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Eigenvalue and eigenfunctions

For a given compact smooth n-manifold M, we have the following
(smooth) eigenfunctions

−∆geλ(x) = λ2eλ(x).

And we have a discrete set of eigenvalues

{0 = λ0 ≤ λ1 ≤ · · · ≤ λn · · · <∞}



Basic questions

Two basic questions in spectral analysis

1. How the eigenvalues {λj} are distributed on [0,∞)?

2. How “large” the eigenfunctions are?



Weyl law

Eigenvalue: (classical Weyl formula, or Weyl law)

N(λ) = cnλ
n + O(λn−1).

You can also recover N(λ) by taking inverse Fourier transform on
the truncated trace of half-wave operator:

N(λ) =
1

2π

∫
χ̂[0,λ](t)

{
trace of e it

√
−∆

}
dt.



Half-wave

The half-wave e it
√
−∆ is the Fourier transform of the spectral

measure

Ê (t) =

∫
e−itλdEλ = e−it

√
−∆

Here

e−it
√
−∆ =

∑
j

e−itλj eλj ⊗ eλj =
∑
j

̂δ(· − λj)(t)eλj ⊗ eλj

and e it
√
−∆f (x) is also the solution to the (half)-wave Cauchy

problem: {
(i∂t +

√
−∆)u(t, x) = 0

u(0, x) = f (x).



More about Weyl law

Two things should be mentioned about Weyl law

1. It is sharp on spheres Sn

2. It is rarely sharp on other manifolds. For example:
(Hlawka, 1950) On flat torus Tn

N(λ) = cλn + O(λn−1− n−1
n+1 ).

This is because on torus eλ(x) is a trigonometric polynomial
as follows

eλ(x) =
∑
|m|2=λ2

êλ(m)e im·x .



Duistermaat-Guillemin wave-trace

A key progress was made by Duistermaat and Guillemin in 1975,
who proved that

1. The trace of e it
√
−∆ is smooth when t is not equal to the

period of any periodic geodesics (if any), or 0.

2. If the periodic geodesics are of zero Liouville measure, then

N(λ) = cnλ
n + o(λn−1).



Improvement on non-positive manifolds

So to improve the remainder term in Weyl formula, a good
candidate would be a manifold with very few periodic geodesics. In
fact:
(Bérard, 1977) On manifolds without conjugate points, such as
non-positive curvature manifolds, we have

N(λ) = cλn + O(λn−1/ log λ).



General Lp estimates

Weyl formula is in fact an L∞ type estimates for the
eigenfunctions:

||eλ||L∞ ≤ Cλ
n−1

2 ||eλ||L2 .

So we may ask, how about an Lp estimates with p < +∞? (of
course, except for those from simple interpolation)



Sogge’s general result

Lp estimates of the eigenfunctions on general manifolds (Sogge,
1987), using oscillatory integral techniques:

||eλ||Lp(M) ≤ Cλn( 1
2
− 1

p
)− 1

2 ||eλ||L2(M),
2(n + 1)

n − 1
≤ p ≤ +∞

||eλ||Lp(M) ≤ Cλ
n−1

2
( 1

2
− 1

p
)||eλ||L2(M), 2 ≤ p ≤ 2(n + 1)

n − 1
.

These estimates are sharp on spheres. But lacking of explicit
information the eigenfunctions makes improvement on other
manifolds generally hard.



Lp improvement on non-positive manifolds

For large p, we can interpolate with Bérard’s result. And by
(log λ)α � λ+0 we may obtain a slightly better improvement with
the price of losing endpoint case.
(Hassell-Tacey, 2013)

||eλ||Lp ≤ C
λ

n−1
2
− n

p

(log λ)
1
2

||eλ||L2 , p >
2(n + 1)

(n − 1)
.

Notice the improvement over:

||eλ||Lp ≤ C
λ

n−1
2
− n

p

(log λ)
1
2
− n+1

p(n−1)

||eλ||L2 , p ≥ 2(n + 1)

(n − 1)
.

But it seems very hard to break the log barrier.



