Some Tools for Exploring Supersymmetric RG Flows

Thomas Dumitrescu

Harvard University

Work in Progress with G. Festuccia and M. del Zotto

NatiFest, September 2016 - IAS, Princeton

Quantum Field Theory and Supersymmetry

Despite its phenomenal successes, QFT is still a work in progress:

"There are indications that we are still missing big things – perhaps quantum field theory should be reformulated" – Nathan Seiberg

Quantum Field Theory and Supersymmetry

Despite its phenomenal successes, QFT is still a work in progress:

"There are indications that we are still missing big things – perhaps quantum field theory should be reformulated" – Nathan Seiberg

Attempts to do better are limited by our (in-) ability to control the dynamics of non-trivial, interacting field theories. Natural to look for simplifying limits, with additional symmetries: topological, conformal, weak-coupling, large-N, integrable, ...

Quantum Field Theory and Supersymmetry

Despite its phenomenal successes, QFT is still a work in progress:

"There are indications that we are still missing big things – perhaps quantum field theory should be reformulated" – Nathan Seiberg

Attempts to do better are limited by our (in-) ability to control the dynamics of non-trivial, interacting field theories. Natural to look for simplifying limits, with additional symmetries: topological, conformal, weak-coupling, large-N, integrable, ...

Supersymmetric QFTs can display rich, non-conformal dynamics. They also have some protected (BPS) quantities that can be analyzed exactly. Example: superpotential $W(\Phi)$, holomorphic in all (background) chiral superfields, including couplings [Seiberg]. In favorable situations, tracking the protected quantities along the RG flow can give a good picture of the dynamics.

Supersymmetric Indices

With this in mind, we would like to expand our toolbox of protected observables, and to deepen our understanding of them.

Supersymmetric Indices

With this in mind, we would like to expand our toolbox of protected observables, and to deepen our understanding of them.

A large and interesting class: SUSY partition functions Z_M on a compact spacetime manifold M. Example [Witten]:

$$\mathcal{M}=T^d, \;\; Z_\mathcal{M}=\mathrm{Tr}_\mathcal{H}(-1)^F \;, \;\; \mathcal{H}=\mathsf{states} \;\mathsf{on}\; T^{d-1} imes \mathbb{R}_\mathsf{time}$$

Supersymmetric Indices

With this in mind, we would like to expand our toolbox of protected observables, and to deepen our understanding of them.

A large and interesting class: SUSY partition functions Z_M on a compact spacetime manifold M. Example [Witten]:

 $\mathcal{M}=T^d, \ \ Z_{\mathcal{M}}=\mathrm{Tr}_{\mathcal{H}}{(-1)}^F \ , \ \ \mathcal{H}=\text{states on } T^{d-1}\times \mathbb{R}_{\mathsf{time}}$

- Naturally defined in any (non-conformal) SUSY theory.
- Counts (with sign) the SUSY vacua on T^{d-1} : index.
- Varying parameters (RG flow) typically does not change the answer, but vacua can pair up and acquire positive energy.
- Subtle wall-crossing phenomena, sometimes ill defined.

Supersymmetric Indices (cont.)

Recently, many examples of supersymmetric indices defined as partition functions on manifolds of topology $\mathcal{M} = S^{d-1} \times S^1$:

- Count supersymmetric states on $S^{d-1} \times \mathbb{R}_{time}$.
- ► Naturally defined in SCFTs (via a conformal map).

Supersymmetric Indices (cont.)

Recently, many examples of supersymmetric indices defined as partition functions on manifolds of topology $\mathcal{M} = S^{d-1} \times S^1$:

- Count supersymmetric states on $S^{d-1} \times \mathbb{R}_{time}$.
- ► Naturally defined in SCFTs (via a conformal map).
 - Count BPS local operators in flat space (state-operator correspondence) [Kinney-Maldacena-Minwalla-Raju].
 - Independent of exactly marginal couplings. Robust due to discrete spectrum and normalizable vacuum on S^{d-1}.

Supersymmetric Indices (cont.)

Recently, many examples of supersymmetric indices defined as partition functions on manifolds of topology $\mathcal{M} = S^{d-1} \times S^1$:

- Count supersymmetric states on $S^{d-1} \times \mathbb{R}_{time}$.
- Naturally defined in SCFTs (via a conformal map).
 - Count BPS local operators in flat space (state-operator correspondence) [Kinney-Maldacena-Minwalla-Raju].
 - Independent of exactly marginal couplings. Robust due to discrete spectrum and normalizable vacuum on S^{d-1}.

Just as the index on $\mathcal{M} = T^d$, indices on $\mathcal{M} = S^{d-1} \times S^1$ can sometimes be defined for **non-conformal** supersymmetric theories:

- When can this be done, how to preserve SUSY (not obvious)?
- ▶ Not canonical: additional choices, parameters in curved space.
- Does the index depend on them? What does it count?
- Only non-conformal indices can be used to explore RG flows.

