Growth Rate of Eigenfunctions

Peng Shao

Sep. 252013

Eigenvalue and eigenfunctions

For a given compact smooth n-manifold M, we have the following (smooth) eigenfunctions

$$
-\Delta_{g} e_{\lambda}(x)=\lambda^{2} e_{\lambda}(x)
$$

And we have a discrete set of eigenvalues

$$
\left\{0=\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n} \cdots<\infty\right\}
$$

Basic questions

Two basic questions in spectral analysis

1. How the eigenvalues $\left\{\lambda_{j}\right\}$ are distributed on $[0, \infty)$?
2. How "large" the eigenfunctions are?

Weyl law

Eigenvalue: (classical Weyl formula, or Weyl law)

$$
N(\lambda)=c_{n} \lambda^{n}+O\left(\lambda^{n-1}\right)
$$

You can also recover $N(\lambda)$ by taking inverse Fourier transform on the truncated trace of half-wave operator:

$$
N(\lambda)=\frac{1}{2 \pi} \int \widehat{\chi_{[0, \lambda]}}(t)\left\{\text { trace of } e^{i t \sqrt{-\Delta}}\right\} d t
$$

Half-wave

The half-wave $e^{i t \sqrt{-\Delta}}$ is the Fourier transform of the spectral measure

$$
\hat{E}(t)=\int e^{-i t \lambda} d E_{\lambda}=e^{-i t \sqrt{-\Delta}}
$$

Here

$$
\left.e^{-i t \sqrt{-\Delta}}=\sum_{j} e^{-i t \lambda_{j}} e_{\lambda_{j}} \otimes e_{\lambda_{j}}=\sum_{j} \delta \widehat{\left(\cdot-\lambda_{j}\right.}\right)(t) e_{\lambda_{j}} \otimes e_{\lambda_{j}}
$$

and $e^{i t \sqrt{-\Delta}} f(x)$ is also the solution to the (half)-wave Cauchy problem:

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+\sqrt{-\Delta}\right) u(t, x)=0 \\
u(0, x)=f(x)
\end{array}\right.
$$

More about Weyl law

Two things should be mentioned about Weyl law

1. It is sharp on spheres S^{n}
2. It is rarely sharp on other manifolds. For example:
(Hlawka, 1950) On flat torus \mathbb{T}^{n}

$$
N(\lambda)=c \lambda^{n}+O\left(\lambda^{n-1-\frac{n-1}{n+1}}\right)
$$

This is because on torus $e_{\lambda}(x)$ is a trigonometric polynomial as follows

$$
e_{\lambda}(x)=\sum_{|m|^{2}=\lambda^{2}} \widehat{e}_{\lambda}(m) e^{i m \cdot x}
$$

Duistermaat-Guillemin wave-trace

A key progress was made by Duistermaat and Guillemin in 1975, who proved that

1. The trace of $e^{i t \sqrt{-\Delta}}$ is smooth when t is not equal to the period of any periodic geodesics (if any), or 0 .
2. If the periodic geodesics are of zero Liouville measure, then

$$
N(\lambda)=c_{n} \lambda^{n}+o\left(\lambda^{n-1}\right)
$$

Improvement on non-positive manifolds

So to improve the remainder term in Weyl formula, a good candidate would be a manifold with very few periodic geodesics. In fact:
(Bérard, 1977) On manifolds without conjugate points, such as non-positive curvature manifolds, we have

$$
N(\lambda)=c \lambda^{n}+O\left(\lambda^{n-1} / \log \lambda\right)
$$

General L^{p} estimates

Weyl formula is in fact an L^{∞} type estimates for the eigenfunctions:

$$
\left\|e_{\lambda}\right\|_{L^{\infty}} \leq C \lambda^{\frac{n-1}{2}}\left\|e_{\lambda}\right\|_{L^{2}} .
$$

So we may ask, how about an L^{p} estimates with $p<+\infty$? (of course, except for those from simple interpolation)

