Decouplings and applications

Ciprian Demeter, Indiana University

Princeton, May 2016

Decouplings

Let $\left(f_{j}\right)_{j=1}^{N}$ be N elements of a Banach space X. The triangle inequality

$$
\left\|\sum_{j=1}^{N} f_{j}\right\|_{x} \leq \sum_{j=1}^{N}\left\|f_{j}\right\|_{x}
$$

is universal, it does not incorporate any possible cancelations between the f_{j}. It leads to

$$
\left\|\sum_{j=1}^{N} f_{j}\right\|_{X} \leq N^{\frac{1}{2}}\left(\sum_{j=1}^{N}\left\|f_{j}\right\|_{X}^{2}\right)^{1 / 2}
$$

But if X is a Hilbert space (think $X=L^{2}\left(\mathbb{T}^{n}\right)$) and if f_{j} are orthogonal (think $f_{j}(\mathbf{x})=e^{2 \pi x \cdot j}$) then we have the following (very basic) decoupling

$$
\left\|\sum_{j=1}^{N} f_{j}\right\|_{X} \leq\left(\sum_{j=1}^{N}\left\|f_{j}\right\|_{X}^{2}\right)^{1 / 2}
$$

Decouplings have also been observed in non-Hilbert spaces. The first example is due to the "bi-orthogonality" of the squares. We will use the notation $e(z)=e^{2 \pi i z}, z \in \mathbb{R}$.

(Discrete) L^{4} decoupling for squares

For each $\epsilon>0$ and $a_{j} \in \mathbb{C}$, the following decoupling holds

$$
\left\|\sum_{j=1}^{N} e\left(j^{2} x\right)\right\|_{L^{4}[0,1]} \lesssim_{\epsilon} N^{\epsilon}\left(\sum_{j=1}^{N}\left\|e\left(j^{2} x\right)\right\|_{L^{4}[0,1]}^{2}\right)^{1 / 2}=N^{\frac{1}{2}+\epsilon} .
$$

The second example is due to the multiple-orthogonality of the powers of 2

(Discrete) L^{p} decoupling for lacunary exponential sums

For $1 \leq p<\infty$ and $a_{j} \in \mathbb{C}$

$$
\left\|\sum_{j \in \mathbb{N}} a_{j} e\left(2^{j} x\right)\right\|_{L^{p}[0,1]} \sim_{p}\left(\sum_{j \in \mathbb{N}}\left\|a_{j} e\left(2^{j} x\right)\right\|_{L^{p}[0,1]}^{2}\right)^{1 / 2}=\|a\|_{l^{2}} .
$$

Motivated in part by the work of T. Wolff from late 1990s, and of Bourgain from early 2010s, Bourgain and I have recently developed a rather general decoupling theory for L^{p} spaces. In a nutshell, our theorems go as follows:

Theorem (Abstract I^{2} decoupling theorem)

Let $f: \mathcal{M} \rightarrow \mathbb{C}$ be a function on some "curved" compact manifold \mathcal{M} in \mathbb{R}^{n}, with natural measure σ. Partition the manifold into caps τ of size δ (with some variations forced by curvature) and let $f_{\tau}=f 1_{\tau}$ be the restriction of f to τ. Then there is a critical index $p_{c}>2$ and some $q \geq 2$ (both depending on the manifold) so that we have

$$
\|\widehat{f d \sigma}\|_{L^{p}\left(B_{\delta-q}\right)} \lesssim \epsilon \delta^{-\epsilon}\left(\sum_{\tau: \delta-c a p}\left\|\widehat{f_{\tau} d \sigma}\right\|_{L^{p}\left(B_{\delta-q}\right)}^{2}\right)^{1 / 2}
$$

for each ball $B_{\delta^{-q}}$ in \mathbb{R}^{n} with radius δ^{-q} and each $2 \leq p \leq p_{c}$.

Bourgain's observation (2011): To get from...