A systematic approach to supersymmetric QFT in curved space was developed by [Festuccia-Seiberg]

A systematic approach to supersymmetric QFT in curved space was developed by [Festuccia-Seiberg] – for today [Nati-Fest(uccia)].

A systematic approach to supersymmetric QFT in curved space was developed by [Festuccia-Seiberg] – for today [Nati-Fest(uccia)].

Main Idea: the non-dynamical metric $g_{\mu\nu}$ on \mathcal{M} must reside in an off-shell supergravity multiplet. This extends the powerful principle that all background fields should reside in superfields [Seiberg].

This formalism was recently reviewed in arXiv:1608.02957 [TD].

A systematic approach to supersymmetric QFT in curved space was developed by [Festuccia-Seiberg] – for today [Nati-Fest(uccia)].

Main Idea: the non-dynamical metric $g_{\mu\nu}$ on \mathcal{M} must reside in an off-shell supergravity multiplet. This extends the powerful principle that all background fields should reside in superfields [Seiberg].

This formalism was recently reviewed in arXiv:1608.02957 [TD].

The coupling of the QFT to background supergravity proceeds via the flat-space stress tensor $T_{\mu\nu}$, and its superpartners \mathcal{J}_B^i and \mathcal{J}_F^i ,

$$\Delta \mathscr{L} = -\frac{1}{2} \Delta g^{\mu\nu} T_{\mu\nu} + \sum_{i} \left(\mathcal{B}_{B}^{i} \mathcal{J}_{B}^{i} + \mathcal{B}_{F}^{i} \mathcal{J}_{F}^{i} \right) + (\text{seagull terms})$$

SUSY QFT in Curved Space (cont.)

$$\Delta \mathscr{L} = -\frac{1}{2} \Delta g^{\mu\nu} T_{\mu\nu} + \sum_{i} \left(\mathcal{B}_{B}^{i} \mathcal{J}_{B}^{i} + \mathcal{B}_{F}^{i} \mathcal{J}_{F}^{i} \right) + (\text{seagull terms})$$

► Typically, activate bosons g_{μν}, Bⁱ_B and set fermions Bⁱ_F = 0.
► A supercharge Q exists if

$$\delta_Q \mathcal{B}_F^i = 0 \quad \supset \quad \nabla_\mu \zeta + f(g_{\mu\nu}, \mathcal{B}_B^i) \zeta = 0$$

These equations determine all SUSY backgrounds $(g_{\mu\nu}, \mathcal{B}_B^i)$.

SUSY QFT in Curved Space (cont.)

$$\Delta \mathscr{L} = -\frac{1}{2} \Delta g^{\mu\nu} T_{\mu\nu} + \sum_{i} \left(\mathcal{B}_{B}^{i} \mathcal{J}_{B}^{i} + \mathcal{B}_{F}^{i} \mathcal{J}_{F}^{i} \right) + (\text{seagull terms})$$

► Typically, activate bosons g_{μν}, Bⁱ_B and set fermions Bⁱ_F = 0.
► A supercharge Q exists if

$$\delta_Q \mathcal{B}_F^i = 0 \quad \supset \quad \nabla_\mu \zeta + f(g_{\mu\nu}, \mathcal{B}_B^i)\zeta = 0$$

These equations determine all SUSY backgrounds $(g_{\mu\nu}, \mathcal{B}_B^i)$.

- Activating only $g_{\mu\nu}$ is typically not enough to preserve SUSY $([Q, T_{\mu\nu}] \neq 0)$, or to specify the background (different \mathcal{B}_B^i).
- SUSY algebra, Lagrangians on *M* follow from supergravity.

An $\mathcal{N} = 1$ Index in 4d

There are unitary $\mathcal{N} = 1$ theories on $S_{\ell}^3 \times \mathbb{R}_{\text{time}}$ [Sen, Römelsberger, Festuccia-Seiberg]. The SUSY algebra is deformed to $\mathfrak{su}(2|1)$:

$$\left\{Q^{\dagger\alpha}, Q_{\beta}\right\} = \delta^{\alpha}{}_{\beta} \left(H + \frac{1}{\ell}R\right) + \frac{2}{\ell}J^{\alpha}{}_{\beta} , \qquad \left\{Q_{\alpha}, Q_{\beta}\right\} = 0$$

 $\mathfrak{su}(2) \times \mathfrak{u}(1)$ subalgebra = (left or right SU(2) isometries of S^3) × (unbroken $U(1)_R$ -symmetry). The Hamiltonian H is central.

