Elliptic Curve Arithmetic

Toni Bluher

Outline

■ Elliptic Curve Equation
■ Warm-up Example: Unit Circle Group
■ Group Law: Geometric Description

- Group Law: Algebraic Description
- Example

■ References

An elliptic curve E over a field F is given by a cubic equation of special form. Assume for simplicity $\operatorname{char}(F) \neq 2,3$, then

$$
\begin{equation*}
E: y^{2}=x^{3}+A x+B, \text { where } A, B \in F, 4 A^{3}+27 B^{2} \neq \tag{1}
\end{equation*}
$$

The points of E can be made into a group!
Group Identity is "the point at infinity", denoted \mathcal{O}.
Extension fields If K / F is field extension, then $E(K)$ is group:

$$
E(K)=\{\mathcal{O}\} \cup\left\{\left(x_{0}, y_{0}\right) \in K \times K: y_{0}^{2}=x_{0}^{3}+A x_{0}+B\right\} .
$$

Cryptographic applications

For cryptography take F to be a finite field \mathbb{F}_{q}.
Applications Williamson/Diffie-Hellman key exchange, elliptic curve digital signature algorithm, identity-based encryption

Unit Circle Group (Warm-up to EC group)

Unit Circle Group $x^{2}+y^{2}=1$
Parameterization $(\cos \theta, \sin \theta)$
Addition $\left(\cos \theta_{1}, \sin \theta_{1}\right)+\left(\cos \theta_{2}, \sin \theta_{2}\right)=$ $\left(\cos \left(\theta_{1}+\theta_{2}\right), \sin \left(\theta_{1}+\theta_{2}\right)\right)$.
Algebraic group $(a, b)+(c, d)=(a c-b d, a d+b c)$, by trig formulas. Group law given by polynomials (or rational functions) in coords of points.
Rationality If (a, b) and (c, d) have coords in field K then so does sum. K-rational points form group.
Elliptic Curves mirror these properties.

Group Law (Geometric description)

$$
E: y^{2}=x^{3}+A x+B
$$

Addition Rule If $E \cap L=\{P, Q, R\}$, then $P+Q+R=\mathcal{O}$.
(L a line).
Most lines pass through 3 distinct points.
Vertical line $\left\{x=x_{0}\right\}$ passes through only two points,

$$
\begin{aligned}
& \left(x_{0}, y_{0}\right) \text { and }\left(x_{0},-y_{0}\right) . \text { So } \\
& \left(x_{0}, y_{0}\right)+\left(x_{0},-y_{0}\right)=\mathcal{O} .
\end{aligned}
$$

Tangents If L is tangent to P and also passes through Q then $L \cap E=\{P, P, Q\}$, and $2 P+Q=\mathcal{O}$.

Group Law (Algebraic description)

Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E$.
Negation If $P_{2}=\left(x_{1},-y_{1}\right)$ then $P_{1}+P_{2}=\mathcal{O}$. So

$$
-\left(x_{1}, y_{1}\right)=\left(x_{1},-y_{1}\right)
$$

Doubling If $P_{1}=P_{2}$ and $y_{1} \neq 0$ then let

$$
\begin{aligned}
& m=\left(3 x_{1}^{2}+A\right) /\left(2 y_{1}\right), b=y_{1}-m x_{1} . \text { Then } \\
& 2 P_{1}=\left(x_{3},-\left(m x_{3}+b\right)\right) .
\end{aligned}
$$

Generic If none of above cases hold then

$$
\begin{aligned}
m & :=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right), b:=y_{1}-m x_{1} \\
x_{3} & :=m^{2}-x_{1}-x_{2} . P_{1}+P_{2}=\left(x_{3},-\left(m x_{3}+b\right)\right) .
\end{aligned}
$$

Example

■ $E: y^{2}=x^{3}-x$ over \mathbb{F}_{5}. Compute $(2,1)+(-1,0)$.

- In $\mathbb{F}_{5}: 2 \cdot 3=1,1 / 2=3,1 / 3=2,1 / 4=4$.
- Points are $\mathcal{O},(0,0),(1,0),(2, \pm 1),(-2, \pm 2),(-1,0)$.

■ Line is $(y-0)=m(x+1)$, where $m=(1-0) /(2+1)=1 / 3=2$.
■ $y=2 x+2$ passes through $(2,1),(-1,0)$, and $\left(x_{3}, y_{3}\right)$.

- $x^{3}-x-(2 x+2)^{2}=x^{3}-x+x^{2}+2 x+1=$ $(x-2)(x+1)\left(x-x_{3}\right)$.
■ From coef of $x^{2},-2+1-x_{3}=1, x_{3}=3$,

$$
\begin{aligned}
& y_{3}=2 x_{3}+2=3 . \\
& \square(2,1)+(-1,0)=\left(x_{3},-y_{3}\right)=(3,2) .
\end{aligned}
$$

Reference

L. C. Washington, Elliptic Curves: Number Theory and Cryptography, 2nd Edition, Chapman \& Hall/CRC, 2008. Easy to read yet covers a lot!