Sogge's general result

L^{p} estimates of the eigenfunctions on general manifolds (Sogge, 1987), using oscillatory integral techniques:

$$
\begin{array}{ll}
\left\|e_{\lambda}\right\|_{L^{p}(M)} \leq C \lambda^{n\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{2}}\left\|e_{\lambda}\right\|_{L^{2}(M)}, & \frac{2(n+1)}{n-1} \leq p \leq+\infty \\
\left\|e_{\lambda}\right\|_{L^{p}(M)} \leq C \lambda^{\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{p}\right)}\left\|e_{\lambda}\right\|_{L^{2}(M)}, & 2 \leq p \leq \frac{2(n+1)}{n-1}
\end{array}
$$

These estimates are sharp on spheres. But lacking of explicit information the eigenfunctions makes improvement on other manifolds generally hard.

L^{p} improvement on non-positive manifolds

For large p, we can interpolate with Bérard's result. And by $(\log \lambda)^{\alpha} \ll \lambda^{+0}$ we may obtain a slightly better improvement with the price of losing endpoint case.
(Hassell-Tacey, 2013)

$$
\left\|e_{\lambda}\right\|_{L^{p}} \leq C \frac{\lambda^{\frac{n-1}{2}-\frac{n}{p}}}{(\log \lambda)^{\frac{1}{2}}}\left\|e_{\lambda}\right\|_{L^{2}}, \quad p>\frac{2(n+1)}{(n-1)}
$$

Notice the improvement over:

$$
\left\|e_{\lambda}\right\|_{L^{p}} \leq C \frac{\lambda^{\frac{n-1}{2}-\frac{n}{p}}}{(\log \lambda)^{\frac{1}{2}-\frac{n+1}{p(n-1)}}}\left\|e_{\lambda}\right\|_{L^{2}}, \quad p \geq \frac{2(n+1)}{(n-1)}
$$

But it seems very hard to break the log barrier.

Zygmund's L^{4} estimates on torus

There may be some hope in establishing much-better-than-sphere estimates on torus due to the explicit construction of eigenfunctions.
(Zygmund, 1974) On 2-dimensional torus we have

$$
\left\|e_{\lambda}\right\|_{L^{4}\left(\mathbb{T}^{2}\right)} \leq C\left\|e_{\lambda}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}
$$

The proof is very simple and based on the simplicity of S^{1}, so no hope to generalize to higher-dimensions.

Higher dimensional L^{p} estimates on torus

In higher dimensions, we may have

1. $n=3,\left\|e_{\lambda}\right\|_{L^{4}} \leq C_{\varepsilon} \lambda^{\varepsilon}\left\|e_{\lambda}\right\|_{L^{2}}$, due to arithmetic observation (relatively simple).
2. $n \geq 4$ (Bourgain 2011),
$\left\|e_{\lambda}\right\|_{L^{p}} \leq C_{\varepsilon} \lambda^{\varepsilon}\left\|e_{\lambda}\right\|_{L^{2}}, p \leq 2 n /(n-1)$. This is based on an earlier work (Bourgain-Guth, 2011), which improved Tomas-Stein restriction conjecture using multilinear oscillatory integral techniques.

L^{p} conjecture on torus

So a conjecture:
Conjecture: Is it possible on higher-dimensional torus we have

$$
\left\|e_{\lambda}\right\|_{L^{p}} \leq C\left\|e_{\lambda}\right\|_{L^{2}}, \quad \text { for some } p>2 ?
$$

So far we have no idea how to break the λ^{ε} barrier (compared with neg-curved manifold case).

A relatively new approach

If the growth rate of eigenfunctions reflects largeness of singularity of $e^{i t \sqrt{-\Delta}}$ which propagates along the geodesics, then in ideal case the global L^{p} estimates may be dominated by the restriction of eigenfunctions on geodesics.

