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Quantum Field Theory and Supersymmetry

Despite its phenomenal successes, QFT is still a work in progress:

“There are indications that we are still missing big things – perhaps
quantum field theory should be reformulated” – Nathan Seiberg

Attempts to do better are limited by our (in-) ability to control the
dynamics of non-trivial, interacting field theories. Natural to look
for simplifying limits, with additional symmetries: topological,
conformal, weak-coupling, large-N , integrable, ...

Supersymmetric QFTs can display rich, non-conformal dynamics.
They also have some protected (BPS) quantities that can be
analyzed exactly. Example: superpotential W (Φ), holomorphic in
all (background) chiral superfields, including couplings [Seiberg]. In
favorable situations, tracking the protected quantities along the RG
flow can give a good picture of the dynamics.
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Supersymmetric Indices

With this in mind, we would like to expand our toolbox of
protected observables, and to deepen our understanding of them.

A large and interesting class: SUSY partition functions ZM on a
compact spacetime manifold M. Example [Witten]:

M = T d, ZM = TrH(−1)F , H = states on T d−1 × Rtime

I Naturally defined in any (non-conformal) SUSY theory.

I Counts (with sign) the SUSY vacua on T d−1: index.

I Varying parameters (RG flow) typically does not change the
answer, but vacua can pair up and acquire positive energy.

I Subtle wall-crossing phenomena, sometimes ill defined.
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Supersymmetric Indices (cont.)
Recently, many examples of supersymmetric indices defined as
partition functions on manifolds of topology M = Sd−1 × S1:

I Count supersymmetric states on Sd−1 × Rtime.
I Naturally defined in SCFTs (via a conformal map).

I Count BPS local operators in flat space (state-operator
correspondence) [Kinney-Maldacena-Minwalla-Raju].

I Independent of exactly marginal couplings. Robust due to
discrete spectrum and normalizable vacuum on Sd−1.

Just as the index on M = T d, indices on M = Sd−1 × S1 can
sometimes be defined for non-conformal supersymmetric theories:

I When can this be done, how to preserve SUSY (not obvious)?
I Not canonical: additional choices, parameters in curved space.
I Does the index depend on them? What does it count?
I Only non-conformal indices can be used to explore RG flows.
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SUSY QFT in Curved Space

A systematic approach to supersymmetric QFT in curved space
was developed by [Festuccia-Seiberg]

– for today [Nati-Fest(uccia)].

Main Idea: the non-dynamical metric gµν on M must reside in an
off-shell supergravity multiplet. This extends the powerful principle
that all background fields should reside in superfields [Seiberg].

This formalism was recently reviewed in arXiv:1608.02957 [TD].

The coupling of the QFT to background supergravity proceeds via
the flat-space stress tensor Tµν , and its superpartners J iB and J iF ,

∆L = −1

2
∆gµνTµν +

∑
i

(
BiBJ

i
B + BiFJ

i
F

)
+ (seagull terms)
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SUSY QFT in Curved Space (cont.)

∆L = −1

2
∆gµνTµν +

∑
i

(
BiBJ

i
B + BiFJ

i
F

)
+ (seagull terms)

I Typically, activate bosons gµν ,B
i
B and set fermions BiF = 0.

I A supercharge Q exists if

δQB
i
F = 0 ⊃ ∇µζ + f

(
gµν ,B

i
B

)
ζ = 0 .

These equations determine all SUSY backgrounds (gµν ,B
i
B).

I Activating only gµν is typically not enough to preserve SUSY

([Q,Tµν ] 6= 0), or to specify the background (different BiB).

I SUSY algebra, Lagrangians on M follow from supergravity.
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An N = 1 Index in 4d
There are unitary N = 1 theories on S3

` × Rtime [Sen, Römelsberger,

Festuccia-Seiberg]. The SUSY algebra is deformed to su(2|1):{
Q†α, Qβ

}
= δαβ

(
H +

1

`
R
)

+
2

`
Jαβ ,

{
Qα, Qβ

}
= 0

su(2)× u(1) subalgebra = (left or right SU(2) isometries of S3) ×
(unbroken U(1)R-symmetry). The Hamiltonian H is central.