Theorem (Abstract I^{2} decoupling theorem)

$$
\|\widehat{f d \sigma}\|_{L^{p}\left(B_{\delta^{-q}}\right)} \lesssim_{\epsilon} \delta^{-\epsilon}\left(\sum_{\tau: \delta-c a p}\left\|\widehat{\tau_{\tau} d \sigma}\right\|_{L^{p}\left(B_{\delta^{-q}}\right)}^{2}\right)^{1 / 2}
$$

for each ball $B_{\delta^{-q}}$ in \mathbb{R}^{n} with radius δ^{-q} and each $2 \leq p \leq p_{c}$.
...to the exponential sum estimate

Theorem (Discrete decoupling/Reverse Hölder)

For each $\operatorname{cap} \tau$ let $\xi_{\tau} \in \tau$ and $a_{\tau} \in \mathbb{C}$. Then

$$
\left|B_{\delta-q}\right|^{-1 / p}\left\|\sum_{\tau} a_{\tau} e\left(\xi_{\tau} \cdot \mathbf{x}\right)\right\|_{L^{p}\left(B_{\delta-q}\right)} \lesssim_{\epsilon} \delta^{-\epsilon}\left(\sum_{\tau}\left|a_{\tau}\right|^{2}\right)^{1 / 2}
$$

for each ball $B_{\delta^{-q}}$ in \mathbb{R}^{n} with radius δ^{-q} and each $2 \leq p \leq p_{c}$
apply the decoupling to (a smooth approximation of)
$f(\xi)=\sum_{\tau} a_{\tau} \delta_{\xi_{\tau}}$

For a "suitably non-degenerate" d-dimensional smooth, compact graph manifold in \mathbb{R}^{n}

$$
\mathcal{M}=\left\{\left(t_{1}, \ldots, t_{d}, \phi_{1}\left(t_{1}, \ldots, t_{d}\right), \ldots, \phi_{n-d}\left(t_{1}, \ldots, t_{d}\right)\right)\right\}
$$

it seems reasonable to expect (at least for I^{p} decouplings)
(1) $p_{c}=\frac{4 n}{d}-2$ and $q=2$, if $d>\frac{n}{3}$. This should be achieved with purely quadratic ϕ_{i}. When $d=n-1, p_{c}=\frac{2(n+1)}{n-1}$.
(2) $p_{c}=3 \cdot 4$ and $q=3$, if $\frac{n}{4}<d \leq \frac{n}{3}$. The cubic terms become relevant. Examples include

$$
\left(t, t^{2}, t^{3}\right) \text { in } \mathbb{R}^{3}, \quad\left(t_{1}, t_{1}^{2}, t_{1}^{3}, t_{2}, t_{2}^{2}, t_{2}^{3}, 0\right) \text { in } \mathbb{R}^{7}
$$

(3) $p_{c}=4 \cdot 5$ and $q=4$, if $\frac{n}{5}<d \leq \frac{n}{4}$. The quartic terms become relevant. One example is $\left(t, t^{2}, t^{3}, t^{4}\right)$ in \mathbb{R}^{4}.
It is clear how to continue.

So far the optimal decoupling theory has been established for the following manifolds \mathcal{M}, with the following applications

- Hypersurfaces in \mathbb{R}^{n} with nonzero Gaussian curvature ($p_{c}=\frac{2(n+1)}{n-1}$). Many applications: Optimal Strichartz estimates for Shrödinger equation on both rational and irrational tori in all dimensions, improved L^{p} estimates for the eigenfunctions of the Laplacian on the torus, etc
- The cone (zero Gaussian curvature) in $\mathbb{R}^{n}\left(p_{c}=\frac{2 n}{n-2}\right)$. Many applications: progress on Sogge's "local smoothing conjecture for the wave equation", mean square estimates for Riemann zeta
(Bourgain-Watt), etc
- (Bourgain) Two dimensional surfaces in $\mathbb{R}^{4}\left(p_{c}=6\right)$.

Application: Bourgain used this to improve the estimate in the Lindelöf hypothesis for the growth of Riemann zeta

- (Bourgain, D., Guth) Curves with torsion in $\mathbb{R}^{n}\left(p_{c}=n(n+1)\right)$. Application: Vinogradov's Mean Value Theorem.

