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We shall discuss the

@ Lojasiewicz gradient inequality on Euclidean space and some
motivations for its development and applications;

@ tojasiewicz-Simon gradient inequalities for analytic functionals
on Banach spaces.
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tojasiewicz-Simon gradient inequality for analytic functionals

tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz gradient inequality on Euclidean space |

The gradient inequality was discovered by Stanistaw tojasiewicz
[43] around 1960 in his research on semianalytic and subanalytic
sets.

Our interest in his gradient inequality is due to its application to
the study of non-linear evolution equations, a very powerful idea
developed by Leon Simon [61] in 1983.

Simon'’s idea is based in turn on a paradigm due to tojasiewicz
[44] for proving global existence and convergence of solutions to
ordinary differential equations in Euclidean space.
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tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz gradient inequality on Euclidean space Il

Theorem 1.1 (Global existence and convergence of solutions to gradient systems in R")

(tojasiewicz [44, Theorem 1], [45, p. 1592]) Let & be an analytic, non-negative
function on a neighborhood of the origin in R" such that &(0) = 0. Then there exists
a neighborhood, U = {x € R" : |x| < o}, of the origin such that each trajectory,

Uxo (t), with ux, (0) = xo € U, of the system,

i(t) = —&"(u(t)), 1)

is defined on [0, 00), has finite length, and converges uniformly to a point
Uxy(00) € Crit(&) := {z € U: &'(z) =0} as t — oco. For a constant § € (0,1)
depending only on &, one has

t . &(x 1-6
g (8) =l < [ ling(s) s < E20L
o 1—0
') 1 t 0—1
g (00) — () < [ linp(s)l o5 < L for0 <t < oe
t -
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tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz gradient inequality on Euclidean space Il|

To prove Theorem 1.1, tojasiewicz applied the following version of
his gradient inequality [43]:

Theorem 1.2 (Finite-dimensional tojasiewicz gradient inequality)

(tojasiewicz [43]) Let U C R" be an open subset, z € U, and let & : U — R be
a real-valued function. If & is real analytic on a neighborhood of z and
&'(z) = 0, then there exist constants 0 € (0,1) and o > 0 such that

|€'(x)] > |€(x) — &(2)|°, YxER, |x—2z| <o (2)

Theorem 1.2 was stated by tojasiewicz in [42] and proved by him

as [43, Proposition 1, p. 92] and Bierstone and Milman as [3,
Proposition 6.8]; see also Chill and Jendoubi [11, Proposition 5.1

()] and tojasiewicz [45, p. 1592]. RUTGERS
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tojasiewicz-Simon gradient inequality for analytic functionals

tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz gradient inequality on Euclidean space IV

Simon was motivated to generalize tojasiewicz's results from finite
to infinite dimensions because many nonlinear evolution equations
can be viewed as gradient systems for suitable energy functionals.

In geometric analysis, applications include
© Harmonic map gradient flow for maps (M, g) — (N, h);
@ Mean curvature flow;
© Ricci curvature flow;
© Yamabe scalar curvature flow;
and in mathematical physics, applications include
@ Cahn-Hilliard model for dynamics of pattern formation;
@ Ginzburg-Landau models for superconductivity; NITQ?ERS
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tojasiewicz-Simon gradient inequality for analytic functionals

tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz gradient inequality on Euclidean space V

© Models in fluid dynamics.

The main questions of interest for any of these systems include
@ Do smooth solutions exist globally for all time t € [0, 00)?
@ Do solutions converge to a smooth critical point t — oo?
@ At what rate do global solutions converge?
°

What are stability properties of local minima?

Infinite-dimensional Lojasiewicz gradient inequalities can also be
used to prove that the critical values of energy functionals are
discrete, rather than forming continua, and thus prove energy gap
or energy discreteness results for physical systems.
& Py y RUTGERS
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tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz-Simon for functionals on Banach spaces |

We begin with the following generalization of Simon'’s
infinite-dimensional version [61, Theorem 3] of the tojasiewicz
gradient inequality [43].
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tojasiewicz-Simon gradient inequality for analytic functionals

tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz-Simon for functionals on Banach spaces I

Theorem 1.3 (Lojasiewicz-Simon gradient inequality for analytic functionals on
Banach spaces)

(F. and Maridakis [24]) Let % be a Banach space that is continuously
embedded in a Hilbert space 7. Let % C % be an open subset, & : % — R
be an analytic function, and x- € % be a critical point of &, that is,

&'(x0) = 0. Assume that & (xe0) : & — X is a Fredholm operator with
index zero. Then there are positive constants, Z, o, and 6 € [1/2,1), with the
following significance. If x € % obeys

Ix — X0l 2 < 0, (3)

then

16" ()l 2+ > Z|E(x) — & (x00)I”. (4)

Theorem 1.3 was stated without proof by Huang as [34, Theorem
2.4.5]. RUTGERS
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tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz-Simon for functionals on Banach spaces IlI

Simon [61, Theorem 3] generalized the tojasiewicz gradient
inequality for analytic functions on Euclidean space to certain
analytic functionals on the Banach space of C>® sections of vector
bundles over a closed, Riemannian manifold.

Many researchers have adapted or extended Simon's [61, Theorem
3] in the intervening years, including Chill, Feireisl, Haraux, Huang,
Jendoubi, Rade, Takag, and others.

