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Compact constant mean curvature surfaces (soap bubbles) are
critical points for the area functional under variations which
preserve the enclosed volume.

Question (Hopf )

Is an immersed compact constant mean curvature surface in R3

necessarily a round sphere?

Theorem (Hopf, 1951)

If f : S2 → R3 is an immersion with constant mean curvature, then
f (S2) is a round sphere.

Theorem (Alexandrov, 1958 )

An embedded compact constant mean curvature surface in R3 is a
round sphere.
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These were generally thought to be the only soap bubbles until
1984, when Wente constructed

Figure : Wente torus
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Figure : generating loops: i.e. why this is a torus
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In fact,

Theorem (Kapouleas, 1987)

There are immersed compact mean curvature surfaces (CMC) in
R3 of every genus.

We will concentrate on tori/planes, as they have an interesting link
with algebraic geometry.
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The fundamental observation (Pohlmeyer, Uhlenbeck) that links
CMC surfaces with integrable systems is that for a
simply-connected coordinate neighbourhood U ⊂ Σ2,

CMC immersion f : U → R3

↔
C×-family of flat SL(2,C) connections d + φλ on U × C2,

of a specific form.

These satisfy a reality condition w.r.t. λ 7→ λ̄−1 and for λ ∈ S1,
φλ ∈ SU(2).
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Identifying R3 with su(2) via

e1 =

(
0 −i
−i 0

)
, e2 =

(
0 1
−1 0

)
, e3 =

(
i 0
0 −i

)
,

a moving frame F : R2 → SU(2) for f : R2 → R3 is given by

AdF e1 =
fx
|fx |

, AdF e2 =
fy
|fy |

, AdF e3 = N.
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Bonnet Theorem in terms of H

For a conformal immersion f : R2 → R3, with metric 4e2udzdz̄ ,
the first and second fundamental forms are

I =

(
4e2u 0

0 4e2u

)
, II =

(
4He2u + Q + Q̄ i(Q − Q̄)

i(Q − Q̄) 4He2u − (Q + Q̄)

)
where H = mean curvature and Q = 〈fzz ,N〉.

Qdz2 = Hopf differential = trace-less part of (complexified) II .

Theorem (Bonnet)

Given 4e2udzdz̄ , Qdz2 and H on R2 satisfying the Gauss-Codazzi
equations, there is a conformal immersion f : R2 → R3 such that
these are the metric, Hopf differential and mean curvature. This
immersion is unique up to Euclidean motions.
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When H is constant, the Gauss-Codazzi equations are unchanged
by Q 7→ λQ for λ ∈ S1, giving a one-parameter family of CMC
surfaces. Explicitly

φλ =
1

2

(
uz −2Heuλ−1

Qe−uλ−1 −uz

)
dz +

1

2

(
−uz̄ −Q̄e−uλ

2Heuλ uz̄

)
dz̄ .

Allowing λ ∈ C×, φλ = F−1
λ dFλ if and only if

dφλ + [φλ, φλ] = 0 ∀λ ∈ C× (Maurer-Cartan equation).

The Maurer-Cartan equation states that the connections
dλ = d + φλ (in the trivial bundle) are all flat.
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We have described a CMC immersion f : R2 → R3 in terms of a
family of flat SL(2,C) connections d + φλ on R2 × C2.
What can you do with a family of flat connections?

can always study parallel sections

dAλ(z) = [Aλ(z), φλ(z)]

if had f : T 2 = R2/Λ→ R3, can consider holonomy

Hz
λ : π1(T 2, z)→ SL(2,C).

π1(T 2, z) is abelian so the holonomy representation has common
eigenspaces Ez .
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Theorem (Hitchin’ 90, Pinkall-Sterling’ 89)

Define a polynomial a(λ) by
λ0 is a zero of a of order n ⇔ the two eigenlines of Hλ0 agree to
order n.
The curve

y2 = λa(λ)

completes to a (finite genus) algebraic curve Xa, called the spectral
curve of f .

For each z ∈ T 2 there is a line bundle Ez on Xa given by the
eigenlines of Hz

λ and the map

z 7→ Ez ⊗ E−1
0 : T 2 → Jac(Xa)

is linear.
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Theorem (Hitchin, Pinkall-Sterling, Bobenko)

There is an explicit 1-1 correspondence

CMC tori f : T 2 → R3

l
spectral curve data, consisting of

a hyperelliptic curve X

marked points P0,P∞ ∈ X

a line bundle E0 on X of degree g + 1

satisfying certain symmetries and periodicity conditions.

This provides a linearisation of the equations for a constant mean
curvature torus.
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Omitting the periodicity conditions yields CMC planes; instead use
parallel sections Aλ(z) which, in the case of tori, commute with
the holonomy and hence give the same curve.