L ⊃ Aµj(R)
µ + V µXµ , A0 ∼ V0 ∼

1

`
I We can choose any U(1)R current j(R)

µ in flat space. The

couplings on S3 explicitly depend on this choice.
I The coupling V µXµ only exists in non-conformal theories; it is

crucial for preserving supersymmetry.
I In an SCFT: su(2|1) ⊂ superconformal algebra, with

Q†α ∼ Sα and H ∼ D + 1
2R
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An N = 1 Index in 4d (cont.)
su(2|1) unitarity bounds: E` ≥ 2j + 2− r or E` = −r (j = 0).
Count short multiplets (modulo recombination) using an index:

I(q) = TrH(−1)F qH = Z
S
3
`×S

1(q) , log q ∼ radius(S1)

`

Non-renormalization theorem [Festuccia-Seiberg]: I(q) is
independent of all deformations preserving su(2|1), because the
energy of all short representations is fixed in terms of j, r.

I Set all couplings to zero, compute in a free SCFT: simple
matrix integral counting gauge-invariant local operators.

I The RG flow itself is an allowed deformation ⇒ I(q) can be
computed anywhere along the flow. It must match across IR
(or [Seiberg]) dualities [Römelsberger,Dolan-Osborn].

Everything is well defined as long as the spectrum of H is discrete.
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Is N = 2 Harder Than N = 1?
When the R-charge r of a scalar φ vanishes, the spectrum of H is
continuous, because the r-dependent curvature coupling vanishes:

L ⊃ ∂µφ∂µφ+
f(r)

`2
|φ|2 , f(r = 0) = 0

The flat direction implies a divergence in the index I(q) = Z
S
3
`×S

1 .

This problem naturally arises in N = 2 theories:

I N = 2 SCFTs have SU(2)R ×U(1)R symmetry, which can be
used to define a well-behaved index [Kinney et. al.].

I Non-conformal N = 2 theories often preserve the SU(2)R
symmetry, but typically not the U(1)R symmetry.

I Vector-multiplet scalars φ are neutral under SU(2)R, i.e. I(q)
does not exist in non-conformal N = 2 theories with vectors.

We expect that N = 2 supersymmetry allows us to do better!
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Searching for a Non-Conformal N = 2 Index
As a guide, we start with an SCFT, but avoid certain generators:

I Conformally map the theory to S3
` × R.

I Look for a subalgebra of the superconformal algebra that only
includes genuine isometries of S3

` × R and SU(2)R.

The largest such subalgebra is another, but different su(2|1):{
Q†α,Qβ

}
= δαβ

(
H +

1

`
R3

)
+

2

`
Jαβ ,

{
Qα,Qβ

}
= 0

I R3 = Cartan generator of the SU(2)R symmetry.

I Key: Jαβ generates the diagonal SU(2) isometries of S3
` .

Short su(2|1) ⊂ superconformal multiplets satisfy
∆ = jdiag. + 2R3. The su(2|1) index I(q) is the Schur limit of
the N = 2 superconformal index [Gadde-Rastelli-Razamat-Yan].
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Supergravity Background
We would like to construct non-conformal N = 2 theories
on S3 × Rtime that realize this diagonal su(2|1) SUSY algebra.

Use background supergravity formalism of [Festuccia-Seiberg]:

1.) Choose a stress-tensor multiplet in flat space. Essentially all
interesting N = 2 theories with an SU(2)R symmetry have a
distinguished stress-tensor multiplet discovered by [Sohnius]:

T → ψiα → W[µν], R
(ij)
µ , rµ → Siµα → Tµν (real)

vanishes in SCFT: X(ij) −→ χiα → zµ,K (complex)

2.) Need a background supergravity field for each operator:

∆L = JT T + J [µν]
W W[µν] + V µ(ij)Rµ(ij) +Aµrµ −

1

2
∆gµνTµν

+ J (ij)
X X(ij) + Cµzµ + JKK + (c.c.) + (fermions)

Note: Cµ is the dimensionless central-charge gauge field.
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Supergravity Background (cont.)

3.) Solve the SUSY conditions δQ(SUGRA fermions) = 0. We

found a solution with a round metric on S3
` of radius `,

ds2 = −dt2 + `2
(
dθ2 + sin2 θdΩ2

)
, 0 ≤ θ ≤ π

€

?_sz : 2

0=0 IT
•.• •

8I. -
%

,
co

Some other fields break SO(4)→ SU(2)diag, SU(2)R → R3,

J 3
X ∼

ζ

`
cos θ , Cµdx

µ ∼ ζ cos θdt (decouple in SCFT)

JT ∼
1

`2
, V 3

µ dx
µ ∼ 1

`
dt , JK = ζ2 = constant phase
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Supergravity Background (cont.)
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Supergravity Background (cont.)