Our proof of Theorem 1.3 generalizes that of Feireisl and Taka¢ for
their [26, Proposition 6.1] in the case of the Ginzburg-Landau
energy functional.

The [9, Theorem 3.10 and Corollary 3.11] and [10, Corollary 3] due
to Chill provide versions of the tojasiewicz-Simon gradient RUTGERS

14 /104



tojasiewicz-Simon gradient inequality for analytic functionals

tojasiewicz inequality on Euclidean space and motivations
tojasiewicz-Simon gradient inequalities on Banach spaces

Lojasiewicz-Simon for functionals on Banach spaces IV

inequality for an analytic functional on a Banach space, but the
hypotheses of Theorem 1.3 are simpler and more general.

Remark 1.4 (Gradient flows on metric spaces)

In recent years, there has been increasing interest in gradient flows on
metric spaces and one might speculate as to whether one could further
generalize Theorem 1.3 to such settings.

However, our proof of Theorem 1.3 uses the (Analytic) Implicit Function
Theorem on Banach spaces and while that has replacements in more
general settings (for example, the Nash-Moser implicit function theorem
[28] on Fréchet spaces or that of Hofer, Wysocki, and Zehnder [32] on
sc-Banach spaces, generalizations of the tojasiewicz-Simon gradient
inequality to such settings appear difficult.

KU I'GERS
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Lojasiewicz-Simon gradient inequality for the
Yang-Mills energy functional and discreteness of
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Lojasiewicz-Simon for Yang-Mills connections |

We now summarize consequences of Theorem 1.3 for the
Yang-Mills L? energy functional.
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Lojasiewicz-Simon for Yang-Mills connections ||

Definition 2.1 (Yang-Mills L2 energy functional)

Let (X, g) be a closed, Riemannian, smooth manifold of dimension
d > 2, and G be a compact Lie group, and P a smooth principal
G-bundle over X. One defines the Yang-Mills L2-energy functional by

1
Ey(A) = §/X|FA|2dvo|g,

for all smooth connections, A € (P) = Aggr + Q1(X; adP), where
Fa € Q3(X;adP) = C®(X;A> ® adP) is the curvature of A and

adP := P X,q g denotes the real vector bundle associated to P by the
adjoint representation of G on its Lie algebra,

Ad: G 5 u— Ad, € Aut(g), with fiber metric defined through the
Killing form on g.

(5)

SERS
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Lojasiewicz-Simon for Yang-Mills connections IlI

The gradient of the Yang-Mills L2 energy functional & in (5) with
respect to the L? metric on Q*(X;adP),

d
(gé(A) )LQ(X,g) dt_éa (A + ta) -0 9

for all a € QI(X; adP), is given by
(62(A) ) 1o x gy = (daFa, a)i2(x)

where dj = d3€ : Q?(X;adP) — Q}(X;adP) is the L adjoint of
the exterior covariant derivative d4 : Q1(X;adP) — Q2(X;adP).
RUTGERS
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Lojasiewicz-Simon for Yang-Mills connections IV

One calls A a Yang-Mills connection (with respect to the
Riemannian metric g on X) if it is a critical point for &g, that is,
@Z’,(A) =0,

Thus A is a critical point of & if and only if it obeys the
Yang-Mills equation,

di€Fa=0 on X, (6)

since dy® Fa = &;(A) when the gradient of & = & is defined by
the L? metric.

As our first application of Theorem 1.3, we have the following
generalization of Réde’s [54, Proposition 7.2], where X was RUTGERS

assumed to have dimension d = 2 or 3.
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Theorem 2.2 (Lojasiewicz-Simon inequality for the Yang-Mills functional)

(F., [21, Theorem 22.8]; (F. and Maridakis, [25, Theorem 2]) Let (X, g) be a
closed, Riemannian, smooth manifold of dimension d, and G be a compact Lie
group, and P be a smooth principal G-bundle over X. Let A: be a connection
of class C* on P, and A a Yang-Mills connection for g of class W9, with
g € [2,00) obeying q > d/2. If p € [2,00) obeys d/2 < p < g and, in addition
p>4d/(d+4) ford = 2,3, and p' € (1,00) is the dual exponent defined by
1/p+1/p' =1,

RUTGERS
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Lojasiewicz-Simon for Yang-Mills connections VI

Theorem 2.2 (Lojasiewicz-Simon inequality for the Yang-Mills functional)
then the gradient map,
& WiP(X; N @ adP) — W ' (X; At @ adP),

is real analytic and there are positive constants Z € [1,00), o € (0, 1], and
6 € [1/2,1), depending on A:, Ax,, g, G, p, and q with the following
significance. If A is a WY9 connection on P obeying

HA — AOOHWjip(X) < a,
then the Yang-Mills energy functional (5) obeys

162 (AN vy = Z16(A) — E5(Acc) "

HWA—ILPI

(7)

(8)

The proof of Theorem 2.2 has two main ingredients:

RUTGERS
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Prove a slice theorem that says if

HA - AOOH WAlip(X)’

then there is a W29 gauge transformation u € Aut(P) such that
dy (u(A) —Ax) =0

and
[u(A) - AOOHW;IP(X) < Cl|lA- AOOHW;IP(X)'
This standard when p > d/2, but difficult when p = d/2 (the case
we want when d = 4) because W2’%(X) ¢ C(X) and is not a
Banach algebra. RUTGERS
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Apply the abstract tojasiewicz-Simon gradient inequality (Theorem
1.3) to the Yang-Mills energy functional, noting that the restriction
of the Hessian 6”(Aw) to the slice Kerd; N W}\;P(X; Al ® adP)
takes the form

&"(Ax) = dj_da., + da_d)__ + lower-order terms,

and can be shown to be Fredholm with index zero, as required.

