Elliptic Curve Arithmetic

Toni Bluher

Outline

- Elliptic Curve Equation
- Warm-up Example: Unit Circle Group
- Group Law: Geometric Description
- Group Law: Algebraic Description
- Example
- References

Elliptic Curve Equation

An elliptic curve *E* over a field *F* is given by a cubic equation of special form. Assume for simplicity char(F) \neq 2, 3, then

$$E: y^2 = x^3 + Ax + B$$
, where $A, B \in F, 4A^3 + 27B^2 \neq$ (1)

The points of *E* can be made into a group! Group Identity is "the point at infinity", denoted \mathcal{O} . Extension fields If *K*/*F* is field extension, then *E*(*K*) is group:

$$E(\mathcal{K}) = \{\mathcal{O}\} \cup \{(x_0, y_0) \in \mathcal{K} \times \mathcal{K} : y_0^2 = x_0^3 + Ax_0 + B\}.$$

Elliptic Curve Equation

Cryptographic applications

For cryptography take F to be a finite field \mathbb{F}_q . Applications Williamson/Diffie-Hellman key exchange, elliptic curve digital signature algorithm, identity-based encryption Unit circle group

Unit Circle Group (Warm-up to EC group)

Unit Circle Group $x^2 + y^2 = 1$ Parameterization $(\cos \theta, \sin \theta)$ Addition $(\cos \theta_1, \sin \theta_1) + (\cos \theta_2, \sin \theta_2) =$ $(\cos(\theta_1 + \theta_2), \sin(\theta_1 + \theta_2)).$ Algebraic group (a, b) + (c, d) = (ac - bd, ad + bc), by trig formulas. Group law given by polynomials (or rational functions) in coords of points. Rationality If (a, b) and (c, d) have coords in field K then so does sum. K-rational points form group. Elliptic Curves mirror these properties.

Group Law (Geometric description)

Group Law (Geometric description)

$$E: y^2 = x^3 + Ax + B$$

Addition Rule If $E \cap L = \{P, Q, R\}$, then P + Q + R = O. (*L* a line).

Most lines pass through 3 distinct points.

Vertical line $\{x = x_0\}$ passes through only two points, (x_0, y_0) and $(x_0, -y_0)$. So $(x_0, y_0) + (x_0, -y_0) = O$.

Tangents If *L* is tangent to *P* and also passes through *Q* then $L \cap E = \{P, P, Q\}$, and 2P + Q = O.

Group Law (Algebraic description)

Group Law (Algebraic description)

Let
$$P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E$$
.
Negation If $P_2 = (x_1, -y_1)$ then $P_1 + P_2 = O$. So
 $-(x_1, y_1) = (x_1, -y_1)$.
Doubling If $P_1 = P_2$ and $y_1 \neq 0$ then let
 $m = (3x_1^2 + A)/(2y_1), b = y_1 - mx_1$. Then
 $2P_1 = (x_3, -(mx_3 + b))$.
Generic If none of above cases hold then
 $m := (y_2 - y_1)/(x_2 - x_1), b := y_1 - mx_1,$
 $x_3 := m^2 - x_1 - x_2$. $P_1 + P_2 = (x_3, -(mx_3 + b))$.

Example

Example

E:
$$y^2 = x^3 - x$$
 over \mathbb{F}_5 . Compute $(2, 1) + (-1, 0)$.
In \mathbb{F}_5 : $2 \cdot 3 = 1$, $1/2 = 3$, $1/3 = 2$, $1/4 = 4$.
Points are \mathcal{O} , $(0, 0)$, $(1, 0)$, $(2, \pm 1)$, $(-2, \pm 2)$, $(-1, 0)$.
Line is $(y - 0) = m(x + 1)$, where
 $m = (1 - 0)/(2 + 1) = 1/3 = 2$.
 $y = 2x + 2$ passes through $(2, 1)$, $(-1, 0)$, and
 (x_3, y_3) .
 $x^3 - x - (2x + 2)^2 = x^3 - x + x^2 + 2x + 1 = (x - 2)(x + 1)(x - x_3)$.
From coef of x^2 , $-2 + 1 - x_3 = 1$, $x_3 = 3$,
 $y_3 = 2x_3 + 2 = 3$.
 $(2, 1) + (-1, 0) = (x_3, -y_3) = (3, 2)$.

Reference

L. C. Washington, Elliptic Curves: Number Theory and Cryptography, 2nd Edition, Chapman & Hall/CRC, 2008. Easy to read yet covers a lot!