An $\mathcal{N} = 1$ Index in 4d

There are unitary $\mathcal{N} = 1$ theories on $S_{\ell}^3 \times \mathbb{R}_{\text{time}}$ [Sen, Römelsberger, Festuccia-Seiberg]. The SUSY algebra is deformed to $\mathfrak{su}(2|1)$:

$$\left\{Q^{\dagger\alpha}, Q_{\beta}\right\} = \delta^{\alpha}{}_{\beta} \left(H + \frac{1}{\ell}R\right) + \frac{2}{\ell}J^{\alpha}{}_{\beta} , \qquad \left\{Q_{\alpha}, Q_{\beta}\right\} = 0$$

 $\mathfrak{su}(2) \times \mathfrak{u}(1)$ subalgebra = (left or right SU(2) isometries of S^3) × (unbroken $U(1)_R$ -symmetry). The Hamiltonian H is central.

$$\mathscr{L} \supset A^{\mu} j^{(R)}_{\mu} + V^{\mu} X_{\mu} , \qquad A_0 \sim V_0 \sim rac{1}{\ell}$$

An $\mathcal{N} = 1$ Index in 4d

There are unitary $\mathcal{N} = 1$ theories on $S_{\ell}^3 \times \mathbb{R}_{\text{time}}$ [Sen, Römelsberger, Festuccia-Seiberg]. The SUSY algebra is deformed to $\mathfrak{su}(2|1)$:

$$\left\{Q^{\dagger\alpha}, Q_{\beta}\right\} = \delta^{\alpha}{}_{\beta} \left(H + \frac{1}{\ell}R\right) + \frac{2}{\ell}J^{\alpha}{}_{\beta} , \qquad \left\{Q_{\alpha}, Q_{\beta}\right\} = 0$$

 $\mathfrak{su}(2) \times \mathfrak{u}(1)$ subalgebra = (left or right SU(2) isometries of S^3) × (unbroken $U(1)_R$ -symmetry). The Hamiltonian H is central.

$$\mathscr{L} \supset A^{\mu} j^{(R)}_{\mu} + V^{\mu} X_{\mu} , \qquad A_0 \sim V_0 \sim rac{1}{\ell}$$

- We can choose any U(1)_R current j^(R)_µ in flat space. The couplings on S³ explicitly depend on this choice.
- ► The coupling V^µX_µ only exists in non-conformal theories; it is crucial for preserving supersymmetry.
- In an SCFT: $\mathfrak{su}(2|1) \subset$ superconformal algebra, with $Q^{\dagger lpha} \sim S^{lpha}$ and $H \sim D + \frac{1}{2}R$

 $\mathfrak{su}(2|1)$ unitarity bounds: $E\ell \ge 2j + 2 - r$ or $E\ell = -r$ (j = 0). Count short multiplets (modulo recombination) using an index:

$$\mathcal{I}(q) = \operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{H} = Z_{S_{\ell}^{3} \times S^{1}}(q) , \qquad \log q \sim \frac{\operatorname{\mathsf{radius}}(S^{1})}{\ell}$$

 $\mathfrak{su}(2|1)$ unitarity bounds: $E\ell \ge 2j + 2 - r$ or $E\ell = -r$ (j = 0). Count short multiplets (modulo recombination) using an index:

$$\mathcal{I}(q) = \operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{H} = Z_{S_{\ell}^{3} \times S^{1}}(q) , \qquad \log q \sim \frac{\operatorname{\mathsf{radius}}(S^{1})}{\ell}$$

Non-renormalization theorem [Festuccia-Seiberg]: $\mathcal{I}(q)$ is independent of all deformations preserving $\mathfrak{su}(2|1)$, because the energy of all short representations is fixed in terms of j, r.

 $\mathfrak{su}(2|1)$ unitarity bounds: $E\ell \ge 2j + 2 - r$ or $E\ell = -r$ (j = 0). Count short multiplets (modulo recombination) using an index:

$$\mathcal{I}(q) = \operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{H} = Z_{S_{\ell}^{3} \times S^{1}}(q) , \qquad \log q \sim \frac{\operatorname{\mathsf{radius}}(S^{1})}{\ell}$$

Non-renormalization theorem [Festuccia-Seiberg]: $\mathcal{I}(q)$ is independent of all deformations preserving $\mathfrak{su}(2|1)$, because the energy of all short representations is fixed in terms of j, r.

Set all couplings to zero, compute in a free SCFT: simple matrix integral counting gauge-invariant local operators.

 $\mathfrak{su}(2|1)$ unitarity bounds: $E\ell \ge 2j + 2 - r$ or $E\ell = -r$ (j = 0). Count short multiplets (modulo recombination) using an index:

$$\mathcal{I}(q) = \operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{H} = Z_{S_{\ell}^{3} \times S^{1}}(q) , \qquad \log q \sim \frac{\operatorname{\mathsf{radius}}(S^{1})}{\ell}$$

Non-renormalization theorem [Festuccia-Seiberg]: $\mathcal{I}(q)$ is independent of all deformations preserving $\mathfrak{su}(2|1)$, because the energy of all short representations is fixed in terms of j, r.