RUTGERS
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Remark 2.3 (Quasi-conformally invariant norms)

Theorem 2.2 is especially interesting when d = 4 and one has energy bubbling.
When p = 2, the norm on W;P(X; A ® adP),

1/p
lallugao = ([ (V5alz + 112) dvole )

is quasi-invariant with respect to conformal diffeomorphisms of (S*, ground) in
the following sense: There exists C € [1,00) such that

—il
c ”‘?”Wj*z(S“) < ”h*aHW:fA(SA) < CHaHW/}:Z(sfl):

for all h € Conf(5*, ground), A € Z(S* P), and a € W (5% A' ® adP).

o’
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Lojasiewicz-Simon for Yang-Mills connections X

Remark 2.3 (Quasi-conformally invariant norms)

On the other hand, W,;?(X; A' ® adP) is a convenient Sobolev norm to use
when possible for connections with good control of energy.

Remark 2.4 (Lojasiewicz-Simon gradient inequalities for coupled Yang-Mills

L*-energy functionals)

Versions of Theorem 2.2 hold for coupled Yang-Mills L-energy functionals for
pairs, (A, ®), consisting of a connection A on P and a section ® of a vector
bundle (F. and Maridakis [24]).

For examples, see Bradlow [6, 7], Bradlow and Garcia-Prada [8], Hitchin [31],
F. and Leness [23], Hong [33], Li and Zhang [38], Jost, Peng, and Wang [35],
Parker in [51, Section 2], and Simpson [62].
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Discreteness of energies for Yang-Mills connections |

Theorem 2.5 (Discreteness of the energy spectrum for Yang-Mills
connections over four-dimensional manifolds)

(See F. [20, Theorem 1]) Let G be a compact Lie group and P be a
smooth principal G-bundle over a closed, four-dimensional, oriented,
smooth manifold, X, endowed with a smooth Riemannian metric, g.
Then the subset of critical values of the L?-energy functional,

&y : A (P) — [0,00), is closed and discrete, depending at most on g, G,
and the homotopy equivalence class, [P]. In particular, if

{ci}ien C [0,00) denotes the strictly increasing sequence of critical
values of & and A is a g-Yang-Mills connection on P with

¢ < é)@g(A) < Cit1, (9)

for some i > 0, then &,(A) = c;. SERS
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Discreteness of energies for Yang-Mills connections Il

Theorem 2.5 generalizes gap theorems for Yang-Mills connections
with energies suitably close to the ground state due to
Bourguignon, Lawson, and Simons [4, 5], Min-Oo [46], Nakajima
[48], Parker [51], and others.

Previous gap theorems required some positivity hypothesis on the
Riemann curvature tensor for g.

RUTGERS
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Remark 2.6 (Discreteness of critical values of coupled Y:
L2-energy functionals)

A version of Theorem 2.5 should hold more generally for solutions to
coupled Yang-Mills equations for pairs, (A, ®), consisting of a connection
A on P and a section ® of an associated vector bundle, provided one has
a Uhlenbeck (more specifically, bubble-tree) compactness result for the
space of solutions modulo gauge transformations.

Theorem 2.5 was proved by Rade [54] when X has dimension 2 or 3.

RUTGERS
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Energy bubbling for harmonic maps and Yang-Mills
connections
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Energy bubbling for maps and connections |

Four is the critical dimension for the Yang-Mills equation since the
Yang-Mills L2 energy functional (5),

1
é"g(A):z/X\FAzdvolg,

is invariant with respect to conformal changes in the Riemannian
metric g on X when dim X = 4, leading to the phenomenon of
energy bubbling or concentration, first analyzed by Uhlenbeck [68]
and later Taubes [65, 64].

RUTGERS
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Energy bubbling for maps and connections ||

Similarly, two is the critical dimension for harmonic map equation
for maps of Riemannian manifolds, f : (M, g) — (N, h), since the
harmonic map energy functional (10),

1
Egn(f) = 2/M|df|2,hdvolg,

is invariant with respect to conformal changes in the Riemannian
metric g on M when dim M = 2.

Energy bubbling was first discovered by Sacks and Uhlenbeck in
the context of harmonic maps from Riemann surfaces into
Riemannian manifolds [55, 56].
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Energy bubbling for maps and connections |ll

It is this highly non-compact phenomenon of energy bubbling
occurring in critical dimensions that makes it difficult to answer
questions such as

@ Global existence or convergence of gradient flows,

@ Discreteness of energies,
for these energy functionals.
However, in the context of proving discreteness of the energy
spectra for Yang-Mills connections or harmonic maps, this
non-compactness can be partly ‘tamed’ by the use of bubble-tree
compactifications for their moduli spaces, due to Parker and

Wolfson [52, 53] (for harmonic maps and pseudoholomorphic
curves) and Taubes [65] and F. [22] (for Yang-Mills connections)m]TGERS
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Energy bubbling for maps and connections IV
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Figure: Formation of bubble trees via iterated conformal blow-ups
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Forming a bubble

Energy density of a 2-instanton on atorus A bubble tree domain

Figure: Summary of the bubble-tree convergence process
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tojasiewicz-Simon for harmonic maps

Lojasiewicz-Simon gradient inequalities for the
harmonic map energy functional and discreteness of
energies for harmonic maps
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Lojasiewicz-Simon inequalities for harmonic maps |

Next, we describe a consequence of Theorem 1.3 for the harmonic
map L>-energy functional.