Here is some insight on why we need to work on "big" balls $B_{\delta^{-q}}$.
Typically, working with $q=1$ does not produce interesting results, decoupling only works at this scale for $p=2$. The very standard (L^{2} almost orthogonality) estimate asserts that, for any δ separated points ξ in \mathbb{R}^{n} we have

$$
\left(\frac{1}{\left|B_{\delta^{-1}}\right|} \int_{B_{\delta^{-1}}}\left|\sum_{\xi} a_{\xi} e(\xi \cdot \mathbf{x})\right|^{2} d \mathbf{x}\right)^{1 / 2} \lesssim\left\|a_{\xi}\right\|_{l^{2}}
$$

One can not replace the L^{2} average with an $L^{p}(p>2)$ average if no additional restrictions are imposed.

Even under the curvature assumption $\Lambda \subset S^{n-1}$, when $p=\frac{2(n+1)}{n-1}$ the expected estimate is (equivalent form of Stein-Tomas restriction theorem)

$$
\left(\frac{1}{\left|B_{\delta^{-1}}\right|} \int_{B_{\delta-1}}\left|\sum_{\xi \in \Lambda} a_{\xi} e(\xi \cdot \mathbf{x})\right|^{p} d \mathbf{x}\right)^{1 / p} \lesssim \delta^{\frac{n}{p}-\frac{n-1}{2}}\left\|a_{\xi}\right\|_{l^{2}} .
$$

Note that the exponent $\frac{n}{p}-\frac{n-1}{2}$ is negative.
However, by averaging the same exponential sum on the larger ball $B_{\delta^{-2}}$ (this allows more room for the oscillations to annihilate each other), we get a stronger estimate (reverse Hölder)

$$
\left(\frac{1}{\left|B_{\delta^{-2}}\right|} \int_{B_{\delta^{-2}}}\left|\sum_{\xi \in \Lambda} a_{\xi} e(\xi \cdot \mathbf{x})\right|^{p} d \mathbf{x}\right)^{1 / p} \lesssim \delta^{-\epsilon}\left\|a_{\xi}\right\|_{l^{2}}
$$

Recap: Decouplings need separation, curvature and large enough spatial balls.

$$
I^{2}\left(L^{P}\right) \neq L^{P}\left(I^{2}\right)!
$$

Our decoupling theorem for the sphere in \mathbb{R}^{n} is related to the restriction problem.

Conjecture (Square function estimate: it implies restriction and Kakeya conjectures)
Let $f: S^{n-1} \rightarrow \mathbb{C}$, then in the small range $2 \leq p \leq \frac{2 n}{n-1}$

$$
\|\widehat{f d \sigma}\|_{L^{p}\left(B_{\delta-2}\right)} \lesssim \epsilon \delta^{-\epsilon}\left\|\left(\sum_{\tau: \delta-\text { cap on } S^{n-1}}\left|\widehat{f_{\tau} d \sigma}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(B_{\delta}-2\right)}
$$

Compare this to

Theorem (Decoupling, Bourgain-D 2014)

Let $f: S^{n-1} \rightarrow \mathbb{C}$, then in the larger range $2 \leq p \leq \frac{2(n+1)}{n-1}$

$$
\|\widehat{f d \sigma}\|_{L^{p}\left(B_{\delta-2}\right)} \lesssim \epsilon \delta^{-\epsilon}\left(\sum_{\tau: \delta-\operatorname{cap} \text { on } S^{n-1}}\left\|\widehat{f_{\tau} d \sigma}\right\|_{L^{p}\left(B_{\delta-2}\right)}^{2}\right)^{1 / 2}
$$

For each integers $s \geq 1$ and $n, N \geq 2$ denote by $J_{s, n}(N)$ the number of integral solutions for the following system

$$
X_{1}^{i}+\ldots+X_{s}^{i}=Y_{1}^{i}+\ldots+Y_{s}^{i}, \quad 1 \leq i \leq n
$$

with $1 \leq X_{1}, \ldots, X_{s}, Y_{1}, \ldots, Y_{s} \leq N$.
Example: $\mathbf{n}=\mathbf{2}$

$$
\left\{\begin{array}{l}
X_{1}+\ldots+X_{s}=Y_{1}+\ldots+Y_{s} \\
X_{1}^{2}+\ldots+X_{s}^{2}=Y_{1}^{2}+\ldots+Y_{s}^{2}
\end{array}\right.
$$