- Set all couplings to zero, compute in a free SCFT: simple matrix integral counting gauge-invariant local operators.
- ► The RG flow itself is an allowed deformation ⇒ I(q) can be computed anywhere along the flow. It must match across IR (or [Seiberg]) dualities [Römelsberger,Dolan-Osborn].

 $\mathfrak{su}(2|1)$ unitarity bounds: $E\ell \ge 2j + 2 - r$ or $E\ell = -r$ (j = 0). Count short multiplets (modulo recombination) using an index:

$$\mathcal{I}(q) = \operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{H} = Z_{S_{\ell}^{3} \times S^{1}}(q) , \qquad \log q \sim \frac{\operatorname{\mathsf{radius}}(S^{1})}{\ell}$$

Non-renormalization theorem [Festuccia-Seiberg]: $\mathcal{I}(q)$ is independent of all deformations preserving $\mathfrak{su}(2|1)$, because the energy of all short representations is fixed in terms of j, r.

- Set all couplings to zero, compute in a free SCFT: simple matrix integral counting gauge-invariant local operators.
- ► The RG flow itself is an allowed deformation ⇒ I(q) can be computed anywhere along the flow. It must match across IR (or [Seiberg]) dualities [Römelsberger,Dolan-Osborn].

Everything is well defined as long as the spectrum of H is discrete.

Is $\mathcal{N} = 2$ Harder Than $\mathcal{N} = 1$?

When the *R*-charge r of a scalar ϕ vanishes, the spectrum of *H* is continuous, because the *r*-dependent curvature coupling vanishes:

$$\mathscr{L} \quad \supset \quad \partial^{\mu} \overline{\phi} \partial_{\mu} \phi + rac{f(r)}{\ell^{2}} |\phi|^{2} \;, \qquad f(r=0) = 0$$

The flat direction implies a divergence in the index $\mathcal{I}(q) = Z_{S^3_{\ell} \times S^1}$.

Is $\mathcal{N} = 2$ Harder Than $\mathcal{N} = 1$?

When the *R*-charge r of a scalar ϕ vanishes, the spectrum of *H* is continuous, because the *r*-dependent curvature coupling vanishes:

$$\mathscr{L} \quad \supset \quad \partial^\mu \overline{\phi} \partial_\mu \phi + rac{f(r)}{\ell^2} |\phi|^2 \;, \qquad f(r=0) = 0$$

The flat direction implies a divergence in the index $\mathcal{I}(q) = Z_{S_{\ell}^3 \times S^1}$. This problem naturally arises in $\mathcal{N} = 2$ theories:

- N = 2 SCFTs have SU(2)_R × U(1)_R symmetry, which can be used to define a well-behaved index [Kinney et. al.].
- ► Non-conformal N = 2 theories often preserve the SU(2)_R symmetry, but typically not the U(1)_R symmetry.
- ► Vector-multiplet scalars φ are neutral under SU(2)_R, i.e. I(q) does not exist in non-conformal N = 2 theories with vectors.

We expect that $\mathcal{N} = 2$ supersymmetry allows us to do better!

Searching for a Non-Conformal $\mathcal{N} = 2$ Index

As a guide, we start with an SCFT, but avoid certain generators:

- Conformally map the theory to $S_{\ell}^3 \times \mathbb{R}$.
- ► Look for a subalgebra of the superconformal algebra that only includes genuine isometries of $S_{\ell}^3 \times \mathbb{R}$ and $SU(2)_R$.

Searching for a Non-Conformal $\mathcal{N} = 2$ Index

As a guide, we start with an SCFT, but avoid certain generators:

- Conformally map the theory to $S_{\ell}^3 \times \mathbb{R}$.
- Look for a subalgebra of the superconformal algebra that only includes genuine isometries of S³_ℓ × ℝ and SU(2)_R.

The largest such subalgebra is another, but different $\mathfrak{su}(2|1)$:

$$\left\{\mathcal{Q}^{\dagger\alpha},\mathcal{Q}_{\beta}\right\} = \delta^{\alpha}{}_{\beta}\left(H + \frac{1}{\ell}R_{3}\right) + \frac{2}{\ell}J^{\alpha}{}_{\beta}, \qquad \left\{\mathcal{Q}_{\alpha},\mathcal{Q}_{\beta}\right\} = 0$$

- R_3 = Cartan generator of the $SU(2)_R$ symmetry.
- Key: $J^{\alpha}_{\ \beta}$ generates the diagonal SU(2) isometries of S^{3}_{ℓ} .

Searching for a Non-Conformal $\mathcal{N} = 2$ Index

As a guide, we start with an SCFT, but avoid certain generators:

- Conformally map the theory to $S_{\ell}^3 \times \mathbb{R}$.
- Look for a subalgebra of the superconformal algebra that only includes genuine isometries of S³_ℓ × ℝ and SU(2)_R.