Definition 3.1 (Harmonic map energy functional)

Let (M, g) and (N, h) be a pair of closed, Riemannian, smooth
manifolds. One defines the harmonic map L?-energy functional by

1
Egp(f) == E/M\df@,hdvolg, (10)

for smooth maps, f : M — N, where df : TM — TN is the differential
map.

To define the gradient of the energy functional &, , in (10) with
respect to the L2 metric on C>°(M; N), we first choose an RUTGERS
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Lojasiewicz-Simon inequalities for harmonic maps ||

isometric embedding, (N, h) < R" for a sufficiently large n (see
Nash [49]), and recall that

d
( g/,h(f)7 U)L2(M) = a@@g,h(f + tU) = (Agf - Ah(dfv df)u U)L2(M) 5
t=0
for all u € C*(M; N), that is,
g',7h(f) = A f — Ap(df, df).

Here, Ap denotes the second fundamental form of the isometric
embedding, (N, h) — R" and

_ 1 o of
Be = —dvggrads f = = s 0xP <\/@6xa> RUTERRS
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Lojasiewicz-Simon inequalities for harmonic maps IlI

denotes the Laplace-Beltrami operator for (M, g).

One says that a smooth map f : M — N is harmonic if it is a
critical point of the L2 energy functional (10), that is

&L () = Dgf — An(df, df) = 0.

A choice of isometric embedding (N, h) < R" may be used to
define Sobolev norms of f € C*°(M; N) via the inclusion
C>®(M; N) C C>*(M;R").

If (N, h) is real analytic, then the isometric embedding

(N, h) < R"™ may also be chosen to be analytic by the analytic
isometric embedding theorem (see Nash [50] or Greene and

Jacobowitz [27]). RUTGERS
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Lojasiewicz-Simon inequalities for harmonic maps IV

As an application of Theorem 1.3, we obtain the

Theorem 3.2 (Analyticity and tojasiewicz-Simon gradient inequality for the

harmonic map energy functional)

(F. and Maridakis [24]) Let d > 2, k > 1, and p € [1,00) obey
kp>d or k=dandp=1.

Let (M, g) and (N, h) be closed, Riemannian, smooth manifolds, with M of
dimension d. If (N, h) is real analytic (respectively, C*°) and f € W*P(M; N),
then the gradient map,

ELy: WRP(M; £ TN) — W5 (M; £ TN),

is a real analytic (respectively, C°*°) map of Banach spaces.

KUTGERS
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Lojasiewicz-Simon inequalities for harmonic maps V

Theorem 3.2 (Analyticity and tojasiewicz-Simon gradient inequality for the
harmonic map energy functional)

If f-o € W5P(M; N) is a harmonic map, then there are positive constants
Z € [1,00), and o € (0,1], and 6 € [1/2,1), depending on fw, g, h, k, p, with
the following significance. If f € W*P(M; N) obeys

I = foo llwwp(my < 0 (11)
then the harmonic map energy functional (10) obeys,

16" ()l w-kor ay 2 ZIE(F) = E (o). (12)

Theorem 3.2 generalizes earlier results due to Kwon [37, Theorem
4.2], Liu and Yang [41, Lemma 3.3], Simon [61, Theorem 3], and
Topping [67, Lemma 1].
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Lojasiewicz-Simon inequalities for harmonic maps VI

Remark 3.3 (Conformally invariant norms)

Again, Theorem 3.2 is especially interesting when d = 2 and one has
energy bubbling. When p = 1, the norm on W?1(M;R"),

IFllweam,g) = 18sF lrqmg) + 1dfll2m.g) + (1o (m);

for f € C*°(M; N) with N C R”, is invariant with respect to conformal
changes of the Riemannian metric g on M:

Il (m,ezvgy = IFllwa(ag)-

The Sobolev Embedding Theorem implies that the preceding norm is
equivalent to the standard norm on W21(M;R"),

Ifllwi(m,g) = IVEAF || img) + 1Al mg) + Il (mg)- _—
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tojasiewicz-Simon for harmonic maps

Discreteness of the energy spectrum for harmonic
maps from a Riemann surface into a closed
Riemannian manifold
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Discrete energy spectrum for harmonic maps |

We have the following analogue of our Theorem 2.5, a discrete
energy result for Yang-Mills connections over closed,
four-dimensional, Riemannian, smooth manifolds.
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Discrete energy spectrum for harmonic maps Il

Theorem 3.4 (Discreteness for critical values of the L2 energies of
harmonic maps from a Riemann surface to a closed, real analytic,
Riemannian manifold)

(F. [19, Theorem 1]) Let (M, g) be a closed Riemann surface and (N, h)
be a closed, real analytic, Riemannian manifold. Then the subspace in R
of critical values of the L2-energy functional &, : W?(M; N) — [0, c0)
is closed and discrete. In particular, if {¢;}ien C [0, 00) denotes the
strictly increasing sequence of critical values of & and f : M — N is a
harmonic map with

¢ < &g n(f) < ciga,

for some i > 0, then &, 4(f) = c;.

v
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tojasiewicz-Simon for harmonic maps

Discrete energy spectrum for harmonic maps ||

Theorem 3.4 may be viewed, in part, as a generalization of the
following energy gap result due to Sacks and Uhlenbeck (1981),
who do not require that the target manifold be real analytic.