Theorem (Vinogradov's Mean Value "Theorem")

For each $s \geq 1, \epsilon>0$ and $n, N \geq 2$ we have the upper bound

$$
J_{s, n}(N) \lesssim_{\epsilon} N^{s+\epsilon}+N^{2 s-\frac{n(n+1)}{2}+\epsilon} .
$$

The number $J_{s, n}(N)$ has the following analytic representation

$$
J_{s, n}(N)=\int_{[0,1]^{n}}\left|\sum_{i=1}^{N} e\left(x_{1} j+x_{2} j^{2}+\ldots+x_{n} j^{n}\right)\right|^{2 s} d x_{1} \ldots d x_{n}
$$

Theorem (Vinogradov's Mean Value "Theorem" (VMVT))

For each $p \geq 2, \epsilon>0$ and $n, N \geq 2$ we have the upper bound

$$
\begin{gathered}
\left(\int_{[0,1]^{n}}\left|\sum_{j=1}^{N} e\left(x_{1} j+x_{2} j^{2}+\ldots+x_{n} j^{n}\right)\right|^{p} d x_{1} \ldots d x_{n}\right)^{1 / p} \lesssim \epsilon \\
\left\{\begin{array}{l}
N^{\frac{1}{2}+\epsilon, \text { if } 2 \leq p \leq n(n+1)} \\
N^{1-\frac{n(n+1)}{2 p}+\epsilon}, \text { if } p \geq n(n+1)
\end{array}\right.
\end{gathered}
$$

When $p=2, \infty$ we have sharp estimates

$$
\left\|\sum_{j=1}^{N} e\left(x_{1} j+x_{2} j^{2}+\ldots+x_{n} j^{n}\right)\right\|_{L^{p}\left(\mathbb{T}^{n}\right)}=\left\{\begin{array}{l}
N^{\frac{1}{2}}, p=2 \\
N, p=\infty
\end{array}\right.
$$

Given n, the full range of estimates in VMVT will follow if we prove the case $p=n(n+1)$ (critical exponent)

- $\mathbf{n}=\mathbf{2}$ is easy and has been known (folklore?). It has critical exponent $p=2(2+1)=6$. One needs to check that

$$
\left\{\begin{array}{l}
X_{1}+X_{2}+X_{3}=Y_{1}+Y_{2}+Y_{3} \\
X_{1}^{2}+X_{2}^{2}+X_{3}^{2}=Y_{1}^{2}+Y_{2}^{2}+Y_{3}^{2}
\end{array}\right.
$$

has $O\left(N^{3+\epsilon}\right)$ integral solutions in the interval $[1, N]$. Note that $\left(X_{1}, X_{1}, X_{3}, X_{1}, X_{2}, X_{3}\right)$ is always a (trivial) solution, so we have at least N^{3} solutions. The required estimate says that fixing X_{1}, X_{2}, X_{3} will determine Y_{1}, Y_{2}, Y_{3} within $O\left(N^{\epsilon}\right)$ choices. Using easy algebraic manipulations this boils down to the fact that a circle of radius N contains at most $O\left(N^{\epsilon}\right)$ lattice points.

- $n \geq 3$: Only partial results have been known until ~ 2012

Theorem (Vinogradov (1935), Karatsuba, Stechkin)

VMVT holds for $p \geq n^{2}(4 \log n+2 \log \log n+10)$, and in fact one has a sharp asymptotic formula

$$
\left\|\sum_{j=1}^{N} e\left(x_{1} j+x_{2} j^{2}+\ldots+x_{n} j^{n}\right)\right\|_{L^{p}\left(\mathbb{T}^{n}\right)} \sim C(p, n) N^{1-\frac{n(n+1)}{2 p}}
$$

Wooley developed the efficient congruencing method which led to the following progress

Theorem (Wooley, 2012 and later)

