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About

G a complex, algebraic, simply-laced, semisimple, adjoint group

Representation theory
• perfect bases

• algebra map

Algebraic geometry
• varieties

• multidegrees

Combinatorics
• crystal bases

• flag functions
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Thesis work, a bird’s eye view

Question are perfect bases unique?

Expected discrepancy at classical counterexample

Method The algebra map D

Findings ideals of MV cycles in type A via a recipe for generating matrix
varieties from tableaux
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Zooming in

Units highest weight representations of G viewed in C[U]⋃
λ∈P+

L(λ) →
⊕
ν∈Q+

C[U]−ν

Why because the MV basis and the dual semicanonical basis have
compatible polytope models
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Why?

Both bases are B(∞) crystal bases, hence admit maps to polytopes.
Remarkably, their polytopes can also be obtained from the
geometric spaces defining them

perfect
basis ⊂ C[U]

varieties polytopes

Polb

Pol

([BKT14])

such that Pol(Z) = Pol(Y) whenever Pol(b(Z)) = Pol(b(Y)).

For example
z ∈ C[U]

P2
Polb

Pol
α1

α1 + α2

4/12



Question

Do equal polytopes imply equal perfect basis vectors?

perfect
basis ⊂ C[U]

varieties measures on
polytopes

Db

D

Baumann, Kamnitzer and Knutson in [BKK19] ask a weaker question
by associating to elements f of C[U] measures D(f) on t∗R which can
again be defined intrinsic the Z’s and Y’s.
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Question

D(f) is replaced by the constant coefficient of its Fourier transform, a
quantity which is denoted D(f).

perfect
basis ⊂ C[U]

varieties functions
on treg

Db

D

D : C[U] → C[treg] is an algebra map

D(f) =
∑

i∈Seq(ν)

⟨ei, f⟩Di Di =
p∏
k=1

1
αi1 + · · ·+ αik

D(f)(x) = f(nx)

where nx ∈ U is such that Adnx(x) = x+ e with e a sum of root vectors.

Do we have D(b(Z)) = D(b(Y)) whenever Pol(Z) = Pol(Y)?
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Means to compute on the MV basis

The Mirković–Vybornov isomorphism [MVy07] relates slices in the
nilpotent cone of glN and slices in affine Grassmannians GrGLm and
restricts to an isomorphism of MV cycles and generalized orbital
varieties, which can be labeled by semistandard Young tableaux
according to a Spaltenstein recipe.
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Matching MV cycles and generalized orbital varieties

Add to the [BKT14] diagram a more appropriate “combinatorial
fingerprint”

perfect
basis ⊂ C[U]

varieties polytopes Lusztig data

Polb

Pol
ni

[Kam07]

because it is readily available for tableaux.

Theorem. [D19] Let τ ∈ T (λ)µ and let Z be the MV cycle with
n(Z) = n(τ). Then (up to a certain translate) Z is equal to the closure
of the image of the generalized orbital variety labeled by τ .
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Comparing

Proposition. [BKK19] Let Z be an MV cycle of Lusztig datum n and let
Xτ be the corresponding generalized orbital variety. Then

D(b(Z)) = εTL0(Z) = εTLµ(t
µZ) =

mdegTµ∩n(Xτ )∏
∆+

β

In other words, D(b(Z)) can be computed in terms of the multidegree
of the corresponding generalized orbital variety. To find the
multidegree of Xτ we need to know the generators of its ideal, which
we find using a Spaltenstein recipe.
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Counterexample

Let G∨ = SL6 and

τ =

1 1 3 3
2 2 5 5
4 4
6 6

and suppose Y ∈ Irr Λ and Z ∈ Gr have Lusztig data equal to n(τ).

Theorem (6.5.1)

There exists Y′ ∈ Irr Λ(ν) such that

D(b(Z)) = D(b(Y))− 2D(b(Y′)) .

In particular, D(b(Z)) ̸= D(b(Y)), and therefore b(Y) ̸= b(Z) even
though Pol(Y) = Pol(Z).
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Some further problems

Categorical D?

The Mirković–Vybornov slice admits a quantization called a
truncated shifted Yangian. Kamnitzer, Tingley, Webster, Weekes and
Yacobi in [KTWWY19] show that its category O is equivalent to a
category of KLR modules, whose simples also admit MV polytopes.
Can we use D to understand supports of simples as unions of MV
cycles, and compare MV basis and canonical basis?
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Some further problems

Derived D?

[BKK19] offers a proof of Muthaih’s conjecture that L(λ)0 → C[treg] is
W-equivariant. Can we generalize this result to a quasi-equivariant
map L(λ)0 → C[treg × C] by generalizing D to a map which manifests
as a T× C× multidegree?
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Thank you for listening
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Labeling generalized orbital varieties

To tableau τ ∈ T (λ)µ we can associate a matrix A ∈ Tµ ∩ n such that
for all 1 ≤ i ≤ m the upper submatrix made of the first i× i blocks
has Jordan type λ(i) = shape of τ

∣∣
1,2,...,i

A(i) ∈ Oλ(i) ⇝ X̊τ

By example,

τ = 1 1 2
2 3 ⊃ τ

∣∣
1,2 =

1 1 2
2 ⊃ τ

∣∣
1 = 1 1

defines a matrix
0 1 0 0 0
0 0 a b c
0 0 0 1 0
0 0 0 0 d
0 0 0 0 0

 a,d = 0 and b, c ̸= 0



Lusztig data of tableaux

By example, if
τ = 1 1 2

2 3 3
then n(τ) = (1, 0, 2) is got by considering the GT pattern of τ

λ
(1)
1

λ
(2)
1

λ
(3)
1

λ
(2)
2

λ
(3)
2 λ

(3)
3

=
1

0 2

2
3

3
1

3 0
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