Theorem 3.5 (Energy gap near the constant map)

[55, Theorem 3.3] Let (M, g) be a closed Riemann surface and (N, h) be
a closed, Riemannian, smooth manifold. There exists a constant € > 0
such that if f € C>°(M; N) is a harmonic map and &, (f) < €, then f is
a constant map and &, () = 0.

The proof of Theorem 3.4 follows by adapting (and simplifying)
our proof of discreteness of energies for Yang-Mills connections
(Theorem 2.5).
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tojasiewicz-Simon for harmonic maps 5 2
) P Discreteness of the energy spectrum for harmonic maps

Discrete energy spectrum for harmonic maps IV

Theorem 3.4 gives a positive answer to a long-standing conjecture
on the discreteness of the L? energies of harmonic maps from the
sphere into a closed, real analytic, Riemannian manifold posed
variously by Adachi and Sunada [1], Eells and Sampson [18],
Hartman [30], and Lin [40, Conjecture 5.7], Simon, and Valli [71,
Corollary 8].

Li and Wang (2015) provide the following counterexample when
the hypothesis on analyticity of the metric h on N is relaxed.
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tojasiewicz-Simon for harmonic maps 5 2
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Discrete energy spectrum for harmonic maps V

Example 3.6 (Non-discreteness of energy spectrum for harmonic maps
from S2 into a smooth Riemannian manifold with boundary)

(See Li and Wang [39, Section 4]) There exists a smooth Riemannian
metric h on N = S? x (—1,1) such that energies of harmonic maps from
(52, grouna) to (N, h) have an accumulation point at energy level 4,
where, grounq denotes the standard round metric of radius one.

Schmidt and Sutton [58] prove similar results for discreteness for
lengths of closed geodesics in a closed, real analytic, Riemannian
manifold and give counterexamples when the hypothesis on
analyticity is relaxed.
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Yang-Mills gradient flow over four-manifolds

Global existence and convergence of smooth
solutions to Yang-Mills gradient flow on compact
four-dimensional manifolds
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Yang-Mills gradient flow over four-manifolds |

The following conjecture essentially goes back to Atiyah and Bott
[2], Sedlacek [59], Taubes [64, 65, 66], and Uhlenbeck [68, 69]; it
appears explicitly in an article by Schlatter, Struwe, and
Tahvildar-Zadeh [57, p. 118] and elsewhere.
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Yang-Mills gradient flow over four-manifolds Il

Conjecture 4.1 (Global existence and convergence of Mills gradient flow
over closed four-dimensional manifolds)

Let G be a compact Lie group and P a principal G-bundle over a closed,
connected, four-dimensional, smooth manifold, X, with Riemannian metric, g.
If Ag is a smooth connection on P, then there is a smooth solution, A(t) for
t € [0,00), to the gradient flow,

0A *
E = —dAft)FA(t), (133)
A(0) = Ao, (13b)

for the Yang-Mills energy functional (5) with respect to the L? Riemannian
metric on the affine space of connections on P. Moreover, as t — oo, the flow,
A(t), converges to a smooth Yang-Mills connection, A, on P.

RUTGERS

52 /104



Evidence for long-time existence and convergence

Yang-Mills gradient flow over four-manifolds

Evidence for and against long-time existence and
convergence of Yang-Mills gradient flow
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Evidence for long-time existence and convergence |

Struwe [63, Theorem 2.3] and Kozono, Maeda, and Naito [36]
established existence of solutions to Yang-Mills gradient flow (13),
up to a finite time T7; > 0 characterized by energy bubbling
singularities.

Donaldson’s proof of Conjecture 4.1 in the case of a Hermitian,
rank-two vector bundle, E, over a Kahler surface, X, makes
essential use of the Kahler structure of X ( = global existence)
and stability of E ( = convergence) [16, Theorem 1], [17,
Theorem 6.1.5].

Donaldson’s existence results (for Hermitian Yang-Mills
connections) were extended by Uhlenbeck and Yau using purely

e|||pt|c PDE techniques [70] l_{UTGERS
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Evidence for long-time existence and convergence I

It follows from results of Daskalopoulos and Wentworth in [13, 14]
that one can construct examples of unstable holomorphic vector
bundles, E, and initial connections, Ag, such that the Yang-Mills
gradient flow necessarily develops bubble singularities at T = oco.

When X has dimension d = 2 or 3, Rade [54, Theorems 1, 1/, and
2] has shown that Conjecture 4.1 is true, as has G. Daskalopoulos
[12] when X has dimension two.

