Gan-Gross-Prasad conjecture and local relative trace formulas

Raphael Beuzart-Plessis

24 septembre 2013

1/6

G locally compact group and $H \leq G$ closed. Assume both are unimodular. Then $X = H \setminus G$ has a *G*-invt measure.

$$R: G \rightarrow U(L^2(X))$$
 by right translation

Program:

- Decompose as precisely as possible $L^2(X)$ in terms of $\hat{G} = \{\text{irreducible unitary reps of } G\}/\text{isom}$
- Write down a trace formula

2/6

Assume G is compact then $L^2(X)\simeq \hat{\bigoplus}_{\pi\in \hat{G}}m(\pi)\pi$, $m(\pi)\in \mathbb{N}$. Let act $f\in C(G)$ on $L^2(X)$ by $R(f)=\int_G f(g)R(g)dg$. Then R(f) is a kernel operator :

$$(R(f)\varphi)(x) = \int_X K_f(x,y)\varphi(y)dy$$

$$K_f(x,y) = \int_H f(x^{-1}hy)dh$$

In many cases (e.g. G is a Lie group and f is smooth), R(f) is of trace class and

Trace
$$R(f) = \int_X K_f(x, x) dx = \int_{H/conj} I(h, f) dh$$

I(h, f): orbital integral. Using the decomposition of $L^2(X)$ we also get

Trace
$$R(f) = \sum_{\pi \in \hat{G}} m(\pi) tr \pi(f)$$

Trace formula:

$$\int_{H/conj} I(h, f) dh = \sum_{\pi \in \hat{G}} m(\pi) tr \pi(f)$$

For G noncompact, in general R(f) is not trace class> Arthur's idea is to consider "truncated" trace :

$$J^{T}(f) = \int_{X} K_{f}(x, x) u(x, T) dx$$

where u(.,T) is the characteristic function of a compact set $\Omega_T \subset X$ covering X as $T \to \infty$. Then try to evaluate $J^T(f)$ as $T \to \infty$ in two different ways : geometric and spectral.

Arthur's local trace formula

 F/\mathbb{Q}_p fin. ext. and \mathbb{H}/F connected semisimple (e.g. $\mathbb{H}=SL_n,PGL_n,SO(V)\ldots$). Let $H=\mathbb{H}(F)$, it's a loc profinite group.

$$H \hookrightarrow H \times H = G$$

Harish-Chandra : $L^2(H) \simeq \int_{Temp(H)} \tau \otimes \tau^{\vee} d\mu(\tau)$ where Temp(H) is the subset of tempered representations.

Theorem (Arthur)

For $f \in C^\infty_c(G)$ (loc. constant compactly supported) which is cuspidal, we have

$$\int_{H_{ell}/conj} I(h, f) dh = \sum_{\pi \in T_{ell}(G)} \frac{m(\pi) tr \ \pi(f)}{d(\pi)}$$

Gan-Gross-Prasad case

[E:F]=2, W_{n+1} a hermitian space of dim n+1 and $W_n\subset W_{n+1}$ a nondegenerate hyperplane.

$$H = U(W_n) \hookrightarrow U(W_n) \times U(W_{n+1}) = G$$

From Harish-Chandra decomposition, we get $L^2(X) \simeq \int_{Temp(G)} m(\pi)\pi d\mu(\pi)$ where $m(\pi) = \dim Hom_H(\pi, 1)$.

Theorem

For $f \in C_c^{\infty}(G)$ cuspidal, we have

$$\lim_{s \to 0^+} \int_{\Xi} I(x, f) \Delta(x)^s dx = \sum_{\pi \in T_{ell}(G)} \frac{m(\pi) \operatorname{tr} \pi(f)}{d(\pi)}$$

Application : The Gan-Gross-Prasad conjecture describing representations $\pi \in \textit{Temp}(G)$ s.t. $m(\pi) \neq 0$ in terms of their Langlands parameter.