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Decouplings

Let (fj)
N
j=1 be N elements of a Banach space X . The triangle

inequality

‖
N∑
j=1

fj‖X ≤
N∑
j=1

‖fj‖X

is universal, it does not incorporate any possible cancelations
between the fj . It leads to

‖
N∑
j=1

fj‖X ≤ N
1
2 (

N∑
j=1

‖fj‖2
X )1/2.

But if X is a Hilbert space (think X = L2(Tn)) and if fj are
orthogonal (think fj(x) = e2πx·j) then we have the following (very
basic) decoupling

‖
N∑
j=1

fj‖X ≤ (
N∑
j=1

‖fj‖2
X )1/2.
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Decouplings have also been observed in non-Hilbert spaces. The
first example is due to the ”bi-orthogonality” of the squares. We
will use the notation e(z) = e2πiz , z ∈ R.

(Discrete) L4 decoupling for squares

For each ε > 0 and aj ∈ C, the following decoupling holds

‖
N∑
j=1

e(j2x)‖L4[0,1] .ε N
ε(

N∑
j=1

‖e(j2x)‖2
L4[0,1])

1/2 = N
1
2

+ε.

The second example is due to the multiple-orthogonality of the
powers of 2

(Discrete) Lp decoupling for lacunary exponential sums

For 1 ≤ p <∞ and aj ∈ C

‖
∑
j∈N

aje(2jx)‖Lp [0,1] ∼p (
∑
j∈N
‖aje(2jx)‖2

Lp [0,1])
1/2 = ‖a‖l2 .
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Motivated in part by the work of T. Wolff from late 1990s, and of
Bourgain from early 2010s, Bourgain and I have recently developed
a rather general decoupling theory for Lp spaces. In a nutshell, our
theorems go as follows:

Theorem (Abstract l2 decoupling theorem)

Let f :M→ C be a function on some ”curved” compact manifold
M in Rn, with natural measure σ. Partition the manifold into caps
τ of size δ (with some variations forced by curvature) and let
fτ = f 1τ be the restriction of f to τ . Then there is a critical index
pc > 2 and some q ≥ 2 (both depending on the manifold) so that
we have

‖f̂dσ‖Lp(Bδ−q ) .ε δ
−ε(

∑
τ :δ−cap

‖̂fτdσ‖2
Lp(Bδ−q ))1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc .
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Bourgain’s observation (2011): To get from...

Theorem (Abstract l2 decoupling theorem)

‖f̂dσ‖Lp(Bδ−q ) .ε δ
−ε(

∑
τ :δ−cap

‖̂fτdσ‖2
Lp(Bδ−q ))1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc .

...to the exponential sum estimate

Theorem (Discrete decoupling/Reverse Hölder)

For each cap τ let ξτ ∈ τ and aτ ∈ C. Then

|Bδ−q |−1/p‖
∑
τ

aτe(ξτ · x)‖Lp(Bδ−q ) .ε δ
−ε(
∑
τ

|aτ |2)1/2

for each ball Bδ−q in Rn with radius δ−q and each 2 ≤ p ≤ pc

apply the decoupling to (a smooth approximation of)
f (ξ) =

∑
τ aτδξτ
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For a ”suitably non-degenerate” d-dimensional smooth, compact
graph manifold in Rn

M = {(t1, . . . , td , φ1(t1, . . . , td), . . . , φn−d(t1, . . . , td))}

it seems reasonable to expect (at least for lp decouplings)

(1) pc = 4n
d − 2 and q = 2, if d > n

3 . This should be achieved with

purely quadratic φi . When d = n − 1, pc = 2(n+1)
n−1 .

(2) pc = 3 · 4 and q = 3, if n
4 < d ≤ n

3 . The cubic terms become
relevant. Examples include

(t, t2, t3) in R3, (t1, t
2
1 , t

3
1 , t2, t

2
2 , t

3
2 , 0) in R7

(3) pc = 4 · 5 and q = 4, if n
5 < d ≤ n

4 . The quartic terms become
relevant. One example is (t, t2, t3, t4) in R4.

It is clear how to continue.
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So far the optimal decoupling theory has been established for the
following manifolds M, with the following applications

• Hypersurfaces in Rn with nonzero Gaussian curvature
(pc = 2(n+1)

n−1 ). Many applications: Optimal Strichartz estimates
for Shrödinger equation on both rational and irrational tori in all
dimensions, improved Lp estimates for the eigenfunctions of the
Laplacian on the torus, etc

• The cone (zero Gaussian curvature) in Rn (pc = 2n
n−2 ). Many

applications: progress on Sogge’s “local smoothing conjecture for
the wave equation”, mean square estimates for Riemann zeta
(Bourgain-Watt),etc

• (Bourgain) Two dimensional surfaces in R4 (pc = 6).
Application: Bourgain used this to improve the estimate in the
Lindelöf hypothesis for the growth of Riemann zeta

• (Bourgain, D., Guth) Curves with torsion in Rn (pc = n(n + 1)).
Application: Vinogradov’s Mean Value Theorem.
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Here is some insight on why we need to work on ”big” balls Bδ−q .

