On Expressiveness and Optimization in Deep Learning

Nadav Cohen

Institute for Advanced Study
(funding provided by Eric and Wendy Schmidt)

School of Mathematics Members' Seminar

2 April 2018

Sources

Deep SimNets

C + Or Sharir + Amnon Shashua Computer Vision and Pattern Recognition (CVPR) 2016

On the Expressive Power of Deep Learning: A Tensor Analysis

C + Or Sharir + Amnon Shashua Conference on Learning Theory (COLT) 2016

Convolutional Rectifier Networks as Generalized Tensor Decompositions

C + Amnon Shashua

International Conference on Machine Learning (ICML) 2016

Inductive Bias of Deep Convolutional Networks through Pooling Geometry

C + Amnon Shashua

International Conference on Learning Representations (ICLR) 2017

Boosting Dilated Convolutional Networks with Mixed Tensor Decompositions

C + Ronen Tamari + Amnon Shashua

International Conference on Learning Representations (ICLR) 2018

Deep Learning and Quantum Entanglement:

Fundamental Connections with Implications to Network Design

Yoav Levine + David Yakira + C + Amnon Shashua International Conference on Learning Representations (ICLR) 2018

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization Sanjeev Arora + C + Elad Hazan

arXiv preprint 2018

Collaborators

Ronen Tamari

Or Sharir

Amnon Shashua

Yoav Levine

David Yakira

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Sanjeev Arora

PRINCETON UNIVERSITY

Elad Hazan

Outline

- Deep Learning Theory: Expressiveness, Optimization and Generalization
- 2 Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora/C/Hazan@arXiv'18)
- Conclusion

 \mathcal{X} – instance space (e.g. $\mathbb{R}^{100 \times 100}$ for 100-by-100 grayscale images)

 \mathcal{X} – instance space (e.g. $\mathbb{R}^{100 \times 100}$ for 100-by-100 grayscale images)

 \mathcal{Y} – label space (e.g. \mathbb{R} for regression or $[k] := \{1, \dots, k\}$ for classification)

 \mathcal{X} – instance space (e.g. $\mathbb{R}^{100 \times 100}$ for 100-by-100 grayscale images)

 \mathcal{Y} – label space (e.g. \mathbb{R} for regression or $[k] := \{1, \dots, k\}$ for classification)

 \mathcal{D} – distribution over $\mathcal{X} \times \mathcal{Y}$ (unknown)

 \mathcal{X} – instance space (e.g. $\mathbb{R}^{100 \times 100}$ for 100-by-100 grayscale images)

 \mathcal{Y} – label space (e.g. \mathbb{R} for regression or $[k] := \{1, \dots, k\}$ for classification)

 \mathcal{D} – distribution over $\mathcal{X} \times \mathcal{Y}$ (unknown)

 $\ell: \mathcal{Y} imes \mathcal{Y} o \mathbb{R}_{\geq 0}$ – loss func (e.g. $\ell(y, \hat{y}) = (y - \hat{y})^2$ for $\mathcal{Y} = \mathbb{R}$)

 \mathcal{X} – instance space (e.g. $\mathbb{R}^{100 \times 100}$ for 100-by-100 grayscale images)

 \mathcal{Y} – label space (e.g. \mathbb{R} for regression or $[k] := \{1, \dots, k\}$ for classification)

 \mathcal{D} – distribution over $\mathcal{X} \times \mathcal{Y}$ (unknown)

$$\ell: \mathcal{Y} imes \mathcal{Y} o \mathbb{R}_{\geq 0}$$
 – loss func (e.g. $\ell(y,\hat{y}) = (y-\hat{y})^2$ for $\mathcal{Y} = \mathbb{R}$)

Task

Given training sample $S = \{(X_1, y_1), \dots, (X_m, y_m)\}$ drawn i.i.d. from \mathcal{D} , return hypothesis (predictor) $h : \mathcal{X} \to \mathcal{Y}$ that minimizes population loss:

$$L_{\mathcal{D}}(h) := \mathbb{E}_{(X,y)\sim\mathcal{D}}[\ell(y,h(X))]$$

 \mathcal{X} – instance space (e.g. $\mathbb{R}^{100 \times 100}$ for 100-by-100 grayscale images)

 \mathcal{Y} – label space (e.g. \mathbb{R} for regression or $[k] := \{1, \dots, k\}$ for classification)

 \mathcal{D} – distribution over $\mathcal{X} \times \mathcal{Y}$ (unknown)

$$\ell: \mathcal{Y} imes \mathcal{Y} o \mathbb{R}_{\geq 0}$$
 – loss func (e.g. $\ell(y,\hat{y}) = (y-\hat{y})^2$ for $\mathcal{Y} = \mathbb{R}$)

Task

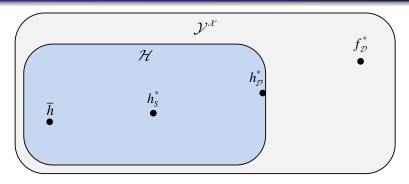
Given training sample $S = \{(X_1, y_1), \dots, (X_m, y_m)\}$ drawn i.i.d. from \mathcal{D} , return hypothesis (predictor) $h: \mathcal{X} \to \mathcal{Y}$ that minimizes population loss:

$$L_{\mathcal{D}}(h) := \mathbb{E}_{(X,y)\sim\mathcal{D}}[\ell(y,h(X))]$$

Approach

Predetermine hypotheses space $\mathcal{H} \subset \mathcal{Y}^{\mathcal{X}}$, and return hypothesis $h \in \mathcal{H}$ that minimizes empirical loss:

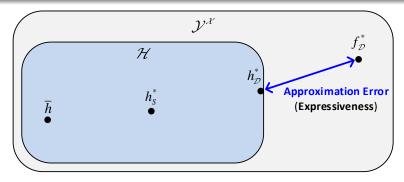
$$L_{S}(h) := \mathbb{E}_{(X,y) \sim S}[\ell(y,h(X))] = \frac{1}{m} \sum_{i=1}^{m} \ell(y_{i},h(X_{i}))$$



$$f_{\mathcal{D}}^*$$
 – ground truth (argmin _{$f \in \mathcal{Y}^{\mathcal{X}}$} $L_{\mathcal{D}}(f)$)

$$h_{\mathcal{D}}^*$$
 – optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)

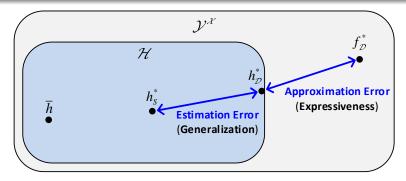
$$h_S^*$$
 – empirically optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_S(h)$)



$$f_{\mathcal{D}}^*$$
 – ground truth (argmin _{$f \in \mathcal{Y}^{\mathcal{X}}$} $L_{\mathcal{D}}(f)$)

$$h_{\mathcal{D}}^*$$
 – optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)

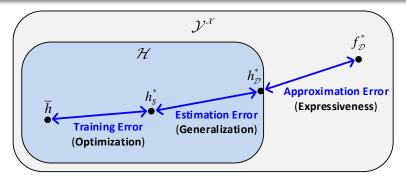
$$h_S^*$$
 – empirically optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_S(h)$)



$$f_{\mathcal{D}}^*$$
 – ground truth (argmin _{$f \in \mathcal{Y}^{\mathcal{X}}$} $L_{\mathcal{D}}(f)$)

$$h_{\mathcal{D}}^*$$
 – optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)