VMVT holds for

- $n=3$ and all values of p
- $p \leq n(n+1)-\frac{2 n}{3}+O\left(n^{2 / 3}\right)$,
- $p \geq 2 n(n-1)$, all $n \geq 3$

Theorem (Bourgain, D, Guth 2015)

VMVT holds for all $n \geq 2$ and all p.
Moreover, when combining this with known sharp estimates on major arcs, there will be no losses in the supercritical regime $p>n(n+1)$

$$
\left\|\sum_{j=1}^{N} e\left(x_{1} j+x_{2} j^{2}+\ldots+x_{n} j^{n}\right)\right\|_{L^{p}\left(\mathbb{T}^{n}\right)} \leq C(p, n) N^{1-\frac{n(n+1)}{2 p}}
$$

Our method does not seem to say anything meaningful about the implicit constant $C(p, n)$, so we can't say anything new about the zero-free regions of the Riemann zeta. But there are at least two important applications.

Weyl sums

$$
\begin{gathered}
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \\
f_{n}(\mathbf{x}, N)=\sum_{j=1}^{N} e\left(x_{1} j+x_{2} j^{2}+\ldots+x_{n} j^{n}\right)
\end{gathered}
$$

Theorem (H. Weyl)

Assume $\left|x_{n}-\frac{a}{q}\right| \leq \frac{1}{q^{2}},(a, q)=1$. Then

$$
\left|f_{n}(\mathbf{x}, N)\right| \lesssim N^{1+\epsilon}\left(q^{-1}+N^{-1}+q N^{-n}\right)^{2^{1-n}}
$$

As a consequence of VMVT we can now replace 2^{1-n} with $\sigma(n)=\frac{1}{n(n-1)}$ (best known bounds for large n).

The asymptotic formula in Waring's problem
$R_{s, k}(n)=$ number of representations of the integer n as a sum of s k th powers. Based on circle method heuristics, the following asymptotic formula is conjectured

$$
R_{s, k}(n)=\frac{\Gamma\left(1+\frac{1}{k}\right)^{s}}{\Gamma\left(\frac{s}{k}\right)} \mathfrak{G}_{s, k}(n) n^{\frac{s}{k}-1}+o\left(n^{\frac{s}{k}-1}\right), n \rightarrow \infty
$$

for $s \geq k+1, k \geq 3$. Let $\tilde{G}(k)$ (Waring number) be the smallest s for which the formula holds.

Wooley showed that VMVT would imply for all $k \geq 3$

$$
\tilde{G}(k) \leq k^{2}+1-\max _{\substack{1 \leq j \leq k-1 \\ 2 j \leq k^{2}}}\left[\frac{k j-2^{j}}{k+1-j}\right]
$$

In particular, we get

$$
\tilde{G}(k) \leq k^{2}+1-\left[\frac{\log k}{\log 2}\right]
$$

This improves all previous bounds on $\tilde{G}(k)$, except for Vaughan's $\tilde{G}(3) \leq 8$ (1986).

Further improvements are possible. Our VMVT leads to progress on Hua's lemma (Bourgain 2016) and eventually to

$$
\tilde{G}(k) \leq k^{2}-k+O(\sqrt{k}) .
$$

$$
f(x)=\sum_{j \sim N} e\left(j^{n} x\right)
$$

Conjecture: $\int_{0}^{1}|f(x)|^{p} d x \lesssim N^{p-n+\epsilon}$, for $p \geq 2 n$

Lemma (Hua)

For $I \leq n$

$$
\int_{0}^{1}|f(x)|^{2^{\prime}} d x \lesssim N^{2^{\prime}-I+\epsilon}, \text { sharp when } I=n
$$

Theorem (Bourgain, 2016)

For $s \leq n$

$$
\int_{0}^{1}|f(x)|^{s(s+1)} d x \lesssim N^{s^{2}+\epsilon}, \text { sharp when } s=n
$$

Theorem (Bourgain, D, Guth, 2015)