Naito [47, Theorem 1.3] has shown that Conjecture 4.1 is false

when X has dimension d > 5, even when X = S9: If P — S% is a
non-trivial principal G-bundle, then there is a constant g9 > 0 such
that for any initial connection, Ag, with [|Fal[;2(s4) < €0, the flow
A(t) blows up in finite time. RUTGERS

55 /104



Yang-Mills gradient flow over four-manifolds

Global existence and convergence of Yang-Mills
gradient flow near a local minimum

RUTGERS

56 /104



" N . Short-ti e he Ya s heat equation
Yang-Mills gradient flow over four-manifolds 5 JEEL: GePELE
e adient systems

Global existence and convergence of Yang-Mills flow |

Theorem 4.2 (Global existence and convergence of Yang-Mills gradient flow
near a local minimum)

(See F. [21, Theorem 1]) Let G be a compact Lie group and P a principal
G-bundle over a closed, connected, oriented, smooth manifold, X, of dimension
d > 2 and with Riemannian metric, g. Let A1 and Amin be C°° connections on
P, with Amin being a local minimum, and let p =2 for2 < d < 4 and p > d/2
for d > 5. Then there are constants c € [1,00), and o € (0, 1], and

6 € [1/2,1), depending on (A1, Amin, &, p), with the following significance.
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Global existence and convergence of Yang-Mills flow Il

Theorem 4.2 (Global existence and convergence of Yang-Mills gradient flow
near a local minimum)

@ Global existence: There is a constant € € (0,0 /4), depending on
(A1, Amin, g, p), with the following significance. If Ao is a C* connection
on P such that
[ Ao — Amin”wjip(x) <ég,

then there exists a solution, A(t) = Ao + a(t) for t € [0, 00), with
a€ C™([0,00) x X; A' ® adP),

to the Yang-Mills gradient flow (13) with initial data, A(0) = Ao, and

|A(t) — Am;n||Wjip(X) <o/2, Vte]0,00).
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Global existence and convergence of Yang-Mills flow Il

Theorem 4.2 (Global existence and convergence of Yang-Mills gradient flow
near a local minimum)

@ Dependence on initial data: The solution, A(t) for t € [0,00), varies
continuously with respect to Ao in the Cioc([0, 00); Wj{p(X; A ® adP))
topology and, more generally, smoothly for all non-negative integers, k, I,
in the Gi,.([0, 00); H4, (X; A* ® adP)) topology.

© Convergence: Ast — oo, the flow, A(t), converges strongly with respect
to the norm on Wj{”(X; A' ® ad P) to a Yang-Mills connection, A, of
class C* on P, and the gradient-flow line has finite length in the sense

dt < oo.

that
/°° H 0A
0 ot WP (X)

If Amin is a cluster point of the orbit, O(A) = {A(t) : t > 0}, then
Aoco = Anmin.
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Global existence and convergence of Yang-Mills flow 1V

Theorem 4.2 (Global existence and convergence of Yang-Mills gradient flow

near a local minimum)

@ Convergence rate: Forall t > 1,

IACE) = Ao lwerx)
_ |z (@0 -1 -1 + 61a0) - s(ax))

N %/g(AO) ~B(AL) exp(— (£ — 1))2),

for1/2 < 6 <1 and 6 = 1/2, respectively.

@ Stability: As an equilibrium of the Yang-Mills gradient flow (13), the
point A is Lyapunov stable; if A is isolated or a cluster point of the
orbit O(A), then A is uniformly asymptotically stable.

’

)f(lfm/(zefl)
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Global existence and convergence of Yang-Mills flow V

Theorem 4.2 (Global existence and convergence of Yang-Mills gradient flow
near a local minimum)

© Uniqueness: Any two solutions are equivalent modulo a path of gauge
transformations,

ue C([0,00) x X;AdP), u(0) = idp.
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Global existence and convergence for gradient systems

Global existence and convergence of Yang-Mills flow VI

@ Theorem 4.2 was proved for X of dimension 2 or 3 by Rade [54] for
initial data Ag of arbitrary energy.

@ When X has dimension 4, the hypothesis that Ay be W'2-norm
close to a local minimum (for example, an anti-self-dual Yang-Mills
connection) can be relaxed to the energy condition

1F2 4 ll2x.e) <&

in the presence of various combinations of additional hypotheses on
G, the topology of P, or the Riemannian metric, g, that guarantee
existence of anti-self-dual Yang-Mills connections on P.
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Global existence and convergence of Yang-Mills flow VII

Remark 4.3

@ Global existence in the case of X of dimension 4 and initial data Ag
of arbitrary energy (not close to a local minimum Apni,) remains
open.
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Yang-Mills gradient flow over four-manifolds Global existence and cor

Main ideas in the proof of global existence and convergence

@ Short-time well-posedness for Yang-Mills heat and
gradient-flow equations;

@ tojasiewicz-Simon gradient inequality;

© Growth estimates, existence, convergence, and stability for
solutions to abstract gradient systems;

@ A priori estimates for f(ST HA(t)HW1,2(X) dt in terms of
A1
Jo A2 dt.

We shall discuss a few of these items in the following slides.
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Yang-Mills gradient flow over four-manifolds

Short-time well-posedness for the Yang-Mills heat
and gradient-flow equations
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Short-time well-posedness for the Yang-Mills equations |

There are essentially two methods:

@ Analytic semi-group theory for positive sectorial operators on
Banach spaces, following ideas of Kozono, Maeda, and Naito
[36] and the theory of non-linear evolution equations in
Banach spaces, Sell and You [60];

e Contraction-mapping, following Struwe [63], based on
existence of strong solutions,

a€ (0, T; Ha (X;A'@adP)) N HY (0, T; L2(X; A' ® adP))
N L0, T; H, (X; A ® adP)),

to the linear heat equation, 9;a + Ax,a = f in Q1(X;adP),
where A;j is a fixed, C* reference connection on P. RUTGERS
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Short-time well-posedness for the Yang-Mills equations Il

The methods give different (non-overlapping) initial possibilities for
the regularity of the initial data, Ag, and the regularity of the
solution, A(t) = A1 + a(t) on a short time interval, [0, 7).