Zygmund’s L4 estimates on torus

There may be some hope in establishing much-better-than-sphere
estimates on torus due to the explicit construction of
eigenfunctions.
(Zygmund, 1974) On 2-dimensional torus we have

||eλ||L4(T2) ≤ C ||eλ||L2(T2).

The proof is very simple and based on the simplicity of S1, so no
hope to generalize to higher-dimensions.



Higher dimensional Lp estimates on torus

In higher dimensions, we may have

1. n = 3, ||eλ||L4 ≤ Cελ
ε||eλ||L2 , due to arithmetic observation

(relatively simple).

2. n ≥ 4 (Bourgain 2011),
||eλ||Lp ≤ Cελ

ε ‖eλ‖L2 , p ≤ 2n/(n − 1). This is based on an
earlier work (Bourgain-Guth, 2011), which improved
Tomas-Stein restriction conjecture using multilinear oscillatory
integral techniques.



Lp conjecture on torus

So a conjecture:
Conjecture: Is it possible on higher-dimensional torus we have

||eλ||Lp ≤ C ||eλ||L2 , for some p > 2?

So far we have no idea how to break the λε barrier (compared with
neg-curved manifold case).



A relatively new approach

If the growth rate of eigenfunctions reflects largeness of singularity
of e it

√
−∆ which propagates along the geodesics, then in ideal case

the global Lp estimates may be dominated by the restriction of
eigenfunctions on geodesics.



Spherical harmonics

Spherical harmonics are the spherical part of the solution of
Laplace equation, also the eigenfunctions of

√
−∆Sn . In 2-d, if we

use θ ∈ [0, π] to denote the latitude, φ ∈ [0, 2π] the longitude,
then the eigenfunctions associated with

√
`(`+ 1) is

Ym
` (θ, φ) = cm,`P

m
` (cos θ)e imφ, −` ≤ m ≤ `

in which Pm
` is the associated Legendre polynomials of degree `

and order m.



Zonal and sectoral spherical harmonics

Two extremal cases:

1. m = 0, zonal spherical harmonics, Y 0
` = cm,`P`(cos θ).

2. m = ±`, sectoral spherical harmonics (some call it highest
weight spherical harmonics),
|Y `
` | = |c`| · | sin` θ| = |c`| · |x1 + ix2|`.





B-G-T theorem

(Burq-Gérard-Tzvetkov, 2006), inspired by (Reznikov, 2004)
If γ is a geodesic arc on surface M

‖eλ‖Lp(γ) ≤ Cλ
1
4 ‖eλ‖L2(M) , 2 ≤ p ≤ 4

‖eλ‖Lp(γ) ≤ Cλ
1
2
− 1

p ‖eλ‖L2(M) , 4 ≤ p ≤ ∞.

The first estimate is sharp on M = S2 by sectoral spherical
harmonics, and the latter is sharp by zonal spherical harmonics.



Equivalence between global and restricted Lp estimates

(Bourgain, 2009) and (Sogge, 2009): On surface M, the following
are equivalent for L2 normalized eigenfunctions:

‖eλ‖L4(M) ∈ o(λ
1
4 )

and
sup
γ
‖eλ‖L2(γ) ∈ o(λ

1
4 )

Here γ ⊂ M is a unit-length geodesic arc. And the latter (therefore
both) is proved to be true by (Sogge-Zelditch,2011) on surface
with non-positve curvature.



Improvement on torus

It is classical that (see Hardy-Wright)

||eλ||L2(γ) . ||eλ||L∞(T2) ≤ Cελ
ε||eλ||L2(T2)

So it leaves us a question, whether it is possible (for any smooth
curve or with curvature)

‖eλ‖L2(γ) ≤ C ‖eλ‖L2(T2) .

(Bourgain-Rudnick, 2011): If γ is an analytic curved arc in T2

(also in T3), then

||eλ||L2(γ) ≈ ||eλ||L2(T2),

when λ is large.



Conjecture

For a real analytic curved arc γ in Tn, n ≥ 4, do we still have

||eλ||L2(γ) ≈ ||eλ||L2(Tn)?



Thank you!