The largest such subalgebra is another, but different $\mathfrak{su}(2|1)$:

$$\left\{\mathcal{Q}^{\dagger\alpha},\mathcal{Q}_{\beta}\right\} = \delta^{\alpha}{}_{\beta}\left(H + \frac{1}{\ell}R_{3}\right) + \frac{2}{\ell}J^{\alpha}{}_{\beta}, \qquad \left\{\mathcal{Q}_{\alpha},\mathcal{Q}_{\beta}\right\} = 0$$

- $R_3 = \text{Cartan generator of the } SU(2)_R$ symmetry.
- Key: $J^{\alpha}_{\ \beta}$ generates the diagonal SU(2) isometries of S^{3}_{ℓ} .

Short $\mathfrak{su}(2|1) \subset$ superconformal multiplets satisfy $\Delta = j_{\text{diag.}} + 2R_3$. The $\mathfrak{su}(2|1)$ index $\mathcal{I}(q)$ is the Schur limit of the $\mathcal{N} = 2$ superconformal index [Gadde-Rastelli-Razamat-Yan].

Supergravity Background

We would like to construct non-conformal $\mathcal{N} = 2$ theories on $S^3 \times \mathbb{R}_{time}$ that realize this diagonal $\mathfrak{su}(2|1)$ SUSY algebra.

Supergravity Background

We would like to construct non-conformal $\mathcal{N} = 2$ theories on $S^3 \times \mathbb{R}_{\text{time}}$ that realize this diagonal $\mathfrak{su}(2|1)$ SUSY algebra.

Use background supergravity formalism of [Festuccia-Seiberg]:

1.) Choose a stress-tensor multiplet in flat space. Essentially all interesting $\mathcal{N} = 2$ theories with an $SU(2)_R$ symmetry have a distinguished stress-tensor multiplet discovered by [Sohnius]:

 $\begin{array}{cccc} \mathcal{T} & \rightarrow & \psi^{i}_{\alpha} & \rightarrow & W_{[\mu\nu]}, R^{(ij)}_{\mu}, r_{\mu} & \rightarrow & S^{i}_{\mu\alpha} & \rightarrow & T_{\mu\nu} & (\text{real}) \\ \text{vanishes in SCFT:} & X^{(ij)} & \longrightarrow & \chi^{i}_{\alpha} & \rightarrow & z_{\mu}, K & (\text{complex}) \end{array}$

Supergravity Background

We would like to construct non-conformal $\mathcal{N} = 2$ theories on $S^3 \times \mathbb{R}_{time}$ that realize this diagonal $\mathfrak{su}(2|1)$ SUSY algebra.

Use background supergravity formalism of [Festuccia-Seiberg]:

1.) Choose a stress-tensor multiplet in flat space. Essentially all interesting $\mathcal{N} = 2$ theories with an $SU(2)_R$ symmetry have a distinguished stress-tensor multiplet discovered by [Sohnius]:

 $\mathcal{T} \rightarrow \psi^{i}_{\alpha} \rightarrow W_{[\mu\nu]}, R^{(ij)}_{\mu}, r_{\mu} \rightarrow S^{i}_{\mu\alpha} \rightarrow T_{\mu\nu}$ (real) vanishes in SCFT: $X^{(ij)} \longrightarrow \chi^{i}_{\alpha} \rightarrow z_{\mu}, K$ (complex)

2.) Need a background supergravity field for each operator:

$$\Delta \mathscr{L} = \mathcal{J}_{\mathcal{T}} \mathcal{T} + \mathcal{J}_{W}^{[\mu\nu]} W_{[\mu\nu]} + V^{\mu(ij)} R_{\mu(ij)} + A^{\mu} r_{\mu} - \frac{1}{2} \Delta g^{\mu\nu} T_{\mu\nu} + \mathcal{J}_{X}^{(ij)} X_{(ij)} + C^{\mu} z_{\mu} + \mathcal{J}_{K} K + (\text{c.c.}) + (\text{fermions})$$

Note: C_{μ} is the dimensionless central-charge gauge field.