In fact, there are four supercharges that give the desired su(2|1).
We can analyze N = 2 theories on this S3 × Rtime background:

I The theory is unitary – standard reality for background fields.

I No problem with vector multiplets: the background induces a
mass term for the scalars φ that lifts the flat direction.

I In an SCFT, all terms that break SO(4), SU(2)R can be
removed to recover a conformally coupled theory.

In that case, the phase ζ specifies the embedding of su(2|1)
into the superconformal algebra.

I In non-conformal theories, the background fields J 3
X , C0 that

break SO(4), SU(2)R lead to position-dependent mass
terms and derivative couplings.

12



Supergravity Background (cont.)

In fact, there are four supercharges that give the desired su(2|1).
We can analyze N = 2 theories on this S3 × Rtime background:

I The theory is unitary – standard reality for background fields.

I No problem with vector multiplets: the background induces a
mass term for the scalars φ that lifts the flat direction.

I In an SCFT, all terms that break SO(4), SU(2)R can be
removed to recover a conformally coupled theory.

In that case, the phase ζ specifies the embedding of su(2|1)
into the superconformal algebra.

I In non-conformal theories, the background fields J 3
X , C0 that

break SO(4), SU(2)R lead to position-dependent mass
terms and derivative couplings.

12



Supergravity Background (cont.)

In fact, there are four supercharges that give the desired su(2|1).
We can analyze N = 2 theories on this S3 × Rtime background:

I The theory is unitary – standard reality for background fields.

I No problem with vector multiplets: the background induces a
mass term for the scalars φ that lifts the flat direction.

I In an SCFT, all terms that break SO(4), SU(2)R can be
removed to recover a conformally coupled theory.

In that case, the phase ζ specifies the embedding of su(2|1)
into the superconformal algebra.

I In non-conformal theories, the background fields J 3
X , C0 that

break SO(4), SU(2)R lead to position-dependent mass
terms and derivative couplings.

12



Supergravity Background (cont.)

In fact, there are four supercharges that give the desired su(2|1).
We can analyze N = 2 theories on this S3 × Rtime background:

I The theory is unitary – standard reality for background fields.

I No problem with vector multiplets: the background induces a
mass term for the scalars φ that lifts the flat direction.

I In an SCFT, all terms that break SO(4), SU(2)R can be
removed to recover a conformally coupled theory.

In that case, the phase ζ specifies the embedding of su(2|1)
into the superconformal algebra.

I In non-conformal theories, the background fields J 3
X , C0 that

break SO(4), SU(2)R lead to position-dependent mass
terms and derivative couplings.

12



Supergravity Background (cont.)

In fact, there are four supercharges that give the desired su(2|1).
We can analyze N = 2 theories on this S3 × Rtime background:

I The theory is unitary – standard reality for background fields.

I No problem with vector multiplets: the background induces a
mass term for the scalars φ that lifts the flat direction.

I In an SCFT, all terms that break SO(4), SU(2)R can be
removed to recover a conformally coupled theory.

In that case, the phase ζ specifies the embedding of su(2|1)
into the superconformal algebra.

I In non-conformal theories, the background fields J 3
X , C0 that

break SO(4), SU(2)R lead to position-dependent mass
terms and derivative couplings.

12



Why is the Matrix Model Correct?
The position-dependent couplings look dauting! But we can apply
the su(2|1) non-renormalization theorem of [Festuccia-Seiberg]:

I The index is independent of all continuous couplings:

I(q) = TrH(−1)F qH = Z
S
3
`×S

1(q) , log q ∼ radius(S1)

`

I In any renormalizable gauge theory with matter: set gauge
couplings, masses to zero ⇒ compute in the free UV theory.
This leads to exactly the same matrix model as in conformal
gauge theories [Gadde-Rastelli-Razamat-Yan]. The integrand is
minimally modified to reflect the non-conformal matter [...].

I Also possible to compute I(q) in the IR ⇒ make contact with
recent conjectures of [Iqbal-Vafa, Cordova-Shao + Gaiotto, ...]

relating I(q) to BPS particles on the Coulomb branch.
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Comments on (Non-) Decoupling

We argued that I(q) does not depend on continuous parameters,
e.g. a mass m for a free hypermultiplet.