Typically, working with q = 1 does not produce interesting results,
decoupling only works at this scale for p = 2. The very standard
(L2 almost orthogonality) estimate asserts that, for any δ-
separated points ξ in Rn we have

(
1

|Bδ−1 |

∫
Bδ−1

|
∑
ξ

aξe(ξ · x)|2dx)1/2 . ‖aξ‖l2 .

One can not replace the L2 average with an Lp (p > 2) average if
no additional restrictions are imposed.
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Even under the curvature assumption Λ ⊂ Sn−1, when p = 2(n+1)
n−1

the expected estimate is (equivalent form of Stein-Tomas
restriction theorem)

(
1

|Bδ−1 |

∫
Bδ−1

|
∑
ξ∈Λ

aξe(ξ · x)|pdx)1/p . δ
n
p
− n−1

2 ‖aξ‖l2 .

Note that the exponent n
p −

n−1
2 is negative.

However, by averaging the same exponential sum on the larger
ball Bδ−2 (this allows more room for the oscillations to annihilate
each other), we get a stronger estimate (reverse Hölder)

(
1

|Bδ−2 |

∫
Bδ−2

|
∑
ξ∈Λ

aξe(ξ · x)|pdx)1/p . δ−ε‖aξ‖l2 .

Recap: Decouplings need separation, curvature and large
enough spatial balls.
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l2(Lp) 6= Lp(l2) !

Our decoupling theorem for the sphere in Rn is related to the
restriction problem.

Conjecture (Square function estimate: it implies restriction and
Kakeya conjectures)

Let f : Sn−1 → C, then in the small range 2 ≤ p ≤ 2n
n−1

‖f̂dσ‖Lp(Bδ−2 ) .ε δ
−ε‖(

∑
τ :δ−cap on Sn−1

|̂fτdσ|2)1/2‖Lp(Bδ−2 )

Compare this to

Theorem (Decoupling, Bourgain-D 2014)

Let f : Sn−1 → C, then in the larger range 2 ≤ p ≤ 2(n+1)
n−1

‖f̂dσ‖Lp(Bδ−2 ) .ε δ
−ε(

∑
τ :δ−cap on Sn−1

‖̂fτdσ‖2
Lp(Bδ−2 ))1/2

Ciprian Demeter, Indiana University Decouplings and applications



For each integers s ≥ 1 and n,N ≥ 2 denote by Js,n(N) the
number of integral solutions for the following system

X i
1 + . . .+ X i

s = Y i
1 + . . .+ Y i

s , 1 ≤ i ≤ n,

with 1 ≤ X1, . . . ,Xs ,Y1, . . . ,Ys ≤ N.
Example: n=2{

X1 + . . .+ Xs = Y1 + . . .+ Ys

X 2
1 + . . .+ X 2

s = Y 2
1 + . . .+ Y 2

s

.

Theorem (Vinogradov’s Mean Value “Theorem”)

For each s ≥ 1, ε > 0 and n,N ≥ 2 we have the upper bound

Js,n(N) .ε N
s+ε + N2s− n(n+1)

2
+ε.

The number Js,n(N) has the following analytic representation

Js,n(N) =

∫
[0,1]n

|
N∑
j=1

e(x1j + x2j
2 + . . .+ xnj

n)|2sdx1 . . . dxn.
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Theorem (Vinogradov’s Mean Value “Theorem” (VMVT))

For each p ≥ 2, ε > 0 and n,N ≥ 2 we have the upper bound

(

∫
[0,1]n

|
N∑
j=1

e(x1j + x2j
2 + . . .+ xnj

n)|pdx1 . . . dxn)1/p .ε

{
N

1
2

+ε, if 2 ≤ p ≤ n(n + 1)

N1− n(n+1)
2p

+ε
, if p ≥ n(n + 1)

.