Let $\bar{\xi}=\left(\xi, \ldots, \xi^{n}\right)$ be δ-separated points on the curve

$$
\left\{\left(t, t^{2}, \ldots, t^{n}\right): 0 \leq t \leq 1\right\}
$$

Then for each $2 \leq p \leq n(n+1)$
$\left(\frac{1}{\left|B_{\delta^{-n}}\right|} \int_{B_{\delta^{-n}}}\left|\sum_{\bar{\xi}} a_{\bar{\xi}} e\left(\xi x_{1}+\xi^{2} x_{2}+\ldots \xi^{n} x_{n}\right)\right|^{p} d \mathbf{x}\right)^{1 / p} \lesssim \epsilon \delta^{-\epsilon}\left\|a_{\bar{\xi}}\right\|_{I^{2}}$
Apply this with $\xi=\frac{j}{N}, 1 \leq j \leq N$. Change variables $\frac{x_{1}}{N}=y_{1}, \ldots, \frac{x_{n}}{N^{n}}=y_{n}$. Then we get $\left(\delta=\frac{1}{N}\right)$

$$
\begin{gathered}
\left(\frac{1}{|C|} \int_{C}\left|\sum_{j=1}^{N} a_{j} e\left(j y_{1}+j^{2} y_{2}+\ldots j^{n} y_{n}\right)\right|^{p} d \mathbf{y}\right)^{1 / p} \lesssim_{\epsilon} N^{\epsilon}\left\|a_{j}\right\|_{l^{2}} \\
C=\left[-N^{n-1}, N^{n-1}\right] \times\left[-N^{n-2}, N^{n-2}\right] \times \ldots \times[-1,1]
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac{1}{|C|} \int_{C}\left|\sum_{j=1}^{N} a_{j} e\left(j y_{1}+j^{2} y_{2}+\ldots j^{n} y_{n}\right)\right|^{p} d \mathbf{y}\right)^{1 / p} \lesssim_{\epsilon} N^{\epsilon}\left\|a_{j}\right\|_{I^{2}} \\
C=\left[-N^{n-1}, N^{n-1}\right] \times\left[-N^{n-2}, N^{n-2}\right] \times \ldots \times[-1,1]
\end{gathered}
$$

Next cover C with translates of $[0,1]^{n}$ and use periodicity to get

$$
\left(\int_{\mathbb{T}^{n}}\left|\sum_{j=1}^{N} a_{j} e\left(j y_{1}+j^{2} y_{2}+\ldots j^{n} y_{n}\right)\right|^{p} d \mathbf{y}\right)^{1 / p} \lesssim_{\epsilon} N^{\epsilon}\left\|a_{j}\right\| \|_{2}
$$

Conclusions

1. Periodicity is the only fact that we exploit about integers j. We have no other number theory in our argument. In fact, integers can be replaced with well separated real numbers.
2. We recover a more general theorem, with coefficients a_{j}.

The proof of our decoupling theorem ($n=3$)...

$$
\mathcal{M}=\left\{\left(t, t^{2}, t^{3}\right): 0 \leq t \leq 1\right\} .
$$

Theorem

Let $f: \mathcal{M} \rightarrow \mathbb{C}$. Partition \mathcal{M} into caps τ of size δ. Then

$$
\|\widehat{f d \sigma}\|_{L^{12}\left(B_{\delta-3}\right)} \lesssim_{\epsilon} \delta^{-\epsilon}\left(\sum_{\tau}\left\|\widehat{f_{\tau} d \sigma}\right\|_{L^{12}\left(B_{\delta^{-3}}\right)}^{2}\right)^{1 / 2}
$$

for each ball $B_{\delta^{-3}}$ in \mathbb{R}^{3} with radius δ^{-3}.
...goes via gradually decreasing the size of the caps τ and at the same time increasing the radius of the balls. This is done using the following tools.

- Parabolic rescaling: Each arc on $\left(t, t^{2}, \ldots, t^{n}\right)$ can be mapped via an affine transformation to the full arc $(0 \leq t \leq 1)$.
- Lots of induction on scales: Let C_{δ} be the best constant in some decoupling inequality at scale δ. How does C_{δ} relate to $C_{\delta^{1 / 2}}$?

These tools have been pioneered by Bourgain in early 1990s.