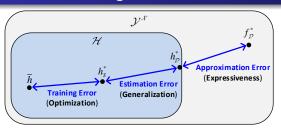
$$h_S^*$$
 – empirically optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_S(h)$)

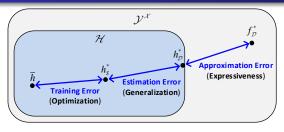


$$f_{\mathcal{D}}^*$$
 – ground truth (argmin _{$f \in \mathcal{V}^{\mathcal{X}}$} $L_{\mathcal{D}}(f)$)

$$h_{\mathcal{D}}^*$$
 – optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)

$$h_S^*$$
 – empirically optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_S(h)$)

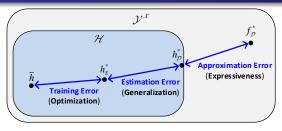




Optimization

Empirical loss minimization is a convex program:

$$\bar{h} pprox h_S^*$$
 (training err $pprox 0$)



Optimization

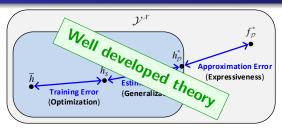
Empirical loss minimization is a convex program:

$$ar{h} pprox h_S^*$$
 (training err $pprox 0$)

Expressiveness & Generalization

Bias-variance trade-off:

\mathcal{H}	approximation err	estimation err
expands	¥	7
shrinks	7	7



Optimization

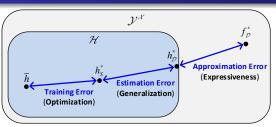
Empirical loss minimization is a convex program:

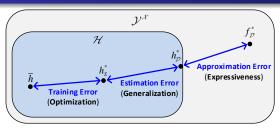
$$ar{h} pprox h_S^*$$
 (training err $pprox 0$)

Expressiveness & Generalization

Bias-variance trade-off:

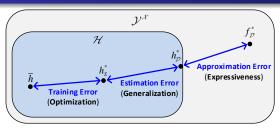
\mathcal{H}	approximation err	estimation err
expands	¥	7
shrinks	7	7





Optimization

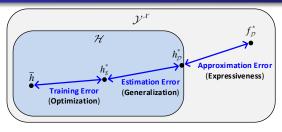
Empirical loss minimization is a non-convex program:



Optimization

Empirical loss minimization is a non-convex program:

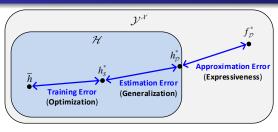
• h_S^* is not unique – many hypotheses have low training err



Optimization

Empirical loss minimization is a non-convex program:

- ullet h_S^* is not unique many hypotheses have low training err
- Stochastic Gradient Descent somehow reaches one of these

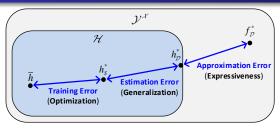


Optimization

Empirical loss minimization is a non-convex program:

- h_S^* is not unique many hypotheses have low training err
- Stochastic Gradient Descent somehow reaches one of these

Expressiveness & Generalization



Optimization

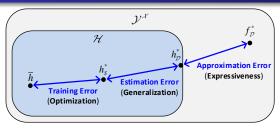
Empirical loss minimization is a non-convex program:

- ullet h_S^* is not unique many hypotheses have low training err
- Stochastic Gradient Descent somehow reaches one of these

Expressiveness & Generalization

Vast difference from classical ML:

• Some low training err hypotheses generalize well, others don't



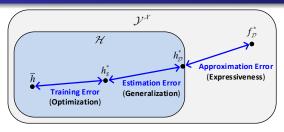
Optimization

Empirical loss minimization is a non-convex program:

- ullet h_S^* is not unique many hypotheses have low training err
- Stochastic Gradient Descent somehow reaches one of these

Expressiveness & Generalization

- Some low training err hypotheses generalize well, others don't
- W/typical data, solution returned by SGD often generalizes well



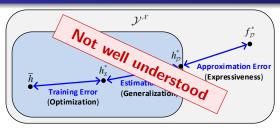
Optimization

Empirical loss minimization is a non-convex program:

- ullet h_S^* is not unique many hypotheses have low training err
- Stochastic Gradient Descent somehow reaches one of these

Expressiveness & Generalization

- Some low training err hypotheses generalize well, others don't
- W/typical data, solution returned by SGD often generalizes well
- ullet Expanding ${\cal H}$ reduces approximation err, but also estimation err!



Optimization

Empirical loss minimization is a non-convex program:

- h_S^* is not unique many hypotheses have low training err
- Stochastic Gradient Descent somehow reaches one of these

Expressiveness & Generalization

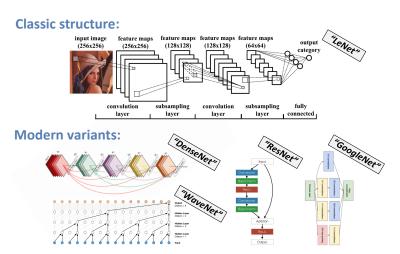
- Some low training err hypotheses generalize well, others don't
- W/typical data, solution returned by SGD often generalizes well
- ullet Expanding ${\cal H}$ reduces approximation err, but also estimation err!

Outline

- 1 Deep Learning Theory: Expressiveness, Optimization and Generalization
- 2 Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora|C|Hazan@arXiv'18)
- Conclusion

Convolutional Networks

Most successful deep learning arch to date!



Traditionally used for images/video, nowadays for audio and text as well

Tensor Product of L^2 Spaces

ConvNets realize func over many local elements (e.g. pixels, audio samples)

¹Set of linearly independent func w/dense span

Tensor Product of L^2 Spaces

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Let \mathbb{R}^s be the space of such elements (e.g. \mathbb{R}^3 for RGB pixels)

¹Set of linearly independent func w/dense span

Tensor Product of L² Spaces

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Let \mathbb{R}^s be the space of such elements (e.g. \mathbb{R}^3 for RGB pixels)

Consider:

- $L^2(\mathbb{R}^s)$ space of func over single element
- $L^2((\mathbb{R}^s)^N)$ space of func over N elements

¹Set of linearly independent func w/dense span

Tensor Product of L² Spaces

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Let \mathbb{R}^s be the space of such elements (e.g. \mathbb{R}^3 for RGB pixels)

Consider:

- $L^2(\mathbb{R}^s)$ space of func over single element
- $L^2((\mathbb{R}^s)^N)$ space of func over N elements

Fact

 $L^2((\mathbb{R}^s)^N)$ is equal to the tensor product of $L^2(\mathbb{R}^s)$ with itself N times:

$$L^{2}((\mathbb{R}^{s})^{N}) = \underbrace{L^{2}(\mathbb{R}^{s}) \otimes \cdots \otimes L^{2}(\mathbb{R}^{s})}_{N \text{ times}}$$

¹Set of linearly independent func w/dense span

Tensor Product of L^2 Spaces

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Let \mathbb{R}^s be the space of such elements (e.g. \mathbb{R}^3 for RGB pixels)

Consider:

- $L^2(\mathbb{R}^s)$ space of func over single element
- $L^2((\mathbb{R}^s)^N)$ space of func over N elements

Fact

 $L^2((\mathbb{R}^s)^N)$ is equal to the tensor product of $L^2(\mathbb{R}^s)$ with itself N times:

$$L^{2}((\mathbb{R}^{s})^{N}) = \underbrace{L^{2}(\mathbb{R}^{s}) \otimes \cdots \otimes L^{2}(\mathbb{R}^{s})}_{N \text{ times}}$$