When p = 2,∞ we have sharp estimates

‖
N∑
j=1

e(x1j + x2j
2 + . . .+ xnj

n)‖Lp(Tn) =

{
N

1
2 , p = 2

N, p =∞

Given n, the full range of estimates in VMVT will follow if we
prove the case p = n(n + 1) (critical exponent)
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• n=2 is easy and has been known (folklore?). It has critical
exponent p = 2(2 + 1) = 6. One needs to check that{

X1 + X2 + X3 = Y1 + Y2 + Y3

X 2
1 + X 2

2 + X 2
3 = Y 2

1 + Y 2
2 + Y 2

3

.

has O(N3+ε) integral solutions in the interval [1,N]. Note that
(X1,X1,X3,X1,X2,X3) is always a (trivial) solution, so we have at
least N3 solutions. The required estimate says that fixing
X1,X2,X3 will determine Y1,Y2,Y3 within O(Nε) choices. Using
easy algebraic manipulations this boils down to the fact that a
circle of radius N contains at most O(Nε) lattice points.
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• n ≥ 3 : Only partial results have been known until ∼ 2012

Theorem (Vinogradov (1935), Karatsuba, Stechkin)

VMVT holds for p ≥ n2(4 log n + 2 log log n + 10), and in fact one
has a sharp asymptotic formula

‖
N∑
j=1

e(x1j + x2j
2 + . . .+ xnj

n)‖Lp(Tn) ∼ C (p, n)N1− n(n+1)
2p

Wooley developed the efficient congruencing method which led to
the following progress

Theorem (Wooley, 2012 and later)

VMVT holds for
• n = 3 and all values of p
• p ≤ n(n + 1)− 2n

3 + O(n2/3),
• p ≥ 2n(n − 1), all n ≥ 3
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Theorem (Bourgain, D, Guth 2015)

VMVT holds for all n ≥ 2 and all p.

Moreover, when combining this with known sharp estimates on
major arcs, there will be no losses in the supercritical regime
p > n(n + 1)

‖
N∑
j=1

e(x1j + x2j
2 + . . .+ xnj

n)‖Lp(Tn) ≤ C (p, n)N1− n(n+1)
2p .

Our method does not seem to say anything meaningful about the
implicit constant C (p, n), so we can’t say anything new about the
zero-free regions of the Riemann zeta. But there are at least two
important applications.
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Weyl sums
x = (x1, . . . , xn)

fn(x,N) =
N∑
j=1

e(x1j + x2j
2 + . . .+ xnj

n)

Theorem (H. Weyl)

Assume |xn − a
q | ≤

1
q2 , (a, q) = 1. Then

|fn(x,N)| . N1+ε(q−1 + N−1 + qN−n)21−n

As a consequence of VMVT we can now replace 21−n with
σ(n) = 1

n(n−1) (best known bounds for large n).
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The asymptotic formula in Waring’s problem

Rs,k(n) = number of representations of the integer n as a sum of s
kth powers. Based on circle method heuristics, the following
asymptotic formula is conjectured

Rs,k(n) =
Γ(1 + 1

k )s

Γ( s
k )

Gs,k(n)n
s
k
−1 + o(n

s
k
−1), n→∞

for s ≥ k + 1, k ≥ 3. Let G̃ (k) (Waring number) be the smallest
s for which the formula holds.

Ciprian Demeter, Indiana University Decouplings and applications



Wooley showed that VMVT would imply for all k ≥ 3

G̃ (k) ≤ k2 + 1− max
1≤j≤k−1

2j≤k2

[
kj − 2j

k + 1− j

]
.

In particular, we get

G̃ (k) ≤ k2 + 1−
[

log k

log 2

]
This improves all previous bounds on G̃ (k), except for Vaughan’s
G̃ (3) ≤ 8 (1986).

Further improvements are possible. Our VMVT leads to progress
on Hua’s lemma (Bourgain 2016) and eventually to

G̃ (k) ≤ k2 − k + O(
√
k).
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f (x) =
∑
j∼N

e(jnx)

Conjecture:
∫ 1

0 |f (x)|pdx . Np−n+ε, for p ≥ 2n

Lemma (Hua)

For l ≤ n ∫ 1

0
|f (x)|2ldx . N2l−l+ε, sharp when l = n

Theorem (Bourgain, 2016)

For s ≤ n ∫ 1

0
|f (x)|s(s+1)dx . Ns2+ε, sharp when s = n

Ciprian Demeter, Indiana University Decouplings and applications



Theorem (Bourgain, D, Guth, 2015)

Let ξ̄ = (ξ, . . . , ξn) be δ−separated points on the curve

{(t, t2, . . . , tn) : 0 ≤ t ≤ 1}.

