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Preamble

Arithmetic quotients of symmetric spaces, and topological cycles
on them, often behave “as if” they were algebraic.

For instance, a modular curve SL2(Z)\H is equipped with a
canonical collection of:

• CM zero cycles, which are algebraic, and defined over ring class
fields of imaginary quadratic fields.

• geodesic cycles attached to ideal classes of real quadratic
quadratic fields, which are not algebraic.

Claim: These geodesic cycles (and their quaternionic analogues)
encode the valuations of a richer collection of invariants, suitable
for generating class fields of real quadratic fields.



Singular moduli

A singular modulus is a value of j(z) at a quadratic imaginary
argument (CM point) in the Poincaré upper half plane H.

The theory of complex multiplication asserts that these values are
algebraic integers.

Examples:

j(i) = 1728; j
(

1+
√
−3

2

)
= 0; j

(
1+
√
−7

2

)
= −3375.

j
(

1+
√
−23

2

)
= w , where

w3 + 3491750w2 − 5151296875w + 12771880859375 = 0.

It generates the Hilbert class field of Q(
√
−23).



Differences of singular moduli and their factorisations

Gross, Zagier (1984). For all τ1, τ2 quadratic imaginary, the
quantity

J∞(τ1, τ2) := j(τ1)− j(τ2) ∈ H12 := Hτ1Hτ2

is a smooth algebraic integer with an explicit factorisation.

All the primes q dividing NormJ∞(τ1, τ2) are ≤ D1D2/4.

The valuation ordq NormJ∞(τ1, τ2) is related to the topological
intersection of certain CM 0-cycles on a zero-dimensional Shimura
variety, attached to the definite quaternion algebra ramified at q
and ∞.



Modular generating series

Let

J∞(D1,D2) :=
∏

J∞(τ1, τ2), disc(τ1) = D1, disc(τ2) = D2,

Kudla, Rapoport, Yang. The quantity c(D2) := log J∞(D1,D2)
(with D1 fixed) is the D1D2-th fourier coefficient of a mock
modular form of weight 3/2.



Real quadratic fields

If τ is a real quadratic irrationality, then j(τ) is not defined...!.

It is a part of “Kronecker’s jugendtraum” or Hilbert’s twelfth
problem, to “make sense” of j(τ) in this setting.

Goals of this lecture: For τ1 and τ2 real quadratic,

• construct Jp(τ1, τ2)
?
∈ H12 by p-adic analytic means;

• relate ordq Jp(τ1, τ2) to the topological intersection of certain
real quadratic geodesics on Shimura curves.

• interpret the generating series for logp Jp(τ1, τ2) in terms of
certain “p-adic mock modular forms”.



Drinfeld’s p-adic upper-half plane

The Drinfeld p-adic upper half plane Hp := P1(Cp)− P1(Qp)
offers a tempting framework for “real multiplication theory”, since,
unlike H, it contains an abundance of real quadratic irrationalities.

Definition

A point on τ ∈ Hp is called a real multiplication (RM) point if it
belongs to Hp ∩ K for some real quadratic field K .

Hope: A p-adic analogue of j leads to singular moduli for real
quadratic τ ∈ Hp.

Question: What is this p-adic analogue?



Rigid meromorphic functions on Hp

Classical setting: Meromorphic functions on SL2(Z)\H.

The p-adic setting: A rigid meromorphic function is a ratio of
rigid analytic functions.

It is natural to consider rigid meromorphic functions with good
transformation properties under SL2(Z).

In fact it turns out to be appropriate to work with an even larger
group of symmetries: the p-modular group

Γ := SL2(Z[1/p]).



Functions on Γ\Hp

The action of Γ, or even of SL2(Z), on Hp is not discrete in the
p-adic topology. The subgroup of translations z 7→ z + n, with
n ∈ Z, already has non-discrete orbits!

Let M := the space of rigid meromorphic functions on Hp,
endowed with the translation action of Γ:

f |γ = f

(
az + b

cz + d

)
.

There are no non-constant SL2(Z) or Γ-invariant elements in M:

H0(Γ,M) = Cp.



Rigid meromorphic cocycles

Let M× := the multiplicative group of non-zero elements of M.

Since H0(Γ,M×) = C×p , consider its higher cohomology instead!