Implication

If $\{f_d(\mathbf{x})\}_{d=1}^{\infty}$ is a basis for $L^2(\mathbb{R}^s)$, the following is a basis for $L^2((\mathbb{R}^s)^N)$:

$$\left\{\left(\mathbf{x}_{1},\ldots,\mathbf{x}_{N}\right)\mapsto\prod\nolimits_{i=1}^{N}f_{d_{i}}(\mathbf{x}_{i})\right\}_{d_{1}\ldots d_{N}=1}^{\infty}$$

¹Set of linearly independent func w/dense span

Coefficient Tensor

For practical purposes, restrict $L^2(\mathbb{R}^s)$ basis to a finite set: $f_1(\mathbf{x})...f_M(\mathbf{x})$

We call $f_1(\mathbf{x}) \dots f_M(\mathbf{x})$ descriptors

Coefficient Tensor

For practical purposes, restrict $L^2(\mathbb{R}^s)$ basis to a finite set: $f_1(\mathbf{x})...f_M(\mathbf{x})$

We call $f_1(\mathbf{x}) \dots f_M(\mathbf{x})$ descriptors

General func over N elements can now be written as:

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

w/func fully determined by the coefficient tensor:

$$\mathcal{A} \in \mathbb{R}^{\overbrace{M \times \cdots \times M}^{N \text{ times}}}$$

Coefficient Tensor

For practical purposes, restrict $L^2(\mathbb{R}^s)$ basis to a finite set: $f_1(\mathbf{x})...f_M(\mathbf{x})$

We call $f_1(\mathbf{x})...f_M(\mathbf{x})$ descriptors

General func over N elements can now be written as:

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

w/func fully determined by the coefficient tensor:

$$\mathcal{A} \in \mathbb{R}^{N \text{ times}}$$

Example

- 100-by-100 images ($N = 10^4$)
- ullet pixels represented by 256 descriptors (M=256)

Coefficient Tensor

For practical purposes, restrict $L^2(\mathbb{R}^s)$ basis to a finite set: $f_1(\mathbf{x})...f_M(\mathbf{x})$

We call $f_1(\mathbf{x})...f_M(\mathbf{x})$ descriptors

General func over N elements can now be written as:

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

w/func fully determined by the coefficient tensor:

$$\mathcal{A} \in \mathbb{R}^{N ext{ times}}$$

Example

- 100-by-100 images ($N = 10^4$)
- pixels represented by 256 descriptors (M = 256)

Then, func over images correspond to coeff tensors of:

- order 10⁴
- dim 256 in each mode

Decomposing Coefficient Tensor → Convolutional Arithmetic Circuit

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

Coeff tensor ${\mathcal A}$ is exponential (in # of elements ${\mathcal N}$)

⇒ directly computing a general func is intractable

Decomposing Coefficient Tensor → Convolutional Arithmetic Circuit

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

Coeff tensor ${\mathcal A}$ is exponential (in # of elements ${\mathcal N}$)

 \implies directly computing a general func is intractable

Observation

Applying hierarchical decomposition to coeff tensor gives ConvNet w/linear activation and product pooling (Convolutional Arithmetic Circuit)!

$$\begin{array}{c} \text{decomposition type} & \text{metwork structure} \\ \text{(mode tree, internal ranks etc)} & \longleftrightarrow & \text{(depth, width, pooling etc)} \end{array}$$

decomposition parameters

.

network weights

Example 1: CP Decomposition → Shallow Network

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

W/CP decomposition applied to coeff tensor:

$$\mathcal{A} = \sum_{\gamma=1}^{r_0} a_{\gamma}^{1,1,y} \cdot \mathbf{a}^{0,1,\gamma} \otimes \mathbf{a}^{0,2,\gamma} \otimes \cdots \otimes \mathbf{a}^{0,N,\gamma}$$

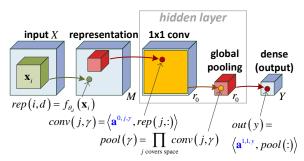
Example 1: CP Decomposition \longrightarrow Shallow Network

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

W/CP decomposition applied to coeff tensor:

$$\mathcal{A} = \sum\nolimits_{\gamma = 1}^{\textit{r}_0} \textit{a}_{\gamma}^{1,1,\textit{y}} \cdot \textit{a}^{0,1,\gamma} \otimes \textit{a}^{0,2,\gamma} \otimes \cdots \otimes \textit{a}^{0,\textit{N},\gamma}$$

func is computed by shallow network (single hidden layer, global pooling):



Example 2: HT Decomposition → Deep Network

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

W/Hierarchical Tucker (HT) decomposition applied to coeff tensor:

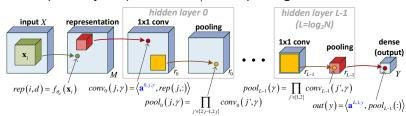
Example 2: HT Decomposition → Deep Network

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

W/Hierarchical Tucker (HT) decomposition applied to coeff tensor:

$$\begin{array}{ccccc} \phi^{1,j,\gamma} & = & \sum\nolimits_{\alpha=1}^{\prime_0} \mathbf{a}_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha} \\ & \cdots & & \\ \phi^{l,j,\gamma} & = & \sum\nolimits_{\alpha=1}^{\prime_{l-1}} \mathbf{a}_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha} \\ & \cdots & & \\ \mathcal{A} & = & \sum\nolimits_{\alpha=1}^{\prime_{l-1}} \mathbf{a}_{\alpha}^{l,1,y} \cdot \phi^{l-1,1,\alpha} \otimes \phi^{l-1,2,\alpha} \end{array}$$

func is computed by deep network w/size-2 pooling windows:



Generalization to Other Types of Convolutional Networks

We established equivalence:

hierarchical tensor decompositions ←→ conv arith circuits (ConvACs)

¹Deep SimNets, CVPR'16

²Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML'16

Generalization to Other Types of Convolutional Networks

We established equivalence:

hierarchical tensor decompositions \longleftrightarrow conv arith circuits (ConvACs)

ConvACs deliver promising empirical results, but other types of ConvNets (e.g. w/ReLU activation and max/ave pooling) are much more common

¹Deep SimNets, CVPR'16

²Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML'16

Generalization to Other Types of Convolutional Networks

We established equivalence:

hierarchical tensor decompositions ←→ conv arith circuits (ConvACs)

ConvACs deliver promising empirical results, 1 but other types of ConvNets (e.g. w/ReLU activation and max/ave pooling) are much more common

The equivalence extends to other types of ConvNets if we generalize the notion of tensor product:²

Tensor product:

$$(\mathcal{A}\otimes\mathcal{B})_{d_1...d_{P+Q}}=\mathcal{A}_{d_1...d_P}\cdot\mathcal{B}_{d_{P+1}...d_{P+Q}}$$

Generalized tensor product:

$$(\mathcal{A} \otimes_{\mathsf{g}} \mathcal{B})_{d_1 \dots d_{P+Q}} := \mathsf{g}(\mathcal{A}_{d_1 \dots d_P}, \mathcal{B}_{d_{P+1} \dots d_{P+Q}})$$

(same as \otimes but w/general $g : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ instead of mult)

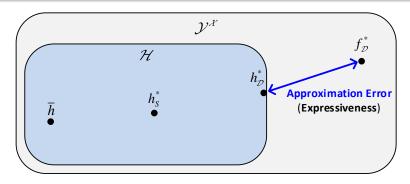
¹Deep SimNets, CVPR'16

²Convolutional Rectifier Networks as Generalized Tensor Decompositions, ICML'16

Outline

- Deep Learning Theory: Expressiveness, Optimization and Generalization
- 2 Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora|C|Hazan@arXiv'18)
- Conclusion

