A Tale of Two Bases

Anne Dranowski
2020-09-23
IAS Postdoc Talk

About

G a complex, algebraic, simply-laced, semisimple, adjoint group

Representation theory

- perfect bases
- algebra map

Algebraic geometry

- varieties
- multidegrees

Combinatorics

- crystal bases
- flag functions

Thesis work, a bird's eye view

Question are perfect bases unique?

Expected discrepancy at classical counterexample

Method The algebra map \bar{D}

Findings ideals of MV cycles in type A via a recipe for generating matrix varieties from tableaux

Zooming in

Units highest weight representations of G viewed in $\mathbb{C}[U]$

$$
\bigcup_{\lambda \in P_{+}} L(\lambda) \rightarrow \bigoplus_{\nu \in Q_{+}} \mathbb{C}[U]_{-\nu}
$$

Why because the MV basis and the dual semicanonical basis have compatible polytope models

Why?

Both bases are $B(\infty)$ crystal bases, hence admit maps to polytopes.
Remarkably, their polytopes can also be obtained from the geometric spaces defining them

([BKT14])
such that $\operatorname{Pol}(Z)=\operatorname{Pol}(Y)$ whenever $\operatorname{Pol}(b(Z))=\operatorname{Pol}(b(Y))$.
For example

Question

Do equal polytopes imply equal perfect basis vectors?

Baumann, Kamnitzer and Knutson in [BKK19] ask a weaker question by associating to elements f of $\mathbb{C}[U]$ measures $D(f)$ on $\mathfrak{t}_{\mathbb{R}}^{*}$ which can again be defined intrinsic the $Z^{\prime} s$ and Y 's.

Question

$D(f)$ is replaced by the constant coefficient of its Fourier transform, a quantity which is denoted $\bar{D}(f)$.

$\bar{D}: \mathbb{C}[U] \rightarrow \mathbb{C}\left[\mathrm{t}^{\mathrm{reg}}\right]$ is an algebra map

$$
\bar{D}(f)=\sum_{i \in \operatorname{Seq}(\nu)}\left\langle e_{i}, f\right\rangle \bar{D}_{\mathbf{i}} \quad \bar{D}_{\mathbf{i}}=\prod_{k=1}^{p} \frac{1}{\alpha_{i_{1}}+\cdots+\alpha_{i_{k}}} \quad \bar{D}(f)(x)=f\left(n_{x}\right)
$$

where $n_{x} \in U$ is such that $\operatorname{Ad}_{n_{x}}(x)=x+e$ with e a sum of root vectors.
Do we have $\bar{D}(b(Z))=\bar{D}(b(Y))$ whenever $\operatorname{Pol}(Z)=\operatorname{Pol}(Y)$?

Means to compute on the MV basis

The Mirković-Vybornov isomorphism [MVy07] relates slices in the nilpotent cone of $\mathfrak{g l}_{N}$ and slices in affine Grassmannians $\mathrm{Gr}_{\mathrm{GL}_{m}}$ and restricts to an isomorphism of MV cycles and generalized orbital varieties, which can be labeled by semistandard Young tableaux according to a Spaltenstein recipe.

Matching MV cycles and generalized orbital varieties

Add to the [BKT14] diagram a more appropriate "combinatorial fingerprint"

because it is readily available for tableaux.
Theorem. [D19] Let $\tau \in \mathcal{T}(\lambda)_{\mu}$ and let Z be the MV cycle with $n(Z)=n(\tau)$. Then (up to a certain translate) Z is equal to the closure of the image of the generalized orbital variety labeled by τ.

Comparing

Proposition. [BKK19] Let Z be an MV cycle of Lusztig datum n and let X_{τ} be the corresponding generalized orbital variety. Then

$$
\bar{D}(b(Z))=\varepsilon_{L_{0}}^{T}(Z)=\varepsilon_{L_{\mu}}^{T}\left(t^{\mu} Z\right)=\frac{\operatorname{mdeg}_{\mathbb{T}_{\mu} \cap \mathfrak{n}}\left(X_{\tau}\right)}{\prod_{\Delta_{+}} \beta}
$$

In other words, $\bar{D}(b(Z))$ can be computed in terms of the multidegree of the corresponding generalized orbital variety. To find the multidegree of X_{τ} we need to know the generators of its ideal, which we find using a Spaltenstein recipe.

Counterexample

Let $G^{\vee}=S L_{6}$ and

$$
\tau=
$$

and suppose $Y \in \operatorname{Irr} \Lambda$ and $Z \in G r$ have Lusztig data equal to $n(\tau)$.
Theorem (6.5.1)
There exists $Y^{\prime} \in \operatorname{Irr} \Lambda(\nu)$ such that

$$
\bar{D}(b(Z))=\bar{D}(b(Y))-2 \bar{D}\left(b\left(Y^{\prime}\right)\right) .
$$

In particular, $\bar{D}(b(Z)) \neq \bar{D}(b(Y))$, and therefore $b(Y) \neq b(Z)$ even though $\operatorname{Pol}(Y)=\operatorname{Pol}(Z)$.

Some further problems

Categorical \bar{D} ?

The Mirković-Vybornov slice admits a quantization called a truncated shifted Yangian. Kamnitzer, Tingley, Webster, Weekes and Yacobi in [KTWWY19] show that its category \mathcal{O} is equivalent to a category of KLR modules, whose simples also admit MV polytopes. Can we use \bar{D} to understand supports of simples as unions of MV cycles, and compare MV basis and canonical basis?

Some further problems

Derived \bar{D} ?

[BKK19] offers a proof of Muthaih's conjecture that $L(\lambda)_{0} \rightarrow \mathbb{C}\left[t^{\text {reg }}\right]$ is W-equivariant. Can we generalize this result to a quasi-equivariant map $L(\lambda)_{0} \rightarrow \mathbb{C}\left[\mathrm{r}^{\text {reg }} \times \mathbb{C}\right]$ by generalizing \bar{D} to a map which manifests as a $T \times \mathbb{C}^{\times}$multidegree?

Thank you for listening

Labeling generalized orbital varieties

To tableau $\tau \in \mathcal{T}(\lambda)_{\mu}$ we can associate a matrix $A \in \mathbb{T}_{\mu} \cap \mathfrak{n}$ such that for all $1 \leq i \leq m$ the upper submatrix made of the first $i \times i$ blocks has Jordan type $\lambda^{(i)}=$ shape of $\left.\tau\right|_{1,2, \ldots, i}$

$$
A_{(i)} \in \mathbb{O}_{\lambda^{(i)}} \rightsquigarrow \dot{X}_{\tau}
$$

By example,

$$
\tau=\left.\begin{array}{|l|l|l}
\hline 1 & 1 & 2 \\
\hline 2 & 3 & \\
\hline
\end{array}\right|_{1,2}=\begin{array}{|l|l|l}
1 & 1 & 2 \\
2 & & \\
\hline
\end{array}
$$

defines a matrix

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & a & b & c \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & d \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad a, d=0 \text { and } b, c \neq 0
$$

Lusztig data of tableaux

By example, if

$$
\tau=\begin{array}{|l|l|l|}
\hline 1 & 1 & 2 \\
\hline 2 & 3 & 3 \\
\hline
\end{array}
$$

then $n(\tau)=(1,0,2)$ is got by considering the GT pattern of τ