Then for each 2 ≤ p ≤ n(n + 1)

(
1

|Bδ−n |

∫
Bδ−n

|
∑
ξ̄

aξ̄e(ξx1 + ξ2x2 + . . . ξnxn)|pdx)1/p .ε δ
−ε‖aξ̄‖l2

Apply this with ξ = j
N , 1 ≤ j ≤ N. Change variables

x1
N = y1, . . . ,

xn
Nn = yn. Then we get (δ = 1

N )

(
1

|C |

∫
C
|

N∑
j=1

aje(jy1 + j2y2 + . . . jnyn)|pdy)1/p .ε N
ε‖aj‖l2

C = [−Nn−1,Nn−1]× [−Nn−2,Nn−2]× . . .× [−1, 1]
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(
1

|C |

∫
C
|

N∑
j=1

aje(jy1 + j2y2 + . . . jnyn)|pdy)1/p .ε N
ε‖aj‖l2

C = [−Nn−1,Nn−1]× [−Nn−2,Nn−2]× . . .× [−1, 1]

Next cover C with translates of [0, 1]n and use periodicity to get

(

∫
Tn

|
N∑
j=1

aje(jy1 + j2y2 + . . . jnyn)|pdy)1/p .ε N
ε‖aj‖l2

Conclusions

1. Periodicity is the only fact that we exploit about integers j . We
have no other number theory in our argument. In fact, integers
can be replaced with well separated real numbers.

2. We recover a more general theorem, with coefficients aj .
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The proof of our decoupling theorem (n=3)...

M = {(t, t2, t3) : 0 ≤ t ≤ 1}.

Theorem

Let f :M→ C. PartitionM into caps τ of size δ. Then

‖f̂dσ‖L12(Bδ−3 ) .ε δ
−ε(
∑
τ

‖̂fτdσ‖2
L12(Bδ−3 ))1/2

for each ball Bδ−3 in R3 with radius δ−3.

...goes via gradually decreasing the size of the caps τ and at the
same time increasing the radius of the balls. This is done using the
following tools.
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• Parabolic rescaling: Each arc on (t, t2, . . . , tn) can be mapped
via an affine transformation to the full arc (0 ≤ t ≤ 1).

• Lots of induction on scales: Let Cδ be the best constant in
some decoupling inequality at scale δ. How does Cδ relate to
Cδ1/2?

These tools have been pioneered by Bourgain in early 1990s.

• Equivalence between linear and multilinear decoupling
Bourgain-Guth induction on scales (2010)

Ciprian Demeter, Indiana University Decouplings and applications



• L2 decoupling: This is a form of L2 orthogonality

‖f̂dσ‖L2(Bδ−1 ) . (
∑
τ

‖̂fτdσ‖2
L2(Bδ−1 ))1/2

It only works for L2 but it decouples efficiently, into caps of very
small size, equal to

1

radius of the ball
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• Lower dimensional decoupling: We use induction on
dimension. We assume and use the n = 2 decoupling result at L6.

The weakness of this is that the critical exponent pc = 6 for
n = 2 is small compared to 12 (n = 3).

The strength is the fact that it decouples into small intervals, of
length 1

R1/2 as opposed to 1
R1/3 (R is the radius of the spatial ball).

At the right spatial scale, arcs of the twisted cubic look planar.
One can treat them with L6 decoupling. For example, the ∼ δ3

neighborhood of
{(t, t2, t3) : 0 ≤ t ≤ δ}

is essentially the same as the ∼ δ3 neighborhood of the arc of
parabola

{(t, t2, 0) : 0 ≤ t ≤ δ}

so there is an L6 decoupling of this into δ
3
2 arcs on Bδ−3
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•Multilinear Kakeya type inequalities: Do a wave packet
decomposition of f̂dσ using plates.

There is a hierarchy of incidence geometry inequalities about how
these plates intersect, ranging from easy to hard. These
inequalities have only been clarified in the last two years.
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Theorem (Bennet, Carbey, Tao, 2006)

Consider n families Tj consisting of R × R1/2 × . . .× R1/2 tubes
T ⊂ B4R in Rn having the following property

Transversality: The direction of the long axis of T ∈ Tj is in a
small neighborhood of ej = (0, . . . , 1, . . . , 0)

Then we have the following inequality

�
∫
B4R

|
n∏

j=1

Fj |
1

2n
2n
n−1 .ε R

ε

 n∏
j=1

| �
∫
B4R

Fj |
1

2n


2n
n−1

(1)

for all functions Fj of the form

Fj =
∑
T∈Tj

cP1T .

The implicit constant will not depend on R, cP , Tj .
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Open problems

Consider the generalized additive energy

En(A) = |{(a1, . . . , a2n) ∈ A2n : a1 + . . .+ an = an+1 + . . . a2n}|

1. Prove (or disprove) that E2(A) .ε |S |2+ε if A ⊂ S2.

Known for subsets of the paraboloid A ⊂ P2

2. Prove (or disprove) that E3(A) .ε |A|3+ε if A ⊂ S1 or A ⊂ P1

For S1, this follows from the unit distance conjecture. Best known
unconditional bound (Bombieri-Bourgain) is |A|7/2 via
Szemeredi-Trotter

All these follow from our decoupling theorems in the case of
δO(1)- separated points.
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