Expressiveness



$$f_{\mathcal{D}}^*$$
 – ground truth (argmin $_{f \in \mathcal{Y}^{\mathcal{X}}}$ $L_{\mathcal{D}}(f)$)

$$h_{\mathcal{D}}^*$$
 – optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)

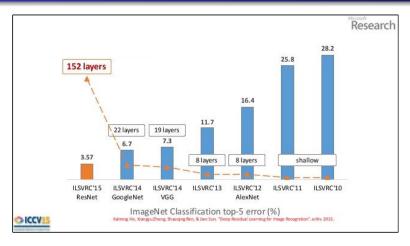
$$h_S^*$$
 – empirically optimal hypothesis (argmin $_{h\in\mathcal{H}}$ $L_S(h)$)

 \bar{h} – returned hypothesis

Outline

- Deep Learning Theory: Expressiveness, Optimization and Generalization
- Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine/Yakira/C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora/C/Hazan@arXiv'18)
- Conclusion

Efficiency of Depth



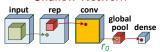
Longstanding conjecture

Efficiency of depth: deep ConvNets realize func that require shallow ConvNets to have exponential size (width)

Tensor Decomposition Viewpoint

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

Shallow Network



CP Decomposition

Deep Network

HT Decomposition

Network
$$\phi^{1,j,\gamma} = \sum_{\alpha=1}^{r_0} a_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha}$$

$$\cdots \qquad \phi^{l,j,\gamma} = \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha}$$

$$\cdots \qquad \mathcal{A} = \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,1,\gamma} \cdot \phi^{l-1,1,\alpha} \otimes \phi^{l-1,2,\alpha}$$

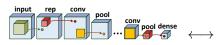
Tensor Decomposition Viewpoint

$$h(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \sum_{d_1\ldots d_N=1}^M \mathcal{A}_{d_1\ldots d_N} \prod_{i=1}^N f_{d_i}(\mathbf{x}_i)$$

Shallow Network

CP Decomposition

Deep Network



HT Decomposition

Deep Network
$$\phi^{1,j,\gamma} = \sum_{\alpha=1}^{r_0} a_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha}$$

$$\cdots \qquad \phi^{l,j,\gamma} = \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha}$$

$$\cdots \qquad \mathcal{A} = \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,1,y} \cdot \phi^{l-1,1,\alpha} \otimes \phi^{l-1,2,\alpha}$$

Efficiency of depth

HT decomposition realizes tensors that require CP decomposition to have exponential rank (r_0 exponential in N)

HT vs. CP Analysis

Theorem

Besides a negligible (zero measure) set, all parameter settings for HT decomposition lead to tensors w/CP-rank exponential in N

HT Decomposition

$$\begin{split} \phi^{1,j,\gamma} &= \sum\nolimits_{\alpha=1}^{r_0} a_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha} \\ \phi^{l,j,\gamma} &= \sum\nolimits_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha} \\ & \dots \\ \mathcal{A} &= \sum\nolimits_{\alpha=1}^{r_{L-1}} a_{\alpha}^{L,1,y} \cdot \phi^{L-1,1,\alpha} \otimes \phi^{L-1,2,\alpha} \end{split}$$

CP Decomposition

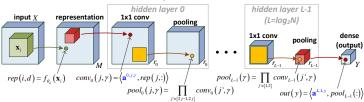
$$\mathcal{A} = \sum\nolimits_{\gamma = 1}^{{r_0}} {a_\gamma ^{1,1,y} \cdot {a^{0,1,\gamma }} \otimes \cdots \otimes {a^{0,\textit{N},\gamma }}}$$

HT vs. CP Analysis (cont'd)

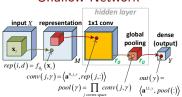
Corollary

Randomizing weights of deep ConvAC by a cont distribution leads, w.p. 1, to func that require shallow ConvAC to have exponential # of channels

Deep Network



Shallow Network



HT vs. CP Analysis (cont'd)

Theorem proof sketch

- ullet $[\![\mathcal{A}]\!]$ matricization of \mathcal{A} (arrangement of tensor as matrix)
- \odot Kronecker product for matrices. Holds: $rank(A \odot B) = rank(A) \cdot rank(B)$
- ullet Relation between tensor and Kronecker products: $[\![\mathcal{A}\otimes\mathcal{B}]\!]=[\![\mathcal{A}]\!]\odot[\![\mathcal{B}]\!]$
- Implies: $rank[A] \leq CP$ -rank(A)
- By induction over levels of HT, rank[A] is exponential almost always:

$$\begin{array}{cccc} & \text{HT Decomposition} \\ \phi^{1,j,\gamma} & = & \sum_{\alpha=1}^{r_0} a_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha} \\ & \cdots & \\ \phi^{l,j,\gamma} & = & \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha} \\ & \cdots & \\ \mathcal{A} & = & \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,1,y} \cdot \phi^{l-1,1,\alpha} \otimes \phi^{l-1,2,\alpha} \end{array}$$

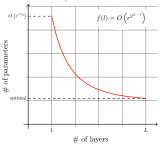
- Base: "SVD has maximal rank almost always"
- Step: $rank[A \otimes B] = rank([A] \odot [B]) = rank[A] \cdot rank[B]$, and "linear combination preserves rank almost always"

HT vs. CP analysis may be generalized in various ways, e.g.:

HT vs. CP analysis may be generalized in various ways, e.g.:

Comparison between arbitrary depths

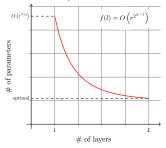
Penalty in resources is double-exponential w.r.t. # of layers cut-off



HT vs. CP analysis may be generalized in various ways, e.g.:

Comparison between arbitrary depths

Penalty in resources is double-exponential w.r.t. # of layers cut-off



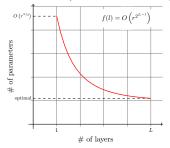
Adaptation to other types of ConvNets

W/ReLU activation and max pooling, deep nets realize func requiring shallow nets to be exponentially large, but not almost always

HT vs. CP analysis may be generalized in various ways, e.g.:

Comparison between arbitrary depths

Penalty in resources is double-exponential w.r.t. # of layers cut-off



Adaptation to other types of ConvNets

W/ReLU activation and max pooling, deep nets realize func requiring shallow nets to be exponentially large, but not almost always

Efficiency of depth proven!

Outline

- Deep Learning Theory: Expressiveness, Optimization and Generalization
- Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora|C|Hazan@arXiv'18)
- Conclusion

Modeling Interactions

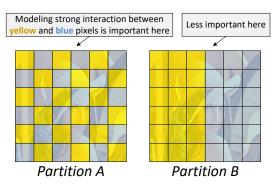
ConvNets realize func over many local elements (e.g. pixels, audio samples)

Modeling Interactions

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Key property of such func:

interactions modeled between different sets of elements

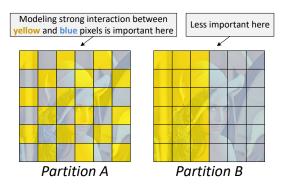


Modeling Interactions

ConvNets realize func over many local elements (e.g. pixels, audio samples)

Key property of such func:

interactions modeled between different sets of elements

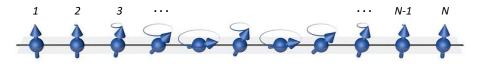


Questions

- What kind of interactions do ConvNets model?
- How do these depend on network structure?