Definition

A rigid meromorphic cocycle is a class in H1(Γ,M×).
It is said to be parabolic if its restrictions to the parabolic
subgroups of Γ are trivial.

Elementary but key observation: rigid meromorphic cocycles can
be meaningfully evaluated at RM points.



Evaluating a modular cocycle at an RM point

An element τ ∈ Hp is an RM point if and only if

StabΓ(τ) = 〈±γτ 〉

is an infinite group of rank one.

Definition

If J ∈ H1(Γ,M×) is a rigid meromorphic cocycle, and τ ∈ Hp is
an RM point, then the value of J at τ is

J[τ ] := J(γτ )(τ) ∈ Cp ∪ {∞}.

The quantity J[τ ] is a well-defined numerical invariant,
independent of the cocycle representing the class of J, and

J[γτ ] = J[τ ], for all γ ∈ Γ.



Rigid meromorphic cocycles and RM points

Let S be the standard matrix of order 2 in SL2(Z).

Theorem (Jan Vonk, D)

If J is a rigid meromorphic cocycle, then j := J(S) ∈M× has its
poles concentrated in finitely many Γ-orbits of RM points.

Hτ := ring class field attached to the prime-to-p-part of disc(τ).

Definition

The field of definition of J, denoted HJ , is the compositum of Hτ
as τ ranges over the poles of j(z).



The main conjecture of real multiplication

The main assertion of complex multiplication:

Theorem (Kronecker, . . .)

Let J be a meromorphic modular function on SL2(Z)\H with
fourier coefficients in a field HJ .
For all imaginary quadratic τ ∈ H, the value J(τ) belongs to the
compositum of HJ and Hτ .

Conjecture (Jan Vonk, D)

Let J be a rigid meromorphic cocycle on SL2(Z[1/p])\Hp, and let
HJ denote its field of definition.
For all real quadratic τ ∈ Hp, the value J[τ ] belongs to the
compositum of HJ and Hτ .



Example of rigid meromorphic cocycles

For real quadratic τ ∈ Hp , the orbit Γτ is dense in Hp.

The set Στ := {w ∈ Γτ such that ww ′ < 0} is discrete.

Theorem (Vonk, D)

Let p = 2, 3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 47, 59, or 71. (I.e., p
divides the cardinality of the Monster sporadic group!) For each
real quadratic τ ∈ Hp, there is a unique rigid meromorphic cocycle
J+
τ for which j+

τ := J+
τ (S) is given by

j+
τ (z) ∼

∏
w∈Στ
|w |p≤1

(
z − w

z − pw

)sgn(w)

×
∏
w∈Στ
|w |p>1

(
z/w − 1

z/pw − 1

)sgn(w)

.



Computational aspects

Rigid meromorphic cocycles are amenable to explicit numerical
calculations on the computer, for the following reasons:

• The rigid meromorphic cocycle J is completely determined by a
single rigid analytic function j := J(S) ∈ OHp .

• The value J[τ ] can be expressed as a product of values of the
form j(w) where w belongs to the “standard affinoid” A ⊂ Hp,
namely, the complement of the p + 1 mod p residue discs centered
at the points in P1(Fp).

• The image of j(z) in the Tate algebra OA can be computed with
an accuracy of p−M in time that is polynomial in M.



An example

Let ϕ = −1+
√

5
2 be the golden ratio.

The p-adic J+
ϕ for p = 2, 3, 7, 13, 17, 23, or 47, is the “simplest

instance” of a rigid meromorphic cocycle.

The RM point τ =
√

223 of discriminant 223 has class number 6,
and J+

ϕ [
√

223] appears to satisfy:

p = 7. 282525425x6 + 27867770x5 + 414793887x4 −
128906260x3 + 414793887x2 + 27867770x + 282525425,

p = 13. 464800x6 + 1275520x5 + 1614802x4 + 1596283x3 +
1614802x2 + 1275520x + 464800,

p = 47. 4x6 + 4x5 + x4 − 2x3 + x2 + 4x + 4.



An aside on rational modular cocycles

Rigid meromorphic cocycles are analogous to rational modular
cocycles: elements Φ ∈ H1(SL2(Z),R×), where R× is the
multiplicative group of rational functions on P1.

• These objects were studied and classified by Marvin Knopp,
Avner Ash, Youngju Choie and Don Zagier.

