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Previous work computing modular forms in homology

Trace formula methods. (Chenevier, Renard, Taı̈bi, Cohen,
Skoruppa, Zagier . . . )
Modular symbols methods for GL2/Q. (Cremona, Manin,
Stein, . . . )
Voronoi and sharbly methods. (Ash, Doud, Gunnells,
McConnell, Pollack, Top, van Geemen, Voronoi, Yasaki,
. . . )
Fundamental domains. (Greenberg, Voight, Page, Rahm,
Sengün, . . . )
Algebraic modular forms. (Gross, Savin, Lansky, Pollack,
Greenberg, Voight, Dembélé, Donnelly, Loeffler,
Cunningham, Chenevier, Lannes, Mégarbané, . . . )
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Main results

Theorem (L, Page)
There exists a deterministic algorithm, given a congruence
arithmetic group Γ for which M = Γ\X is compact, which
calculates

A simplicial complex S having the same homotopy type as
M and having at most Odim(Vol(M)) simplices
An explicit isomorphism π1(S)→ Γ

This algorithm terminates in time Odim(Vol(M)2).

In addition, there is an algorithm which, given a cycle σ in
C•(S) and a Hecke operator T , calculates a cycle in C•(S)
homologous to Tσ in time Odim(Vol(M) · deg(T )).

We do not expect compactness to be an essential condition.
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One idea

(1) Build a grid of points F ⊂ M = Γ\X for which Br (x), x ∈ F ,
cover M.

(2) Compute the nerve of the resulting covering.

Theorem (Borsuk, Cech)

If the balls Br (x), x ∈ F are convex and their union covers M,
then the nerve of the covering has the homotopy type of M.
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One idea

(1) Build a grid of points F ⊂ M = Γ\X for which Br (x), x ∈ F ,
cover M.

(2) Compute the nerve of the resulting covering.

Theorem (Borsuk, Cech)

If the balls Br (x), x ∈ F are convex and their union covers M,
then the nerve of the covering has the homotopy type of M.
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The nerve in one interesting example

The arithmetic group Γ:

A = quaternion algebra over Q(
√
−2) of discriminant

p2p3,O = maximal order in A.
q = reduced norm on A.
L := trace 0 elements of O.
Γ := the principal congruence level p′3 subgroup of
SO(Q,L).
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The nerve in one interesting example

Covering and nerve information for CechΓ\X (0.65):

1172s to compute a cover.
285s to compute the 1-skeleton of the nerve, i.e. when
pairs of balls of radius 0.65/2 centered at our grid points
intersect.
2-skeleton of the nerve (3-fold intersections): started
earlier this afternoon. Now 9

10 -finished.
Simplices of each degree:

(N0,N1,N2, . . .) = (176,3135, ? so far, . . .)
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The nerve in one interesting example

Homology:

abelianization of presentation for Γ: Z/3⊕ Z/6⊕ Z/6.
External consistency: confimed to agree with output from
Aurel’s Kleinian groups package.
simplicial computation: not yet finished because
computation of 2-skeleton of nerve not yet finished.
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One iteration of expansion
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Multiple iterations of expansion
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Algorithm to compute the nerve

Discussed at board.
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Difficulties of computing with nerves

Time-consuming to compute.
Difficult to store.
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Revisiting our 3-dimensional example using a Rips
complex

Covering and nerve information for RipsΓ\X (0.65):

1172s to compute a cover.
285s to compute the 1-skeleton of the nerve, i.e. when
pairs of balls of radius 0.65/2 centered at our grid points
intersect.
The 1-skeleton completely determines the higher skeleta!
Simplices of each degree:

(N0,N1, . . .) = (176,3135,11836,23159,24484,14915,5268)
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3-dimensional example using a Rips complex

Homology for RipsΓ\X (0.65):

abelianization of presentation for Γ: Z/3⊕ Z/6⊕ Z/6.
simplicial computation: 103s over F2, 96s over F3, 84s over
F11, 154s over F1009. Betti numbers:

mod 2 : (1,2,2,1,0,0, . . .)
mod 3 : (1,3,3,1,0,0, . . .)

mod 11 : (1,0,0,1,0, . . .)
mod 1009 : (1,0,0,1, . . .).

Simplicial computation of mod p betti numbers succeeded here
in reasonable time.
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Rips complex challenge

Suppose balls of radius r are convex in M. Can you prove that

RipsΓ\X (r) is homotopy equivalent to M?
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