In quantum physics, state of particle is represented as vec in Hilbert space:

$$|\mathsf{particle\ state}\rangle = \sum\nolimits_{d=1}^{M} \underbrace{a_d}_{\mathsf{coeff}} \cdot \underbrace{|\psi_d\rangle}_{\mathsf{basis}} \in \mathbf{H}$$



In quantum physics, state of particle is represented as vec in Hilbert space:

$$|\text{particle state}\rangle = \sum_{d=1}^{M} \underbrace{a_d}_{\text{coeff}} \cdot \underbrace{|\psi_d\rangle}_{\text{basis}} \in \mathbf{H}$$

System of N particles is represented as vec in tensor product space:

$$|\text{system state}\rangle = \sum\nolimits_{d_1...d_N=1}^{M} \underbrace{\mathcal{A}_{d_1...d_N}}_{\text{coeff tensor}} \cdot |\psi_{d_1}\rangle \otimes \cdots \otimes |\psi_{d_N}\rangle \in \underbrace{\mathbf{H} \otimes \cdots \otimes \mathbf{H}}_{N \text{ times}}$$

In quantum physics, state of particle is represented as vec in Hilbert space:

$$|\text{particle state}\rangle = \sum_{d=1}^{M} \underbrace{a_d}_{\text{coeff}} \cdot \underbrace{|\psi_d\rangle}_{\text{basis}} \in \mathbf{H}$$

System of N particles is represented as vec in tensor product space:

$$|\mathsf{system state}\rangle = \sum\nolimits_{d_1...d_N=1}^{\textit{M}} \underbrace{\mathcal{A}_{d_1...d_N}}_{\mathsf{coeff tensor}} \cdot |\psi_{d_1}\rangle \otimes \cdots \otimes |\psi_{d_N}\rangle \in \underbrace{\mathbf{H} \otimes \cdots \otimes \mathbf{H}}_{\textit{N times}}$$

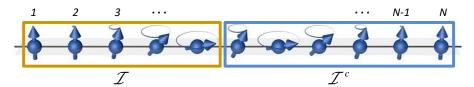
Quantum entanglement measures quantify interactions that a system state models between sets of particles

Quantum Entanglement (cont'd)

$$|\mathsf{system state}\rangle = \sum\nolimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}\rangle \otimes \cdot \cdot \cdot \otimes |\psi_{d_N}\rangle$$

Quantum Entanglement (cont'd)

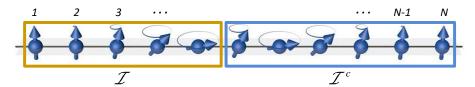
$$\boxed{|\mathsf{system state}\rangle = \sum\nolimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}\rangle \otimes \cdots \otimes |\psi_{d_N}\rangle}$$



Consider partition of the N particles into sets $\mathcal I$ and $\mathcal I^c$

Quantum Entanglement (cont'd)

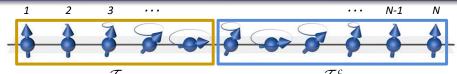
$$|\mathsf{system state}\rangle = \sum\nolimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}\rangle \otimes \cdot \cdot \cdot \otimes |\psi_{d_N}\rangle$$



Consider partition of the N particles into sets $\mathcal I$ and $\mathcal I^c$

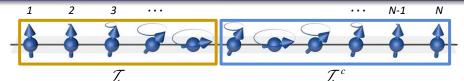
 $[\![\mathcal{A}]\!]_{\mathcal{I}}$ – matricization of coeff tensor \mathcal{A} w.r.t. \mathcal{I} :

- ullet arrangement of ${\cal A}$ as matrix
- ullet rows/cols correspond to modes indexed by $\mathcal{I}/\mathcal{I}^c$



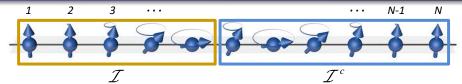
$$|\mathsf{system state}
angle = \sum
olimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}
angle \otimes \cdots \otimes |\psi_{d_N}
angle$$

$$\begin{split} [\![\mathcal{A}]\!]_{\mathcal{I}} &- \mathsf{matricization} \\ & \mathsf{of} \ \mathcal{A} \ \mathsf{w.r.t.} \ \mathcal{I} \end{split}$$



$$|\mathsf{system} \; \mathsf{state}
angle = \sum
olimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}
angle \otimes \cdots \otimes |\psi_{d_N}
angle$$

Let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_R)$ be the singular vals of $\llbracket \mathcal{A} \rrbracket_{\mathcal{I}}$

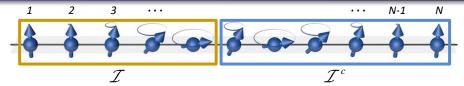


$$| ext{system state}
angle = \sum
olimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}
angle \otimes \cdots \otimes |\psi_{d_N}
angle$$

$$\begin{split} [\![\mathcal{A}]\!]_{\mathcal{I}} - \mathsf{matricization} \\ \mathsf{of} \ \mathcal{A} \ \mathsf{w.r.t.} \ \mathcal{I} \end{split}$$

Let ${m \sigma}=(\sigma_1,\sigma_2,\ldots,\sigma_R)$ be the singular vals of $[\![{\mathcal A}]\!]_{\mathcal I}$

Entanglement measures between particles of $\mathcal I$ and of $\mathcal I^c$ are based on σ :



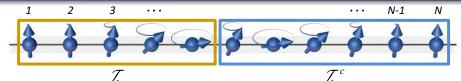
$$\left| |\mathsf{system state}\rangle = \sum\nolimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}\rangle \otimes \cdots \otimes |\psi_{d_N}\rangle \right|$$

$$\begin{split} [\![\mathcal{A}]\!]_{\mathcal{I}} - \mathsf{matricization} \\ \mathsf{of} \ \mathcal{A} \ \mathsf{w.r.t.} \ \mathcal{I} \end{split}$$

Let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_R)$ be the singular vals of $[\![\mathcal{A}]\!]_{\mathcal{I}}$

Entanglement measures between particles of $\mathcal I$ and of $\mathcal I^c$ are based on σ :

• Entanglement Entropy: entropy of $(\sigma_1^2, \dots, \sigma_R^2) / \|\sigma\|_2^2$



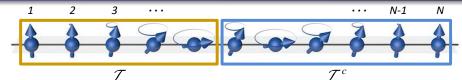
$$| ext{system state}
angle = \sum
olimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}
angle \otimes \cdots \otimes |\psi_{d_N}
angle$$

$$\begin{split} [\![\mathcal{A}]\!]_{\mathcal{I}} - \mathsf{matricization} \\ \mathsf{of} \ \mathcal{A} \ \mathsf{w.r.t.} \ \mathcal{I} \end{split}$$

Let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_R)$ be the singular vals of $[\![\mathcal{A}]\!]_{\mathcal{I}}$

Entanglement measures between particles of $\mathcal I$ and of $\mathcal I^c$ are based on σ :

- Entanglement Entropy: entropy of $(\sigma_1^2, \dots, \sigma_R^2) / \|\boldsymbol{\sigma}\|_2^2$
- Geometric Measure: $1 \sigma_1^2 / \|\boldsymbol{\sigma}\|_2^2$



$$\left| |\mathsf{system state}\rangle = \sum\nolimits_{d_1...d_N=1}^M \mathcal{A}_{d_1...d_N} \cdot |\psi_{d_1}\rangle \otimes \cdots \otimes |\psi_{d_N}\rangle \right|$$

Let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_R)$ be the singular vals of $[\![\mathcal{A}]\!]_{\mathcal{I}}$

Entanglement measures between particles of $\mathcal I$ and of $\mathcal I^c$ are based on σ :