3.) Solve the SUSY conditions $\delta_Q(\text{SUGRA fermions}) = 0$. We found a solution with a round metric on S_{ℓ}^3 of radius ℓ ,

$$ds^2 = -dt^2 + \ell^2 \left(d\theta^2 + \sin^2 \theta d\Omega_2 \right) , \ \ 0 \le \theta \le \pi$$

3.) Solve the SUSY conditions $\delta_Q(\text{SUGRA fermions}) = 0$. We found a solution with a round metric on S_{ℓ}^3 of radius ℓ ,

 $ds^{2} = -dt^{2} + \ell^{2} \left(d\theta^{2} + \sin^{2} \theta d\Omega_{2} \right) , \quad 0 \leq \theta \leq \pi$

3.) Solve the SUSY conditions $\delta_Q(\text{SUGRA fermions}) = 0$. We found a solution with a round metric on S_{ℓ}^3 of radius ℓ ,

 $ds^{2} = -dt^{2} + \ell^{2} \left(d\theta^{2} + \sin^{2} \theta d\Omega_{2} \right) , \quad 0 \le \theta \le \pi$

Some other fields break $SO(4) \rightarrow SU(2)_{\text{diag}}, SU(2)_R \rightarrow R_3$,

$$\begin{split} \mathcal{J}_X^3 &\sim \frac{\zeta}{\ell} \cos \theta \ , \qquad C_\mu dx^\mu \sim \zeta \cos \theta dt \qquad (\text{decouple in SCFT}) \\ \mathcal{J}_{\mathcal{T}} &\sim \frac{1}{\ell^2} \ , \qquad V_\mu^3 dx^\mu \sim \frac{1}{\ell} dt \ , \qquad \mathcal{J}_K = \zeta^2 = \text{constant phase} \end{split}$$

In fact, there are four supercharges that give the desired $\mathfrak{su}(2|1)$. We can analyze $\mathcal{N} = 2$ theories on this $S^3 \times \mathbb{R}_{time}$ background:

In fact, there are four supercharges that give the desired $\mathfrak{su}(2|1)$. We can analyze $\mathcal{N} = 2$ theories on this $S^3 \times \mathbb{R}_{time}$ background:

► The theory is unitary – standard reality for background fields.

In fact, there are four supercharges that give the desired $\mathfrak{su}(2|1)$. We can analyze $\mathcal{N} = 2$ theories on this $S^3 \times \mathbb{R}_{\mathsf{time}}$ background:

- ► The theory is unitary standard reality for background fields.
- ► No problem with vector multiplets: the background induces a mass term for the scalars φ that lifts the flat direction.

In fact, there are four supercharges that give the desired $\mathfrak{su}(2|1)$. We can analyze $\mathcal{N} = 2$ theories on this $S^3 \times \mathbb{R}_{\mathsf{time}}$ background:

- ► The theory is unitary standard reality for background fields.
- ► No problem with vector multiplets: the background induces a mass term for the scalars φ that lifts the flat direction.
- ► In an SCFT, all terms that break SO(4), SU(2)_R can be removed to recover a conformally coupled theory.

In that case, the phase ζ specifies the embedding of $\mathfrak{su}(2|1)$ into the superconformal algebra.

In fact, there are four supercharges that give the desired $\mathfrak{su}(2|1)$. We can analyze $\mathcal{N} = 2$ theories on this $S^3 \times \mathbb{R}_{\mathsf{time}}$ background:

- The theory is unitary standard reality for background fields.
- ► No problem with vector multiplets: the background induces a mass term for the scalars φ that lifts the flat direction.
- ► In an SCFT, all terms that break SO(4), SU(2)_R can be removed to recover a conformally coupled theory.

In that case, the phase ζ specifies the embedding of $\mathfrak{su}(2|1)$ into the superconformal algebra.

In non-conformal theories, the background fields J³_X, C₀ that break SO(4), SU(2)_R lead to position-dependent mass terms and derivative couplings.

The position-dependent couplings look dauting! But we can apply the $\mathfrak{su}(2|1)$ non-renormalization theorem of [Festuccia-Seiberg]:

The position-dependent couplings look dauting! But we can apply the $\mathfrak{su}(2|1)$ non-renormalization theorem of [Festuccia-Seiberg]:

The index is independent of all continuous couplings:

$$\mathcal{I}(q) = \operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{H} = Z_{S^{3}_{\ell} \times S^{1}}(q) , \qquad \log q \sim \frac{\operatorname{\mathsf{radius}}(S^{1})}{\ell}$$

-1

The position-dependent couplings look dauting! But we can apply the $\mathfrak{su}(2|1)$ non-renormalization theorem of [Festuccia-Seiberg]:

The index is independent of all continuous couplings:

$$\mathcal{I}(q) = \operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{H} = Z_{S^{3}_{\ell} \times S^{1}}(q) , \qquad \log q \sim \frac{\mathsf{radius}(S^{1})}{\ell}$$

In any renormalizable gauge theory with matter: set gauge couplings, masses to zero ⇒ compute in the free UV theory. This leads to exactly the same matrix model as in conformal gauge theories [Gadde-Rastelli-Razamat-Yan]. The integrand is minimally modified to reflect the non-conformal matter [...].