• Bill Duke, Ozlem Imamoglu, Arpad Toth: the RM values of
rational modular cocycles are related to the topological linking
numbers of real quadratic geodesics on SL2(Z)\SL2(R).



Classification of rigid meromorphic cocycles

Guided by the Knopp-Choie-Zagier classification, we have:

Theorem (Jan Vonk, D)

For any RM point τ ∈ Hp, there is a unique Jτ ∈ H1(Γ,M×/C×p )
whose poles are concentrated on Γτ .
Every rigid meromorphic cocycle is a product of powers of finitely
many of these Jτ , modulo scalars.

The definition of Jτ is very similar to that of J+
τ .

Remark: H1
par(Γ,C×p ) is trivial, so a rigid meromorphic cocycle is

determined by its image in H1(Γ,M×/C×p ).



p-adic intersection numbers

The work of Duke, Imamoglu and Toth on linking number of
modular geodesics immediately suggests the following definition:

Definition: The quantity Jp(τ1, τ2) := Jτ1 [τ2]
?
∈ H12 is called the

p-adic intersection number of τ1 and τ2.

Conjecture (Jan Vonk, D)

The quantity Jp(τ1, τ2) behaves in many key respects like the
classical J∞(τ1, τ2) = j(τ1)− j(τ2) of Gross-Zagier.



A few values of Jp(
√

2, τ) with τ ∈ Z[
√

2]

τ p = 3 p = 5 p = 13

2
√

2 7+24
√
−1

2·52
−7+4

√
−2

32 1

4
√

2 −7+24
√
−1

2·52
−7+4

√
−2

32 1

7
√

2 −97247+24675
√
−7

23·114
−2719+5763

√
−7

27·112
31+3

√
−7

25

8
√

2 2047+3696
√
−1

52·132
511+680

√
−2

32·112
7+4
√
−2

32

11
√

2 −17005256513+1565252064
√
−22

132·194·292
28463+504

√
−22

134
−8071+2363

√
−11

2·32·54

16
√

2 985306661831273376−3358763261719606193
√
−1

56·132·294·374
651578431+788458960

√
−2

36·116
−7+4

√
−2

32



Gross-Zagier factorisations

J∞(τ1, τ2) := j(τ1)− j(τ2) ∈ H12 = H1H2.

Fix embeddings of H12 into C and into Q̄q, for each q.

We can then talk about ordq J∞(τ1, τ2).

Gross and Zagier gave an algebraic formula for this quantity,
involving the definite quaternion algebra Bq∞ satisfying:

•Bq∞ ⊗ R ' H, where H = Hamilton quaternions;

•Bq∞ ⊗Qq ' Hq, the unique division algebra of rank 4 over Qq;

•Bq∞ ⊗Q` ' M2(Q`), for all ` 6=∞, q.



Quaternionic embeddings

A CM point τ ∈ H of discriminant D < 0 corresponds to an
embedding of the order O into M2(Z), the maximal order in the
split quaternion algebra M2(Q).

Definition: An optimal embedding of O into Bq∞ is a pair (ϕ,R)
where R is a maximal order in Bq∞ and ϕ : K −→ Bq∞ satisfies
ϕ(K ) ∩ R = ϕ(O).

The group B×q∞ acts on Emb(O,Bq∞) by conjugation:

b ∗ (ϕ,R) = (bϕb−1, bRb−1).

Σ(O,Bq∞) := B×q∞\Emb(O,Bq∞).

Key Fact: Both SL2(Z)\HD and Σ(O,Bq∞) are endowed with
simply transitive GD-actions.



Arithmetic intersection multiplicities

• Given (ϕ1,R1) ∈ Emb(O1,Bq∞) and (ϕ2,R2) ∈ Emb(O2,Bq∞),

let [ϕ1, ϕ2]q = 0 if R1 6= R2,

and, if R1 = R2 =: R,

[ϕ1, ϕ2]q := Maxt such that ϕ1(O1) = ϕ2(O2) in R/qt−1R.

• Given (ϕ1,R1) ∈ Σ(O1,Bq∞) and (ϕ2,R2) ∈ Σ(O2,Bq∞), set

(ϕ1, ϕ2)q :=
∑

b∈B×q∞

[bϕ1b
−1, ϕ2]q.