- Entanglement Entropy: entropy of $(\sigma_1^2, \dots, \sigma_R^2) / \|\sigma\|_2^2$
- ullet Geometric Measure: $1-\sigma_1^2/\left\|oldsymbol{\sigma}
 ight\|_2^2$
- Schmidt Number: $\|\sigma\|_0 = rank [\![\mathcal{A}]\!]_{\mathcal{I}}$

Entanglement with Convolutional Arithmetic Circuits

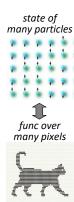
Structural equivalence:

quantum system (many-body) state

$$|\text{system state}\rangle = \sum_{d_1...d_N=1}^{M} \underbrace{\mathcal{A}_{d_1...d_N}}_{\text{coeff tensor}} \cdot |\psi_{d_1}\rangle \otimes \cdots \otimes |\psi_{d_N}\rangle$$

func realized by ConvAC

$$h(\mathbf{x}_1, \dots, \mathbf{x}_N) = \sum_{d_1 \dots d_N=1}^{M} \underbrace{\mathcal{A}_{d_1 \dots d_N}}_{\text{coeff tensor}} \cdot f_{d_1}(\mathbf{x}_1) \cdots f_{d_N}(\mathbf{x}_N)$$



Entanglement with Convolutional Arithmetic Circuits

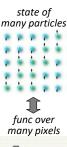
Structural equivalence:

quantum system (many-body) state

$$|\text{system state}\rangle = \sum_{d_1...d_N=1}^{M} \underbrace{\mathcal{A}_{d_1...d_N}}_{\text{coeff tensor}} \cdot |\psi_{d_1}\rangle \otimes \cdots \otimes |\psi_{d_N}\rangle$$

func realized by ConvAC

$$h(\mathbf{x}_1, \dots, \mathbf{x}_N) = \sum_{d_1 \dots d_N = 1}^{M} \underbrace{\mathcal{A}_{d_1 \dots d_N}}_{\text{coeff tensor}} \cdot f_{d_1}(\mathbf{x}_1) \cdots f_{d_N}(\mathbf{x}_N)$$

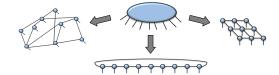


We may quantify interactions ConvAC models between input sets by applying entanglement measures to its coeff tensor!

Quantum Tensor Networks

Coeff tensors of quantum many-body states are simulated via:

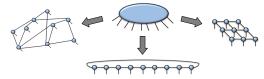
Tensor Networks



Quantum Tensor Networks

Coeff tensors of quantum many-body states are simulated via:

Tensor Networks



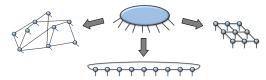
Tensor Networks (TNs):

 $\bullet \ \, \mathsf{Graphs} \ \, \mathsf{in} \ \, \mathsf{which} \mathsf{:} \quad \mathsf{vertices} \longleftrightarrow \mathsf{tensors} \qquad \mathsf{edges} \longleftrightarrow \mathsf{modes}$

Quantum Tensor Networks

Coeff tensors of quantum many-body states are simulated via:

Tensor Networks



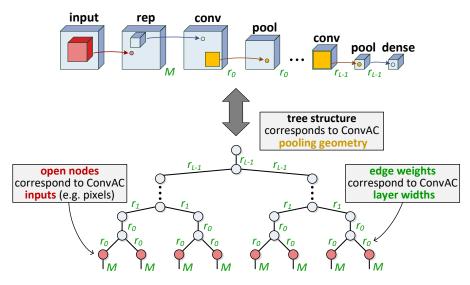
Tensor Networks (TNs):

ullet Graphs in which: vertices \longleftrightarrow tensors edges \longleftrightarrow modes

Edge (mode) connecting two vertices (tensors) represents contraction

Convolutional Arithmetic Circuits as Tensor Networks

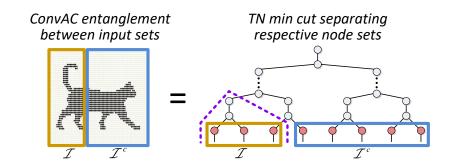
Coeff tensor of ConvAC may be represented via TN:



Entanglement via Minimal Cuts

Theorem

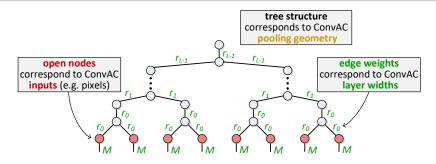
Maximal Schmidt entanglement ConvAC models between input sets $\mathcal{I}/\mathcal{I}^c$ is equal to min cut in respective TN separating nodes of $\mathcal{I}/\mathcal{I}^c$



Controlling Entanglement (Interactions)

Corollary

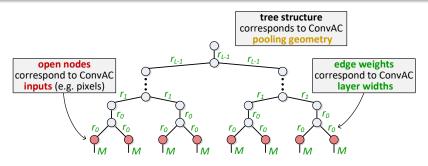
Controlling entanglement (interactions) modeled by ConvAC is equivalent to controlling min cuts in respective TN



Controlling Entanglement (Interactions)

Corollary

Controlling entanglement (interactions) modeled by ConvAC is equivalent to controlling min cuts in respective TN

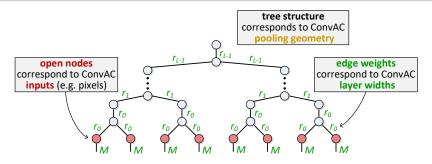


Two sources of control: layer widths, pooling geometry

Controlling Entanglement (Interactions)

Corollary

Controlling entanglement (interactions) modeled by ConvAC is equivalent to controlling min cuts in respective TN



Two sources of control: layer widths, pooling geometry

We may analyze the effect of ConvAC arch on the interactions (entanglement) it can model!

Controlling Interactions – Layer Widths

Claim

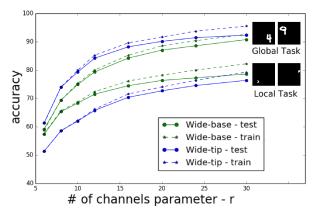
Deep (early) layer widths are important for long (short)-range interactions

Controlling Interactions – Layer Widths

Claim

Deep (early) layer widths are important for long (short)-range interactions

Experiment



Controlling Interactions – Pooling Geometry

Claim

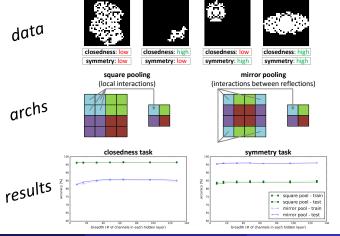
Input elements pooled together early have stronger interaction

Controlling Interactions - Pooling Geometry

Claim

Input elements pooled together early have stronger interaction

Experiment

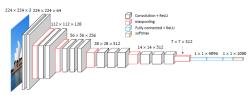


Outline

- Deep Learning Theory: Expressiveness, Optimization and Generalization
- 2 Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora/C/Hazan@arXiv'18)
- Conclusion

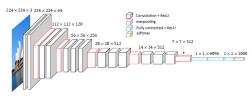
Efficiency of Interconnectivity

Classic ConvNets have feed-forward (chain) structure:

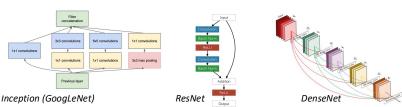


Efficiency of Interconnectivity

Classic ConvNets have feed-forward (chain) structure:

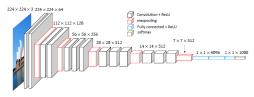


Modern ConvNets employ elaborate connectivity schemes:

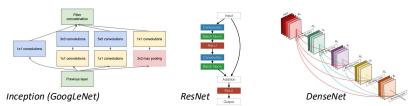


Efficiency of Interconnectivity

Classic ConvNets have feed-forward (chain) structure:



Modern ConvNets employ elaborate connectivity schemes:

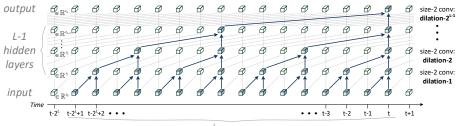


Question

Can such connectivities lead to more efficient representation of func?

