Algorithms for the topology of arithmetic groups and Hecke actions II: Higher skeleta

Michael Lipnowski and Aurel Page

April 24, 2018

Previous work computing modular forms in homology

- Trace formula methods. (Chenevier, Renard, Taïbi, Cohen, Skoruppa, Zagier ...)
- Modular symbols methods for $G L_{2} / \mathbb{Q}$. (Cremona, Manin, Stein, ...)
- Voronoi and sharbly methods. (Ash, Doud, Gunnells, McConnell, Pollack, Top, van Geemen, Voronoi, Yasaki, ...)
- Fundamental domains. (Greenberg, Voight, Page, Rahm, Sengün, ...)
- Algebraic modular forms. (Gross, Savin, Lansky, Pollack, Greenberg, Voight, Dembélé, Donnelly, Loeffler, Cunningham, Chenevier, Lannes, Mégarbané, ...)

Main results

Theorem (L, Page)

There exists a deterministic algorithm, given a congruence arithmetic group Γ for which $M=\Gamma \backslash X$ is compact, which calculates

- A simplicial complex S having the same homotopy type as M and having at most $O_{\operatorname{dim}}(\operatorname{Vol}(M))$ simplices
- An explicit isomorphism $\pi_{1}(S) \rightarrow \Gamma$

This algorithm terminates in time $O_{\operatorname{dim}}\left(\operatorname{Vol}(M)^{2}\right)$.
In addition, there is an algorithm which, given a cycle σ in $C^{\bullet}(S)$ and a Hecke operator T, calculates a cycle in $C^{\bullet}(S)$ homologous to $T \sigma$ in time $O_{\operatorname{dim}}(\operatorname{Vol}(M) \cdot \operatorname{deg}(T))$.

Main results

Theorem (L, Page)

There exists a deterministic algorithm, given a congruence arithmetic group Γ for which $M=\Gamma \backslash X$ is compact, which calculates

- A simplicial complex S having the same homotopy type as M and having at most $O_{\operatorname{dim}}(\operatorname{Vol}(M))$ simplices
- An explicit isomorphism $\pi_{1}(S) \rightarrow \Gamma$

This algorithm terminates in time $O_{\operatorname{dim}}\left(\operatorname{Vol}(M)^{2}\right)$.
In addition, there is an algorithm which, given a cycle σ in $C^{\bullet}(S)$ and a Hecke operator T, calculates a cycle in $C^{\bullet}(S)$ homologous to $T \sigma$ in time $O_{\operatorname{dim}}(\operatorname{Vol}(M) \cdot \operatorname{deg}(T))$.

We do not expect compactness to be an essential condition.

One idea

(1) Build a grid of points $F \subset M=\Gamma \backslash X$ for which $B_{r}(x), x \in F$, cover M.

One idea

(1) Build a grid of points $F \subset M=\Gamma \backslash X$ for which $B_{r}(x), x \in F$, cover M.
(2) Compute the nerve of the resulting covering.

One idea

(1) Build a grid of points $F \subset M=\Gamma \backslash X$ for which $B_{r}(x), x \in F$, cover M.
(2) Compute the nerve of the resulting covering.

Theorem (Borsuk, Cech)

If the balls $B_{r}(x), x \in F$ are convex and their union covers M, then the nerve of the covering has the homotopy type of M.

The nerve in one interesting example

The arithmetic group Γ :

- $A=$ quaternion algebra over $Q(\sqrt{-2})$ of discriminant $\mathfrak{p}_{2} \mathfrak{p}_{3}, O=$ maximal order in A.
- $q=$ reduced norm on A.
- $L:=$ trace 0 elements of O.
- $\Gamma:=$ the principal congruence level $\mathfrak{p}_{3}^{\prime}$ subgroup of $S O(Q, L)$.

The nerve in one interesting example

Covering and nerve information for $\operatorname{Cech}_{\Gamma \backslash X}(0.65)$:

- 1172s to compute a cover.
- 285 s to compute the 1 -skeleton of the nerve, i.e. when pairs of balls of radius $0.65 / 2$ centered at our grid points intersect.
- 2-skeleton of the nerve (3-fold intersections): started earlier this afternoon. Now $\frac{9}{10}$-finished.
- Simplices of each degree:

$$
\left(N_{0}, N_{1}, N_{2}, \ldots\right)=(176,3135, \text { ? so far, } \ldots)
$$

The nerve in one interesting example

Homology:

- abelianization of presentation for $\Gamma: \mathbb{Z} / 3 \oplus \mathbb{Z} / 6 \oplus \mathbb{Z} / 6$.
- External consistency: confimed to agree with output from Aurel's Kleinian groups package.
- simplicial computation: not yet finished because computation of 2-skeleton of nerve not yet finished.

One iteration of expansion

Multiple iterations of expansion

Multiple iterations of expansion

Michael Lipnowski and Aurel Page
Algorithms for the topology of arithmetic groups and Hecke action

Algorithm to compute the nerve

Discussed at board.

Difficulties of computing with nerves

- Time-consuming to compute.
- Difficult to store.

Revisiting our 3-dimensional example using a Rips complex

Covering and nerve information for $\operatorname{Rips}_{\Gamma \backslash X}(0.65)$:

- 1172s to compute a cover.
- 285 s to compute the 1 -skeleton of the nerve, i.e. when pairs of balls of radius $0.65 / 2$ centered at our grid points intersect.
- The 1-skeleton completely determines the higher skeleta!
- Simplices of each degree:

$$
\left(N_{0}, N_{1}, \ldots\right)=(176,3135,11836,23159,24484,14915,5268)
$$

3-dimensional example using a Rips complex

Homology for $\operatorname{Rips}_{\Gamma \backslash X}(0.65)$:

- abelianization of presentation for $\Gamma: \mathbb{Z} / 3 \oplus \mathbb{Z} / 6 \oplus \mathbb{Z} / 6$.
- simplicial computation: 103s over \mathbb{F}_{2}, 96s over $\mathbb{F}_{3}, 84$ s over $\mathbb{F}_{11}, 154$ s over \mathbb{F}_{1009}. Betti numbers:

$$
\begin{aligned}
\bmod 2 & :(1,2,2,1,0,0, \ldots) \\
\bmod 3 & :(1,3,3,1,0,0, \ldots) \\
\bmod 11 & :(1,0,0,1,0, \ldots) \\
\bmod 1009 & :(1,0,0,1, \ldots)
\end{aligned}
$$

3-dimensional example using a Rips complex

Homology for $\operatorname{Rips}_{\Gamma \backslash X}(0.65)$:

- abelianization of presentation for $\Gamma: \mathbb{Z} / 3 \oplus \mathbb{Z} / 6 \oplus \mathbb{Z} / 6$.
- simplicial computation: 103s over $\mathbb{F}_{2}, 96$ s over $\mathbb{F}_{3}, 84$ s over $\mathbb{F}_{11}, 154$ s over \mathbb{F}_{1009}. Betti numbers:

$$
\begin{aligned}
\bmod 2 & :(1,2,2,1,0,0, \ldots) \\
\bmod 3 & :(1,3,3,1,0,0, \ldots) \\
\bmod 11 & :(1,0,0,1,0, \ldots) \\
\bmod 1009 & :(1,0,0,1, \ldots)
\end{aligned}
$$

Simplicial computation of mod p betti numbers succeeded here in reasonable time.

Suppose balls of radius r are convex in M. Can you prove that
$\operatorname{Rips}_{\Gamma \backslash X}(r)$ is homotopy equivalent to M ?