All of these methods rely on Donaldson's version [16], [17,
Equation (6.3.3)] of the DeTurck Trick for Ricci flow [15] to
convert the Yang-Mills gradient flow equation in Q'(X;A! ® adP),

0a .

a + dA(t)FA(t) = 0, for t > O, (14)
with initial data a(0) = ap € QY(X;adP), to the Yang-Mills heat
equation, a quasi-linear parabolic equation,

Oa

95 daeyFae) + dagydaa(t) =0, for t >0, (IEYTGERS
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For a(t) solving the (parabolic) Yang-Mills heat equation (15), one
defines a family of gauge transformations, u(t) € Aut P, by solving

u"(t)o E)g(tt) = —dypa(t), Vte(0,00), u(0)=idp. (16)

and finding that A(t) = u(t)*A(t) solves the Yang-Mills gradient
flow equation (14).
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Short-time well-posedness for the Yang-Mills equations IV

Remark 4.4 (Nash-Moser implicit function theorem)

As is well-known, Hamilton applied the Nash-Moser implicit
function theorem to prove short-time well-posedness for the Ricci
flow equation [29], before his approach was superseded by the
DeTurck Trick.

It is likely that the Nash-Moser implicit function theorem could
also be used to prove short-time well-posedness for the Yang-Mills
gradient flow equation.
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Yang-Mills gradient flow over four-manifolds

Growth estimates, global existence, convergence,
and stability for abstract gradient systems
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Global existence and convergence for gradient systems |

The collection of results we shall now describe comprise a ‘toolkit’
that may be directly and easily applied to analyze a wide range of
gradient systems in geometric analysis, including

@ harmonic map gradient flow,
@ knot energy flow,

@ mean curvature flow,

Ricci flow,

Yamabe flow, and

(coupled and pure) Yang-Mills flow,
RUTGERS
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Global existence and convergence for gradient systems Il

as well as numerous other gradient systems in applied mathematics
and mathematical physics.

Hypothesis 4.5 (A priori interior estimate for a trajectory)

Let 2" be a Banach space that is continuously embedded in a Hilbert space J7. If
0 € (0,00) is a constant, then there is a constant C; = C;(d) € [1, 00) with the
following significance. If S, T € R are constants obeying S+ < T and

u€ C®([S, T); Z), we say that u € C>°([S, T); Z°) obeys an a priori interior
estimate on (0, T] if

T T
/ lla(t)l 2 dt < Cl/ lla(t)l e dt. (17)
S+6 s

Hypothesis 4.5 is an abstract version of the conclusion of Rade's
[54, Lemma 7.3] for Yang-Mills gradient flow over a closed
manifold of dimension two or three. RUTGERS

72 /104



ient flow
I-posedne t equation

Yang-Mills gradient flow over four-manifolds Global existence and convergence for gradient systems

Global existence and convergence for gradient systems |lI

In applications, u € C*([S, T); Z") in Hypothesis 4.5 will often be
a solution to a quasi-linear parabolic partial differential system,
from which an a priori estimate (17) may be easily deduced.

More generally, Hypothesis 4.5 can be verified for a nonlinear
evolution equation on a Banach space V of the form

du
E%—Au:}'(t, u(t)), t>0, u(0)=up, (18)
where A is a positive, sectorial, unbounded operator on a Banach
space, W, with domain V2 C W and the nonlinearity, F, has
suitable properties.

We have the following analogue of Huang [34, Theorems 3.3.3 and
3.3.6] and abstract analogue of Simon [61, Corollary 2]. RUTGERS
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Theorem 4.6 (Convergence of a subsequence implies convergence for a smooth
solution to a gradient system)

Let % be an open subset of a real Banach space, 2", that is continuously
embedded and dense in a Hilbert space, 7. Let & : %4 C % — R be an
analytic function with gradient map &' : % C X — . Assume that © € U
is a critical point of &, that is &'(¢) = 0. If u € C*([0,00); Z°) solves

0(t) = —=&'(u(t)), te(0,00), (19)

and the orbit O(u) = {u(t) : t > 0} C £ is precompact and ¢ is a cluster
point of O(u), then u(t) converges to ¢ as t — oo in the sense that

lim ||u(t) —¢llae =0 and / ||d]| 22 dt < 0.
t— o0 0
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Global existence and convergence for gradient systems V

Theorem 4.6 (Convergence of a subsequence implies convergence for a smooth
solution to a gradient system)

Furthermore, if u satisfies Hypothesis 4.5 on (0, 00), then

o0
/ 6]l 2 dt < oo.
1

We next have the following abstract analogue of Ride's [54,
Proposition 7.4], in turn a variant the Simon Alternative, namely
[61, Theorem 2].
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Global existence and convergence for gradient systems VI

Theorem 4.7 (Simon Alternative for convergence of a solution to gradient
system)

Let % be an open subset of a real Banach space, Z°, that is continuously
embedded and dense in a Hilbert space, 7. Let & : % C % — R be an
analytic function with gradient map &' : % C X — 5. Assume that