Dilated Convolutional Networks

We focus on dilated ConvNets (D-ConvNets) for sequence data:



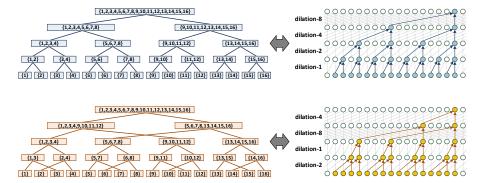
 $N:=2^L$ time points

- 1D ConvNets
- No pooling
- Dilated (gapped) conv windows

Underlie Google's WaveNet & ByteNet – state of the art for audio & text!

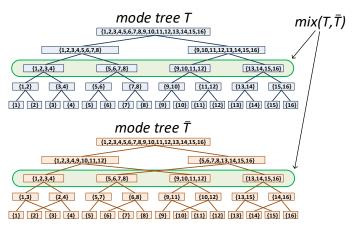
Dilations and Mode Trees

W/D-ConvNet, mode tree underlying corresponding tensor decomposition determines dilation scheme



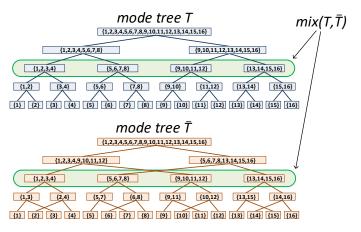
Mixed Tensor Decompositions

Let: T, \bar{T} – mode trees; $mix(T, \bar{T})$ – set of nodes present in both trees



Mixed Tensor Decompositions

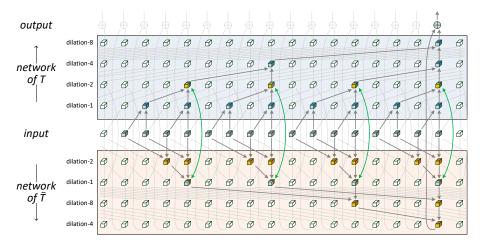
Let: T, \bar{T} – mode trees ; $mix(T, \bar{T})$ – set of nodes present in both trees



A mixed tensor decomposition blends together T and \bar{T} by running their decompositions in parallel, exchanging tensors in each node of $mix(T, \bar{T})$

Mixed Dilated Convolutional Networks

Mixed tensor decomposition corresponds to **mixed D-ConvNet**, formed by interconnecting the networks of T and \bar{T} :



Theorem

Mixed tensor decomposition of T and \bar{T} can generate tensors that require individual decompositions to grow quadratically (in terms of their ranks)

Theorem

Mixed tensor decomposition of T and \bar{T} can generate tensors that require individual decompositions to grow quadratically (in terms of their ranks)

Corollary

Mixed D-ConvNet can realize func that require individual networks to grow quadratically (in terms of layer widths)

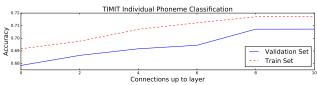
Theorem

Mixed tensor decomposition of T and \bar{T} can generate tensors that require individual decompositions to grow quadratically (in terms of their ranks)

Corollary

Mixed D-ConvNet can realize func that require individual networks to grow quadratically (in terms of layer widths)

Experiment



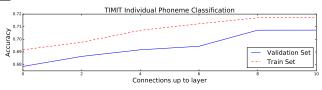
Theorem

Mixed tensor decomposition of T and \bar{T} can generate tensors that require individual decompositions to grow quadratically (in terms of their ranks)

Corollary

Mixed D-ConvNet can realize func that require individual networks to grow quadratically (in terms of layer widths)

Experiment

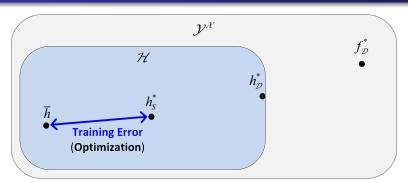


Interconnectivity can lead to more efficient representation!

Outline

- Deep Learning Theory: Expressiveness, Optimization and Generalization
- Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora|C|Hazan@arXiv'18)
- Conclusion

Optimization



$$f_{\mathcal{D}}^*$$
 – ground truth (argmin _{$f \in \mathcal{Y}^{\mathcal{X}}$} $L_{\mathcal{D}}(f)$)

$$h_{\mathcal{D}}^*$$
 – optimal hypothesis (argmin _{$h \in \mathcal{H}$} $L_{\mathcal{D}}(h)$)

$$h_S^*$$
 – empirically optimal hypothesis (argmin $_{h\in\mathcal{H}}$ $L_S(h)$)

 \bar{h} – returned hypothesis

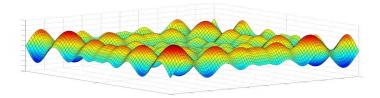
The Effect of Depth – Conventional Wisdom

Depth introduces non-convexity \implies complicates optimization

The Effect of Depth – Conventional Wisdom

Depth introduces non-convexity \implies complicates optimization

However...



Local minima are typically as good as global

⇒ gradient-based algorithms reach optimum

Outline

- Deep Learning Theory: Expressiveness, Optimization and Generalization
- 2 Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora/C/Hazan@arXiv'18)
- Conclusion

Linear network of depth *N*:

$$\mathbf{x} \mapsto W_N W_{N-1} \cdots W_1 \mathbf{x}$$
 (W_j – weight matrices)

Linear network of depth *N*:

$$\mathbf{x} \mapsto W_N W_{N-1} \cdots W_1 \mathbf{x}$$
 (W_j – weight matrices)

Expressiveness oblivious to depth \implies effect on optimization isolated!

Linear network of depth *N*:

$$\mathbf{x} \mapsto W_N W_{N-1} \cdots W_1 \mathbf{x}$$
 (W_j – weight matrices)

Expressiveness oblivious to depth \implies effect on optimization isolated!

Define the end-to-end weight matrix:

$$W_e := W_N W_{N-1} \cdots W_1$$

Linear network of depth *N*:

$$\mathbf{x} \mapsto W_N W_{N-1} \cdots W_1 \mathbf{x}$$
 (W_j – weight matrices)

Expressiveness oblivious to depth \implies effect on optimization isolated!

Define the end-to-end weight matrix:

$$W_e := W_N W_{N-1} \cdots W_1$$

Given loss $L(\cdot)$ over linear model, we have **overparameterized loss**:

$$L^N(W_1,\ldots,W_N):=L(W_e)$$

Linear network of depth *N*:

$$\mathbf{x} \mapsto W_N W_{N-1} \cdots W_1 \mathbf{x}$$
 (W_j – weight matrices)

Expressiveness oblivious to depth \implies effect on optimization isolated!

Define the end-to-end weight matrix:

$$W_e := W_N W_{N-1} \cdots W_1$$

Given loss $L(\cdot)$ over linear model, we have **overparameterized loss**:

$$L^N(W_1,\ldots,W_N):=L(W_e)$$

Question

How does W_e behave during gradient descent over $W_1 \dots W_N$?