The Gross-Zagier factorisation

Theorem (Gross-Zagier)

Let q - D1D2 be a prime. If D1 or D2 is a square modulo q, then
ordq J∞(τ1, τ2) = 0. Otherwise, there exists bijections

SL2(Z)\HD1 ↔ Σ(OD1 ,Bq∞), SL2(Z)\HD2 ↔ Σ(OD2 ,Bq∞),

compatible with the GD1 and GD2-actions, for which

ordq J∞(τ1, τ2) = (ϕ1, ϕ2)q,

for all τ1 ∈ HD1 and τ2 ∈ HD2 , associated to ϕ1 and ϕ2

respectively.



Factorisations of real quadratic singular moduli

We now consider the factorisation of Jp(τ1, τ2)
?
∈ H12 = H1H2.

Fix embeddings of H12 into C and into Q̄q, for each q.

We can then talk about ordq Jp(τ1, τ2).

Our conjectural formula for this quantity, involves... the indefinite
quaternion algebra Bqp ramified at q and p:

•Bqp ⊗Qq ' Hq, Bqp ⊗Qp ' Hp, the unique division algebra of
rank 4 over Qq and Qp;

•Bqp ⊗Q` ' M2(Q`), for all ` 6= p, q.

•Bqp ⊗ R ' M2(R);



Shimura curves

Because Bqp in indefinite, it has a unique maximal order R, up to
conjugation.

The group Γpq = R×1 ⊂ SL2(R) acts discretely and co-compactly
on H;

The Riemann surface Γpq\H is called the Shimura curve attached
to the pair (p, q).

Given embeddings ϕ1 ∈ Emb(O1,R) and ϕ2 ∈ Emb(O2,R), let γ1

and γ2 be the hyperbolic geodesics on H joining the fixed points
for ϕ1(O×1 ) and ϕ2(O×2 ) respectively.

The geodesics γ1 and γ2 map to closed geodesics γ̄1 and γ̄2 on the
Shimura curve Γpq\H.



Topological intersections

[γ1, γ2]∞ := signed intersection of γ1 and γ2.

Fact. The topological intersection multiplicity of γ̄1 and γ̄2 on the
Shimura curve Γpq\H is

(γ̄1, γ̄2)∞ :=
∑

b∈O×2 \Γpq/O×1

[bγ1b
−1, γ2]∞.

Definition. The q-weighted intersection number of ϕ1 and ϕ2 is

(ϕ1, ϕ2)q∞ :=
∑

b∈O×2 \Γpq/O×1

[bϕ1b
−1, ϕ2]q · [bγ1b

−1, γ2]∞.



A Gross-Zagier-style factorisation

Conjecture (Jan Vonk, D)

Let q - D1D2 be a prime. If D1 or D2 is a square modulo q, then
ordq Jp(τ1, τ2) = 0. Otherwise, there exists bijections

Γ\HD1
p ↔ Σ(OD1 ,R), Γ\HD2

p ↔ Σ(OD2 ,R),

which are compatible with the GD1 and GD2-actions, and for which

ordq Jp(τ1, τ2) = (ϕ1, ϕ2)q∞,

for all τ1 ∈ HD1
p and τ2 ∈ HD2

p , associated to ϕ1 and ϕ2

respectively.



An example

James Rickards has developed and implemented efficient
algorithms for computing the q-weighted topological intersection
numbers of real quadratic geodesics on Shimura curves.



An example: D1 = 13, D2 = 285 = 3 · 5 · 19, p = 2

Vonk, D: J2(τ1, τ2) satisfies (to 800 digits of 2-adic precision)

77360972841758936947502973998239x4 + 140181070438890831721314135099803x3

+209895619549791255199413489899292x2 + 140181070438890831721314135099803x

+77360972841758936947502973998239,

.

James Rickards: eq2 := 1
2

∑
τ1,τ2
|(ϕτ1 , ϕτ2)q∞| on Γ2q\H.

q 7 19 31 73 109 151 163 397 457 463

eq2 7 2 2 1 2 2 1 1 1 1

But: 77360972841758936947502973998239 =

77 ·192 ·312 ·73 ·1092 ·1512 ·163 ·397 ·457 ·463.