This is inconsistent with naive decoupling: as m→∞, the
flat-space theory becomes trivial, with I(q) = 1. On S3

` × Rtime,
we expect non-vacuum states to have energy E ∼ m→∞.
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Comments on (Non-) Decoupling (cont.)
In fact, the position-dependent background fields lead to a
non-trivial mass function m2(θ) for some scalar modes, e.g.

mzco )

~m2T-•}n±Yt
•=o •••

to
 *e

I Near the poles, m2(θ) can become very small. This leads to
localized modes with E ∼ 1

` � m, which do not decouple.
I In natural units, the background fields are very strong:

m2(θ) ⊃ −m2C2
0 ∼ C

2
phys. , C0 ∼ cos θ ,
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Inserting BPS Line Operators

At the poles of S3 the S2 shrinks, su(2|1) contracts to a
subalgebra of flat-space SUSY. It is the algebra preserved by a
BPS particle with central charge Z || ζ (or its antiparticle).

This algebra is also preserved by certain 1
2 -BPS line operators,

studied by [Gaiotto-Moore-Neitzke, ...]. They are:

I Supported on straight lines L.

I Invariant under the maximal unbroken SU(2)R × SU(2)rot.

Example: a Wilson line of charge q for a U(1) gauge field A,

Wq = exp

(
iq

∫
L

(A+
i

2ζ
φ− iζ

2
φ)

)
These line defects can be inserted into our S3

` × Rtime background,
if we place them at the poles and along time.
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Deforming the Sphere
The background admits a family of deformations where the radius
of S2 is any bounded function f(θ) on the interval 0 ≤ θ ≤ π,

ds2 = −dt2 + `2
(
dθ2 + f(θ)2dΩ2

)

← ooe•€I
'

s⇒h•⇐* R

Any choice of f(θ) preserves the full su(2|1) symmetry – again the
indx I(q) is unchanged. If f(θ) = const. the geometry is S2 ×R1,1

and the SUSY algebra enhances to su(2|2). Theories with this
algebra were studied by [Itzhaki-Kutasov-Seiberg, Lin-Maldacena,...].

17



Deforming the Sphere
The background admits a family of deformations where the radius
of S2 is any bounded function f(θ) on the interval 0 ≤ θ ≤ π,

ds2 = −dt2 + `2
(
dθ2 + f(θ)2dΩ2

)

← ooe•€I
'

s⇒h•⇐* R

Any choice of f(θ) preserves the full su(2|1) symmetry – again the
indx I(q) is unchanged. If f(θ) = const. the geometry is S2 ×R1,1

and the SUSY algebra enhances to su(2|2). Theories with this
algebra were studied by [Itzhaki-Kutasov-Seiberg, Lin-Maldacena,...].

17



A State-Operator Map for BPS Lines
The unitarity bounds of su(2|2) show that the theory on S2 × R1,1

must be fully gapped. It can have multiple isolated vacua that are
invariant under SU(2)R × SU(2)rot.. They cannot be lifted by any
continuous parameter variations, including RG flow (very rigid).

Claim: Vacua ↔ 1
2-BPS line defects. This follows from path

integrals on a semi-infinite cigar – similar to tt∗ in 2d [Cecotti-Vafa].

Example: free U(1) gauge theory on S2 × R1,1 leads to axion
electrodynamics on R1,1, with vacua labeled by any integer q ∈ Z:

L2d ∼ F
2
01 + (∂ϕ)2 + ϕF01 , 〈ϕ〉 = (const.)× q

These vacua are ↔ 1
2 -BPS Wilson lines Wq of charge q. Another

copy of L2d leads to vacua corresponding to ’t Hooft lines.

The correspondence explains many observed features of these BPS
defects, e.g. the one-to-one map between UV lines and IR lines on
the Coulomb branch [Gaiotto-Moore-Neitzke, Cordova-Neitzke,...].
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Conclusions
I We defined a new S3 × S1 index I(q) for non-conformal
N = 2 theories – generalizes the superconformal Schur index.

I In both cases, supergravity background fields and an su(2|1)
non-renormalization theorem played a crucial role.

I In asymptotically free or conformal gauge theories, I(q) can
be computed using a simple matrix model (UV).

I I(q) is independent of mass deformations – naively violates
decoupling of heavy states. No paradox: the background fields
are very strong and can make some massive states light.

I Goal: compute I(q) in the IR, or perhaps some intermediate
description that includes massive (BPS) particles.

I I(q) can be decorated with 1
2 -BPS line defects. They are in

one-to-one correspondence with the massive vacua of the
theory on an S2 × R1,1 background with su(2|2) symmetry.
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and

Happy Birthday Nati!
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