@ ¢ € % is a critical point of &, that is &'(¢) = 0; and

@ Given positive constants b, 1, and T, there is a constant
d = d(n, 7, b) € (0,7] such that if v is a smooth solution to (19) on
[to, to + 7) with to € R and ||v(to)|| 2 < b, then

sup [[v(t) — v(to)l[ 2 <. (20)
tE[ty,to+6]
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Global existence and convergence for gradient systems VII

Theorem 4.7 (Simon Alternative for convergence of a solution to gradient
system)

If (c,0,0) are the tojasiewicz-Simon constants for (&, ), there is a constant
€= E(Cv C17 63 05 P, 0, T, 30) € (07 0/4)

with the following significance. If u : [0,00) — % is a smooth solution to (19)
that satisfies Hypothesis 4.5 on (0, 00) and there is a constant T > 0 such that

u(T) —ella <e, (21)

then either

Q & (u(t)) < &(p) for somet > T, or
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Global existence and convergence for gradient systems VII|

Theorem 4.7 (Simon Alternative for convergence of a solution to gradient
system)

@ u(t) converges in Z to a limit u. € & as t — oo in the sense that
oo
lim [[u(t) — || =0 and / 6] 2 dt < oo.
t—o0 1

If  is a cluster point of the orbit O(u) = {u(t) : t > 0}, then us = .

In applications, the short-time estimate (20) for

v e C®([to, to + 7); Z7) will usually follow from the fact that v is
a solution to a quasi-linear parabolic partial differential system,
from which (20) may be deduced.

We have the following enhancement of Huang [34, Theorem 3-4-§l-]TGERS
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Global existence and convergence for gradient systems IX

Theorem 4.8 (Convergence rate under a Lojasiewicz-Simon gradient inequality)

Let % be an open subset of a real Banach space, 2", that is continuously
embedded and dense in a Hilbert space, 7. Let & : % C % — R be an
analytic function with gradient map &' : % C % — . Let u: [0,00) —» &
be a smooth solution to the gradient system (19) and assume that
O(u) C %, C %, where (c,a,0) are the Lojasiewicz-Simon constants for
(&,¢) and %y == {x € X :||x —¢||2 < o}. Then there exists us € H such
that

[u(t) = voo |2 < W(t), t20, (22)

where

V(t) := ﬁ (62(29 1)t (y—a)

%x/fy—aexp(—czt/2), 0=1/2,

—(1-06)/(26—-1)
) . 1/2<6<1,

=" GERS
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Global existence and convergence for gradient systems X

Theorem 4.8 (Convergence rate under a tojasiewicz-Simon gradient inequality)

and a,~ are constants such that v > a and
a<é&(v)<y, Vvew.
If in addition u obeys Hypothesis 4.5, then us, € Z and

u(t+1) = tec|l2r <2GV(2), 20, (23)

where G € [1,00) is the constant in Hypothesis 4.5 for § = 1.

One calls a critical point ¢ € % of & a ground state if & attains
its minimum value on % at this point, that is,

&(p) = inf &(u).
usw RUTGERS
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Yang-Mills gradient flow over four-manifolds

Global existence and convergence for gradient systems Xl

We have the following analogue of Huang [34, Theorem 5.1.1].

Theorem 4.9 (Existence and convergence of a global solution to a grad

system near a local minimum)

Let % be an open subset of a real Banach space, 2, that is continuously
embedded and dense in a Hilbert space, 7. Let & : %4 C % — R be an
analytic function with gradient map &' : % C X — . Let p € U be a
ground state of & on % and suppose that (c,o,0) are the tojasiewicz-Simon
constants for (&, ¢). Assume that

@ For each up € %, there exists a unique smooth solution to the Cauchy
problem (19) with u(0) = wo, on a time interval [0, T) for some positive
constant, T;

@ Hypothesis 4.5 holds for smooth solutions to the gradient system (19);
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Global existence and convergence for gradient systems XII

Theorem 4.9 (Existence and convergence of a global solution to a gradient
system near a local minimum)

© Given positive constants b and n, there is a constant
0 = 0(n, T, b) € (0,7] such that if v is a smooth solution to the gradient

system (19) on [0, 7) with ||v(0)||2 < b, then
sup |[v(t) — v(0)| 2 <. (24)

t€[0,8

Then there is a constant € = (¢, (1,0,0, p, 0,7, p) € (0,0/4) with the
following significance. For each uy € ., the Cauchy problem (19) with

u(0) = uo admits a global smooth solution, u : [0,00) — %, />, that converges
to a limit ux € 2 as t — oo with respect to the 2" norm in the sense that

t&m ||lu(t) — us|l2z =0 and / la(t)]| 2 dt < oo.
> 1
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Yang-Mills gradient flow over four-manifolds

Global existence and convergence for gradient systems XIlI|

Finally, we have the following analogue of Huang [34, Theorem
5.1.2].

Theorem 4.10 (Convergence to a critical point and stability of a ground state)

Assume the hypotheses of Theorem 4.9. Then the following hold:

@ For each ug € %., the Cauchy problem (19) with u(0) = up admits a
global smooth solution u : [0,00) — %, > that converges in 2" as t — oo
to some critical point Us € Us;

The critical point, us, satisfies &(usx) = &(p);
As an equilibrium of (19) , the point ¢ is Lyapunov stable;

©00

If ¢ is isolated or a cluster point of the orbit O(u), then ¢ is uniformly
asymptotically stable.
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Thank you for your attention!
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