The position-dependent couplings look dauting! But we can apply the $\mathfrak{su}(2|1)$ non-renormalization theorem of [Festuccia-Seiberg]:

The index is independent of all continuous couplings:

$$\mathcal{I}(q) = \operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{H} = Z_{S^{3}_{\ell} \times S^{1}}(q) , \qquad \log q \sim \frac{\mathsf{radius}(S^{1})}{\ell}$$

- In any renormalizable gauge theory with matter: set gauge couplings, masses to zero ⇒ compute in the free UV theory. This leads to exactly the same matrix model as in conformal gauge theories [Gadde-Rastelli-Razamat-Yan]. The integrand is minimally modified to reflect the non-conformal matter [...].
- ► Also possible to compute I(q) in the IR ⇒ make contact with recent conjectures of [lqbal-Vafa, Cordova-Shao + Gaiotto, ...] relating I(q) to BPS particles on the Coulomb branch.

-1

Comments on (Non-) Decoupling

We argued that $\mathcal{I}(q)$ does not depend on continuous parameters, e.g. a mass m for a free hypermultiplet.

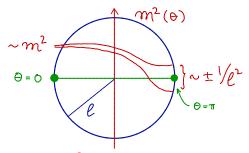
Comments on (Non-) Decoupling

We argued that $\mathcal{I}(q)$ does not depend on continuous parameters, e.g. a mass m for a free hypermultiplet.

This is inconsistent with naive decoupling: as $m \to \infty$, the flat-space theory becomes trivial, with $\mathcal{I}(q) = 1$. On $S_{\ell}^3 \times \mathbb{R}_{\text{time}}$, we expect non-vacuum states to have energy $E \sim m \to \infty$.

Comments on (Non-) Decoupling (cont.)

In fact, the position-dependent background fields lead to a non-trivial mass function $m^2(\theta)$ for some scalar modes, e.g.



- Near the poles, m²(θ) can become very small. This leads to localized modes with E ~ 1/ℓ ≪ m, which do not decouple.
- In natural units, the background fields are very strong:

 $m^2(\theta) \supset -m^2 C_0^2 \sim C_{\rm phys.}^2 \;, \qquad C_0 \sim \cos \theta \;, \label{eq:phys.}$

Inserting BPS Line Operators

At the poles of S^3 the S^2 shrinks, $\mathfrak{su}(2|1)$ contracts to a subalgebra of flat-space SUSY. It is the algebra preserved by a BPS particle with central charge $Z \mid \mid \zeta$ (or its antiparticle).

Inserting BPS Line Operators

At the poles of S^3 the S^2 shrinks, $\mathfrak{su}(2|1)$ contracts to a subalgebra of flat-space SUSY. It is the algebra preserved by a BPS particle with central charge $Z \mid \mid \zeta$ (or its antiparticle). This algebra is also preserved by certain $\frac{1}{2}$ -BPS line operators,

studied by [Gaiotto-Moore-Neitzke, ...]. They are:

- Supported on straight lines *L*.
- ▶ Invariant under the maximal unbroken $SU(2)_R \times SU(2)_{rot.}$

Inserting BPS Line Operators

At the poles of S^3 the S^2 shrinks, $\mathfrak{su}(2|1)$ contracts to a subalgebra of flat-space SUSY. It is the algebra preserved by a BPS particle with central charge $Z \mid \mid \zeta$ (or its antiparticle). This algebra is also preserved by certain $\frac{1}{2}$ -BPS line operators,

- studied by [Gaiotto-Moore-Neitzke, ...]. They are:
 - Supported on straight lines L.
 - ▶ Invariant under the maximal unbroken $SU(2)_R \times SU(2)_{rot.}$

Example: a Wilson line of charge q for a U(1) gauge field A,

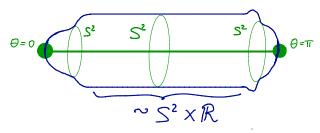
$$W_q = \exp\left(iq \int_L (A + \frac{i}{2\zeta}\phi - \frac{i\zeta}{2}\overline{\phi})\right)$$

These line defects can be inserted into our $S_{\ell}^3 \times \mathbb{R}_{time}$ background, if we place them at the poles and along time.

Deforming the Sphere

The background admits a family of deformations where the radius of S^2 is any bounded function $f(\theta)$ on the interval $0 \le \theta \le \pi$,

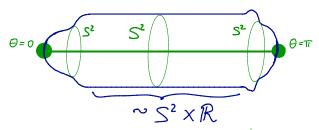
$$ds^{2} = -dt^{2} + \ell^{2} \left(d\theta^{2} + f(\theta)^{2} d\Omega_{2} \right)$$



Deforming the Sphere

The background admits a family of deformations where the radius of S^2 is any bounded function $f(\theta)$ on the interval $0 \le \theta \le \pi$,

$$ds^{2} = -dt^{2} + \ell^{2} \left(d\theta^{2} + f(\theta)^{2} d\Omega_{2} \right)$$



Any choice of $f(\theta)$ preserves the full $\mathfrak{su}(2|1)$ symmetry – again the indx $\mathcal{I}(q)$ is unchanged. If $f(\theta) = \text{const.}$ the geometry is $S^2 \times \mathbb{R}^{1,1}$ and the SUSY algebra enhances to $\mathfrak{su}(2|2)$. Theories with this algebra were studied by [Itzhaki-Kutasov-Seiberg, Lin-Maldacena,...].