Implicit Dynamics of Gradient Descent

Theorem

When $W_1 \dots W_N$ are optimized by gradient descent, W_e follows the end-to-end update rule:

$$W_e^{(t+1)} \leftarrow W_e^{(t)} - \eta \sum_{j=1}^{N} \left[W_e^{(t)} (W_e^{(t)})^\top \right]^{\frac{j-1}{N}} \frac{dL}{dW} (W_e^{(t)}) \left[(W_e^{(t)})^\top W_e^{(t)} \right]^{\frac{N-j}{N}}$$

Implicit Dynamics of Gradient Descent

Theorem

When $W_1 ... W_N$ are optimized by gradient descent, W_e follows the **end-to-end update rule**:

$$W_e^{(t+1)} \leftarrow W_e^{(t)} - \eta \sum_{i=1}^{N} \left[W_e^{(t)} (W_e^{(t)})^\top \right]^{\frac{j-1}{N}} \frac{dL}{dW} (W_e^{(t)}) \left[(W_e^{(t)})^\top W_e^{(t)} \right]^{\frac{N-j}{N}}$$

We show:

 End-to-end update rule is a preconditioning scheme, that promotes movement along directions already taken

Theorem

When $W_1 ... W_N$ are optimized by gradient descent, W_e follows the **end-to-end update rule**:

$$W_e^{(t+1)} \leftarrow W_e^{(t)} - \eta \sum_{i=1}^{N} \left[W_e^{(t)} (W_e^{(t)})^{\top} \right]^{\frac{j-1}{N}} \frac{dL}{dW} (W_e^{(t)}) \left[(W_e^{(t)})^{\top} W_e^{(t)} \right]^{\frac{N-j}{N}}$$

We show:

- End-to-end update rule is a preconditioning scheme, that promotes movement along directions already taken
- Can be seen as combination of adaptive learning rate and momentum

Implicit Dynamics of Gradient Descent

Theorem

When $W_1 ... W_N$ are optimized by gradient descent, W_e follows the **end-to-end update rule**:

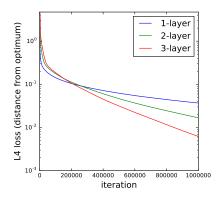
$$W_e^{(t+1)} \leftarrow W_e^{(t)} - \eta \sum_{i=1}^{N} \left[W_e^{(t)} (W_e^{(t)})^\top \right]^{\frac{i-1}{N}} \frac{dL}{dW} (W_e^{(t)}) \left[(W_e^{(t)})^\top W_e^{(t)} \right]^{\frac{N-j}{N}}$$

We show:

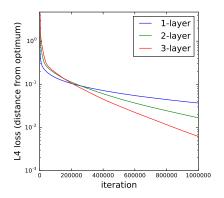
- End-to-end update rule is a preconditioning scheme, that promotes movement along directions already taken
- Can be seen as combination of adaptive learning rate and momentum

W/linear nets depth induces on gradient descent a certain acceleration scheme!

Experiment

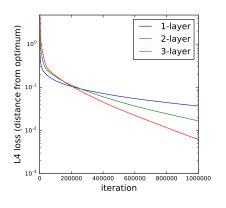


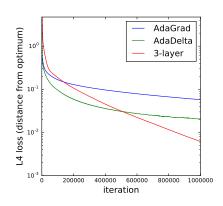
Experiment



Depth can speed-up gradient descent, even w/o any expressiveness gain, and despite introducing non-convexity!

Experiment





Depth can speed-up gradient descent, even w/o any expressiveness gain, and despite introducing non-convexity!

This speed-up can outperform popular acceleration methods designed for convex problems!

Outline

- Deep Learning Theory: Expressiveness, Optimization and Generalization
- Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora/C/Hazan@arXiv'18)
- Conclusion

• Three pillars of statistical learning theory:

Expressiveness Generalization

Optimization

Three pillars of statistical learning theory:

Expressiveness Generalization Optimization

- Well developed theory for classical ML
- Limited understanding for Deep Learning

Three pillars of statistical learning theory:

Expressiveness Generalization Optimization

- Well developed theory for classical ML
- Limited understanding for Deep Learning
- We derive equivalence:

 $\textbf{ConvNets} \longleftrightarrow \textbf{hierarchical tensor decompositions}$

Three pillars of statistical learning theory:

Expressiveness Generalization Optimization

- Well developed theory for classical ML
- Limited understanding for Deep Learning
- We derive equivalence:

ConvNets ←→ hierarchical tensor decompositions

We use equivalence to analyze expressiveness of ConvNets:

Three pillars of statistical learning theory:

Expressiveness Generalization Optimization

- Well developed theory for classical ML
- Limited understanding for Deep Learning
- We derive equivalence:

- We use equivalence to analyze expressiveness of ConvNets:
 - Representational efficiency of depth

Three pillars of statistical learning theory:

Expressiveness Generalization Optimization

- Well developed theory for classical ML
- Limited understanding for Deep Learning
- We derive equivalence:

- We use equivalence to analyze expressiveness of ConvNets:
 - Representational efficiency of depth
 - Input interaction (entanglement) modeling

Three pillars of statistical learning theory:

Expressiveness Generalization Optimization

- Well developed theory for classical ML
- Limited understanding for Deep Learning
- We derive equivalence:

- We use equivalence to analyze expressiveness of ConvNets:
 - Representational efficiency of depth
 - Input interaction (entanglement) modeling
 - Efficiency of interconnectivity schemes

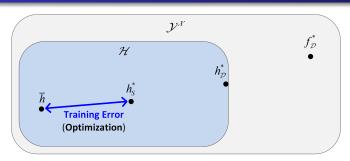
Three pillars of statistical learning theory:

Expressiveness Generalization Optimization

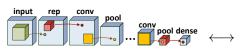
- Well developed theory for classical ML
- Limited understanding for Deep Learning
- We derive equivalence:

- We use equivalence to analyze expressiveness of ConvNets:
 - Representational efficiency of depth
 - Input interaction (entanglement) modeling
 - Efficiency of interconnectivity schemes
- Analysis for linear nets shows depth can accelerate optimization

Ongoing Work – Optimization of Convolutional Networks



ConvNets



Tensor Decompositions

$$\phi^{1,j,\gamma} = \sum_{\alpha=1}^{r_0} \mathbf{a}_{\alpha}^{1,j,\gamma} \cdot \mathbf{a}^{0,2j-1,\alpha} \otimes \mathbf{a}^{0,2j,\alpha}$$

$$\longleftrightarrow \quad \phi^{l,j,\gamma} = \sum_{\alpha=1}^{r_{l-1}} \mathbf{a}_{\alpha}^{l,j,\gamma} \cdot \phi^{l-1,2j-1,\alpha} \otimes \phi^{l-1,2j,\alpha}$$

$$\mathcal{A} = \sum_{\alpha=1}^{r_{l-1}} \mathbf{a}_{\alpha}^{l,1,y} \cdot \phi^{l-1,1,\alpha} \otimes \phi^{l-1,2,\alpha}$$

Outline

- 1 Deep Learning Theory: Expressiveness, Optimization and Generalization
- 2 Convolutional Networks as Hierarchical Tensor Decompositions
- 3 Expressiveness of Convolutional Networks
 - Efficiency of Depth (C|Sharir|Shashua@COLT'16, C|Shashua@ICML'16)
 - Modeling Interactions (Levine|Yakira|C|Shashua@ICLR'18, C|Shashua@ICLR'17)
 - Efficiency of Interconnectivity (C|Tamari|Shashua@ICLR'18)
- Towards Optimization
 - Analysis for Linear Networks (Arora|C|Hazan@arXiv'18)
- Conclusion

Thank You