- Equivalence between linear and multilinear decoupling Bourgain-Guth induction on scales (2010)
- L^{2} decoupling: This is a form of L^{2} orthogonality

$$
\left.\|\widehat{f d \sigma}\|_{L^{2}\left(B_{\delta}-1\right.}\right) \lesssim\left(\sum_{\tau}\left\|\widehat{f_{\tau} d \sigma}\right\|_{L^{2}\left(B_{\delta-1}\right)}^{2}\right)^{1 / 2}
$$

It only works for L^{2} but it decouples efficiently, into caps of very small size, equal to

$$
\frac{1}{\text { radius of the ball }}
$$

- Lower dimensional decoupling: We use induction on dimension. We assume and use the $n=2$ decoupling result at L^{6}. The weakness of this is that the critical exponent $p_{c}=6$ for $n=2$ is small compared to $12(n=3)$.
The strength is the fact that it decouples into small intervals, of length $\frac{1}{R^{1 / 2}}$ as opposed to $\frac{1}{R^{1 / 3}}$ (R is the radius of the spatial ball).
At the right spatial scale, arcs of the twisted cubic look planar. One can treat them with L^{6} decoupling. For example, the $\sim \delta^{3}$ neighborhood of

$$
\left\{\left(t, t^{2}, t^{3}\right): 0 \leq t \leq \delta\right\}
$$

is essentially the same as the $\sim \delta^{3}$ neighborhood of the arc of parabola

$$
\left\{\left(t, t^{2}, 0\right): 0 \leq t \leq \delta\right\}
$$

so there is an L^{6} decoupling of this into $\delta^{\frac{3}{2}}$ arcs on $B_{\delta^{-3}}$

- Multilinear Kakeya type inequalities: Do a wave packet decomposition of $\overline{f d \sigma}$ using plates.

There is a hierarchy of incidence geometry inequalities about how these plates intersect, ranging from easy to hard. These inequalities have only been clarified in the last two years.

Theorem (Bennet, Carbey, Tao, 2006)

Consider n families \mathcal{T}_{j} consisting of $R \times R^{1 / 2} \times \ldots \times R^{1 / 2}$ tubes $T \subset B_{4 R}$ in \mathbb{R}^{n} having the following property

Transversality: The direction of the long axis of $T \in \mathcal{T}_{j}$ is in a small neighborhood of $e_{j}=(0, \ldots, 1, \ldots, 0)$

Then we have the following inequality

$$
\begin{equation*}
\int_{B_{4 R}}\left|\prod_{j=1}^{n} F_{j}\right|^{\frac{1}{2 n} \frac{2 n}{n-1}} \lesssim_{\epsilon} R^{\epsilon}\left[\prod_{j=1}^{n}\left|\int_{B_{4 R}} F_{j}\right|^{\frac{1}{2 n}}\right]^{\frac{2 n}{n-1}} \tag{1}
\end{equation*}
$$

for all functions F_{j} of the form

$$
F_{j}=\sum_{T \in \mathcal{T}_{j}} c_{P} 1_{T} .
$$

The implicit constant will not depend on $R, c_{P}, \mathcal{T}_{j}$.

Open problems

Consider the generalized additive energy

$$
\mathbb{E}_{n}(A)=\left|\left\{\left(a_{1}, \ldots, a_{2 n}\right) \in A^{2 n}: a_{1}+\ldots+a_{n}=a_{n+1}+\ldots a_{2 n}\right\}\right|
$$

1. Prove (or disprove) that $\mathbb{E}_{2}(A) \lesssim_{\epsilon}|S|^{2+\epsilon}$ if $A \subset S^{2}$.

Known for subsets of the paraboloid $A \subset P^{2}$
2. Prove (or disprove) that $\mathbb{E}_{3}(A) \lesssim_{\epsilon}|A|^{3+\epsilon}$ if $A \subset S^{1}$ or $A \subset P^{1}$

For S^{1}, this follows from the unit distance conjecture. Best known unconditional bound (Bombieri-Bourgain) is $|A|^{7 / 2}$ via Szemeredi-Trotter

All these follow from our decoupling theorems in the case of $\delta^{O(1)}$ - separated points.