Spherical harmonics

Spherical harmonics are the spherical part of the solution of Laplace equation, also the eigenfunctions of $\sqrt{-\Delta_{S^{n}}}$. In 2-d, if we use $\theta \in[0, \pi]$ to denote the latitude, $\phi \in[0,2 \pi]$ the longitude, then the eigenfunctions associated with $\sqrt{\ell(\ell+1)}$ is

$$
Y_{\ell}^{m}(\theta, \phi)=c_{m, \ell} P_{\ell}^{m}(\cos \theta) e^{i m \phi}, \quad-\ell \leq m \leq \ell
$$

in which P_{ℓ}^{m} is the associated Legendre polynomials of degree ℓ and order m.

Zonal and sectoral spherical harmonics

Two extremal cases:

1. $m=0$, zonal spherical harmonics, $Y_{\ell}^{0}=c_{m, \ell} P_{\ell}(\cos \theta)$.
2. $m= \pm \ell$, sectoral spherical harmonics (some call it highest weight spherical harmonics),

$$
\left|Y_{\ell}^{\ell}\right|=\left|c_{\ell}\right| \cdot\left|\sin ^{\ell} \theta\right|=\left|c_{\ell}\right| \cdot\left|x_{1}+i x_{2}\right|^{\ell} .
$$

B-G-T theorem

(Burq-Gérard-Tzvetkov, 2006), inspired by (Reznikov, 2004) If γ is a geodesic arc on surface M

$$
\begin{aligned}
& \left\|e_{\lambda}\right\|_{L^{p}(\gamma)} \leq C \lambda^{\frac{1}{4}}\left\|e_{\lambda}\right\|_{L^{2}(M)}, \quad 2 \leq p \leq 4 \\
& \left\|e_{\lambda}\right\|_{L^{p}(\gamma)} \leq C \lambda^{\frac{1}{2}-\frac{1}{p}}\left\|e_{\lambda}\right\|_{L^{2}(M)}, \quad 4 \leq p \leq \infty
\end{aligned}
$$

The first estimate is sharp on $M=S^{2}$ by sectoral spherical harmonics, and the latter is sharp by zonal spherical harmonics.

Equivalence between global and restricted L^{p} estimates

(Bourgain, 2009) and (Sogge, 2009): On surface M, the following are equivalent for L^{2} normalized eigenfunctions:

$$
\left\|e_{\lambda}\right\|_{L^{4}(M)} \in o\left(\lambda^{\frac{1}{4}}\right)
$$

and

$$
\sup _{\gamma}\left\|e_{\lambda}\right\|_{L^{2}(\gamma)} \in o\left(\lambda^{\frac{1}{4}}\right)
$$

Here $\gamma \subset M$ is a unit-length geodesic arc. And the latter (therefore both) is proved to be true by (Sogge-Zelditch,2011) on surface with non-positve curvature.

Improvement on torus

It is classical that (see Hardy-Wright)

$$
\left\|e_{\lambda}\right\|_{L^{2}(\gamma)} \lesssim\left\|e_{\lambda}\right\|_{L^{\infty}\left(\mathbb{T}^{2}\right)} \leq C_{\varepsilon} \lambda^{\varepsilon}\left\|e_{\lambda}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}
$$

So it leaves us a question, whether it is possible (for any smooth curve or with curvature)

$$
\left\|e_{\lambda}\right\|_{L^{2}(\gamma)} \leq C\left\|e_{\lambda}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}
$$

(Bourgain-Rudnick, 2011): If γ is an analytic curved arc in \mathbb{T}^{2} (also in \mathbb{T}^{3}), then

$$
\left\|e_{\lambda}\right\|_{L^{2}(\gamma)} \approx\left\|e_{\lambda}\right\|_{L^{2}\left(\mathbb{T}^{2}\right)}
$$

when λ is large.

Conjecture

For a real analytic curved arc γ in $\mathbb{T}^{n}, n \geq 4$, do we still have

$$
\left\|e_{\lambda}\right\|_{L^{2}(\gamma)} \approx\left\|e_{\lambda}\right\|_{L^{2}\left(\mathbb{T}^{n}\right)} ?
$$

Thank you!