Norms of singular moduli

Let q ≡ 3 (mod 4) be a prime, and for all negative D,

J∞(−q,D) :=
∏

disc(τ1)=−q,

disc(τ2)=D

J∞(τ1, τ2) ∈ Z.

Gross-Zagier, Kudla-Rapoport-Yang: The quantity
c(D) := log J∞(−q,−D) for D > 0 is the D-th fourier coefficient
of a non-holomorphic modular form of weight 3/2.

This assertion is a very special case of the “Kudla program”,
predicting that quantities like c(D), which describe the arithmetic
intersections of natural cycles on Shimura varieties, can be
packaged into a modular generating series.



The incoherent Eisenstein series of Kudla-Rapoport-Yang

Let χq : (Z/qZ)× −→ ±1 be the odd quadratic Dirichlet character.

Non-homomorphic Eisenstein series:

E−(τ, s) = y s/2
∑
(c,d)

(cτ + d)−1|cτ + d |−sΦ−q (c , d).

Functional equation: E−(τ,−s) ∼ −E−(τ, s).

Hence E−(τ, 0) = 0.

Definition. The incoherent Eisenstein series of
Kudla-Rapoport-Yang is the derivative

ΦKRY :=
d

ds
(E−(τ, s))s=0.

It is a non-holomorphic modular form of weight one.



The theorem of Kudla-Rapoport Yang

Theorem (Kudla, Rapoport, Yang)

The quantity c(D) := log J∞(−q,−D) is essentially the Dth
fourier coefficient of ΦKRY (4τ)× θ(τ), where θ(q) is the standard
unary theta series of weight 1/2.

This theorem has been extended to the setting where weight one
theta-series are replaced by a weight one cusp form g , by Bill
Duke+Yingkun Li, Stephan Ehlen, Maryna Viazovska, and Pierre
Charollois+Yingkun Li.

The role of the incoherent Eisenstein series of weight one of KRY
is played by a mock modular form of weight one having g as its
shadow.



Twisted norms of real quadratic singular moduli

Now let ψ : Gq −→ L× be any class character, q = 1 + 4m.

The set Γ\Hdisc=q
p is endowed with a simple transitive Gq-action,

and can thus be identified with Gq.

For all positive D, let

Jp(ψ,D) :=
∏

disc(τ1)=q

disc(τ2)=D

Jp(τ1, τ2)ψ
−1(τ1) ?

∈ (H×q ⊗ L)ψ.

Conjecture (Jan Vonk, D)

The quantity cψ(D) := logp Jp(ψ,D) is the Dth fourier coefficient
of a “p-adic mock modular form” of weight 3/2.



A p-adic Kudla-Rapoport-Yang theorem

Theorem (Alan Lauder, Victor Rotger, D)

There exists a “p-adic mock modular form” Φψ of weight one
whose fourier coefficients are the p-adic logarithms of elements of
(H×q ⊗ L)ψ. It exhibits many of the same properties as ΦKRY and
of the forms arising in Duke-Li, Ehlen, Viazovska, Charollois-Li...

The modular form Φψ is simply the derivative, with respect to the
weight, of a Hida family of modular forms specialising to θψo in
weight one, where ψo/ψ

′
o = ψ.

The proof of the theorem is very different, and substantially
simpler from the approaches of Kudla-Rapoport-Yang, Duke-Li,
Ehlen, Viazovska, Charollois-Li used in the Archimedean setting. It
rests crucially on the deformation theory of modular forms and of
p-adic Galois representations.



A more tracatable conjecture?

Conjecture (Jan Vonk, D)

The quantity cψ(D) := logp Jp(ψ,D) is essentially the Dth fourier
coefficient of Φψ(q4)× θ(q), where θ(q) is the standard unary
theta series of weight 1/2.

This conjecture suggests a possible road map for proving the
algebraicity of “real quadratic singular moduli”...



Conclusion

The RM values of rigid meromorphic multiplicative cocycles lead
to conjectural analogues of singular moduli, with applications to

• explicit class field theory for real quadratic fields;

• Gross-Zagier style factorisation formulae;

• suggesting test cases for an eventual “p-adic Kudla program”.

The experiments reveal a promising connection between the p-adic
Kudla program and Hilbert’s twelfth problem for real quadratic
fields.

We are still very far from understanding this “real multiplication
theory” as well as its classical counterpart!



Thank you for your attention!