The unitarity bounds of $\mathfrak{su}(2|2)$ show that the theory on $S^2 \times \mathbb{R}^{1,1}$ must be fully gapped. It can have multiple isolated vacua that are invariant under $SU(2)_R \times SU(2)_{rot.}$. They cannot be lifted by any continuous parameter variations, including RG flow (very rigid).

The unitarity bounds of $\mathfrak{su}(2|2)$ show that the theory on $S^2 \times \mathbb{R}^{1,1}$ must be fully gapped. It can have multiple isolated vacua that are invariant under $SU(2)_R \times SU(2)_{rot.}$. They cannot be lifted by any continuous parameter variations, including RG flow (very rigid). **Claim: Vacua** $\leftrightarrow \frac{1}{2}$ -**BPS line defects.** This follows from path integrals on a semi-infinite cigar – similar to tt^* in 2d [Cecotti-Vafa].

The unitarity bounds of $\mathfrak{su}(2|2)$ show that the theory on $S^2 \times \mathbb{R}^{1,1}$ must be fully gapped. It can have multiple isolated vacua that are invariant under $SU(2)_R \times SU(2)_{rot.}$. They cannot be lifted by any continuous parameter variations, including RG flow (very rigid). **Claim: Vacua** $\leftrightarrow \frac{1}{2}$ -**BPS line defects.** This follows from path integrals on a semi-infinite cigar – similar to tt^* in 2d [Cecotti-Vafa]. Example: free U(1) gauge theory on $S^2 \times \mathbb{R}^{1,1}$ leads to axion electrodynamics on $\mathbb{R}^{1,1}$, with vacua labeled by any integer $q \in \mathbb{Z}$:

$$\mathscr{L}_{2d} \sim F_{01}^2 + \left(\partial \varphi\right)^2 + \varphi F_{01} \ , \qquad \left\langle \varphi \right\rangle = ({\rm const.}) \times q$$

These vacua are $\leftrightarrow \frac{1}{2}$ -BPS Wilson lines W_q of charge q. Another copy of \mathscr{L}_{2d} leads to vacua corresponding to 't Hooft lines.

The unitarity bounds of $\mathfrak{su}(2|2)$ show that the theory on $S^2 \times \mathbb{R}^{1,1}$ must be fully gapped. It can have multiple isolated vacua that are invariant under $SU(2)_R \times SU(2)_{rot.}$. They cannot be lifted by any continuous parameter variations, including RG flow (very rigid). **Claim: Vacua** $\leftrightarrow \frac{1}{2}$ -**BPS line defects.** This follows from path integrals on a semi-infinite cigar – similar to tt^* in 2d [Cecotti-Vafa]. Example: free U(1) gauge theory on $S^2 \times \mathbb{R}^{1,1}$ leads to axion electrodynamics on $\mathbb{R}^{1,1}$, with vacua labeled by any integer $q \in \mathbb{Z}$:

$$\mathscr{L}_{2d} \sim F_{01}^2 + \left(\partial\varphi\right)^2 + \varphi F_{01} \ , \qquad \left\langle\varphi\right\rangle = ({\rm const.}) \times q$$

These vacua are $\leftrightarrow \frac{1}{2}$ -BPS Wilson lines W_q of charge q. Another copy of \mathscr{L}_{2d} leads to vacua corresponding to 't Hooft lines. The correspondence explains many observed features of these BPS defects, e.g. the one-to-one map between UV lines and IR lines on the Coulomb branch [Gaiotto-Moore-Neitzke, Cordova-Neitzke,...].

Conclusions

- ► We defined a new S³ × S¹ index I(q) for non-conformal N = 2 theories – generalizes the superconformal Schur index.
- ► In both cases, supergravity background fields and an su(2|1) non-renormalization theorem played a crucial role.
- ► In asymptotically free or conformal gauge theories, I(q) can be computed using a simple matrix model (UV).
- ➤ I(q) is independent of mass deformations naively violates decoupling of heavy states. No paradox: the background fields are very strong and can make some massive states light.
- ► Goal: compute *I*(*q*) in the IR, or perhaps some intermediate description that includes massive (BPS) particles.
- ► $\mathcal{I}(q)$ can be decorated with $\frac{1}{2}$ -BPS line defects. They are in one-to-one correspondence with the massive vacua of the theory on an $S^2 \times \mathbb{R}^{1,1}$ background with $\mathfrak{su}(2|2)$ symmetry.

Thank You for Your Attention

and

Happy Birthday Nati!