang, Duke-Li, Ehlen, Viazovska, Charollois-Li used in the Archimedean setting. It rests crucially on the deformation theory of modular forms and of *p*-adic Galois representations.

A more tracatable conjecture?

Conjecture (Jan Vonk, D)

The quantity $c_{\psi}(D) := \log_p J_p(\psi, D)$ is essentially the Dth fourier coefficient of $\Phi_{\psi}(q^4) \times \theta(q)$, where $\theta(q)$ is the standard unary theta series of weight 1/2.

This conjecture suggests a possible road map for proving the algebraicity of "real quadratic singular moduli" ...

Conclusion

The RM values of rigid meromorphic multiplicative cocycles lead to *conjectural analogues* of singular moduli, with applications to

- explicit class field theory for real quadratic fields;
- Gross-Zagier style factorisation formulae;
- suggesting test cases for an eventual "p-adic Kudla program".

The experiments reveal a promising connection between the *p*-adic Kudla program and Hilbert's twelfth problem for real quadratic fields.

We are still *very far* from understanding this "real multiplication theory" as well as its classical counterpart!

Thank you for your attention!