Not all CMC planes arise from algebraic (finite genus) spectral
curves those which do are called finite-type.

In particular, the above theorem says that all CMC tori in R3 are
of finite-type.
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There is very similar spectral curve correspondence for CMC
immersions R2 → S3 of finite-type.
Again all the CMC tori are of finite-type and they are characterised
by their spectral data satisfying periodicity conditions.
We would like to understand the moduli spaces of CMC tori in R3

and S3, in particular:

Question

1 Can one deform these tori, at least infinitesimally, and if so
what is the dimension of the space of deformations?

2 How common are the CMC tori amongst CMC planes of
finite-type?
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The line bundle E0 is chosen from a real g -dimensional space,
giving at least g deformation parameters. So it is better to ask:

Question

1 Can one deform spectral curves of tori, at least infinitesimally,
and if so what is the dimension of the space of deformations?

2 How common are the spectral curves of CMC tori amongst
spectral curves of CMC planes of finite-type?
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Spectral Curve Data for R3 or S3

Writing the hyperelliptic curve Xa as y2 = λa(λ),
we have

the hyperelliptic involution σ : (λ, y) 7→ (λ,−y)

σ

(λ, y)

λ

0 ∞

P0 P∞
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an anti-holomorphic involution ρ without fixed points covering
λ 7→ λ̄−1

ρ : (λ, y) 7→ (λ̄−1, ȳ λ̄−g−1).

0
α1

ᾱ−1
1

α2

ᾱ−1
2

α3

ᾱ−1
3
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Writing ρ∗a to mean λdeg aa(λ̄−1),

ρ∗a = a reality condition.

We consider the space Hg of smooth spectral curve data (Xa, λ) of
genus g as an open subset of R2g , given by (α1, . . . , αg ), where

Xa : y2 = λa(λ) = λ

g∏
i=1

(λ− αi )(1− αiλ)

|αi |
.
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Periodicity

In the case of tori, let µ1(λ, y), µ2(λ, y) be the eigenvalues of the
holonomy Hz

λ about the 2 generators of π1(T 2,Z).

Then Θ1 = d logµ1 and Θ2 = d logµ2 are meromorphic
differentials with

no residues

double poles at P0, P∞

σ∗Θ = −Θ, ρ∗Θ = −Θ

periods in 2π
√
−1Z.
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In general, let

Ba =


meromorphic differentials Θ with

no residues, double poles at P0,P∞,

σ∗Θ = −Θ, ρ∗Θ = −Θ and having
purely imaginary periods

 .

Ba is a real 2-plane.
We obtain a real-analytic rank two vector bundle

B → Hg

over the space Hg of smooth spectral curves
y2 = λa(λ) of genus g .
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Periodicity Conditions for CMC T 2 → R3

Xa ∈ Hg gives a doubly-periodic CMC immersion into R3

⇔
there exists a frame (Θ1,Θ2) of Ba such that

1 their periods lie in 2π
√
−1Z (⇔ Θ1 = d logµ1,Θ2 = d logµ2)

2 for some λ0 ∈ S1, called the Sym point

(a) for γ a curve in X connecting the two points in λ−1(λ0),∫
γ

Θ1,

∫
γ

Θ2 ∈ 2π
√
−1Z

(b) Θ1 and Θ2 vanish at λ−1(λ0)
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Periodicity Conditions for CMC T 2 → S3

Xa ∈ Hg gives a doubly-periodic CMC immersion into S3

⇔
there exists a frame (Θ1,Θ2) of Ba such that

1 their periods lie in 2π
√
−1Z

2 there are λ1 6= λ2 ∈ S1 (Sym points) such that∫
γ1

Θ1,

∫
γ2

Θ1,

∫
γ1

Θ2,

∫
γ2

Θ2 ∈ 2π
√
−1Z

where γj is a curve in Xa joining the 2 points with λ = λj .
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Deformations of CMC Tori

For spectral curves of CMC tori in R3,

# free parameters = # periodicity conditions.

A CMC torus has Rg deformations, all isospectral.

A CMC torus in S3 has Rg isospectral deformations.

For CMC tori in S3, have an extra real parameter: the ratio
λ1

λ2
.
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CMC Tori in S3

For λ1 6= λ2 ∈ S1 define Pg (λ1, λ2) ⊂ Hg to be the set of spectral
curves of CMC tori with Sym points λ1, λ2.

Theorem (—-, Schmidt)

For each λ1 6= λ2 ∈ S1, Pg (λ1, λ2) is dense in Hg .
Geometrically: CMC tori are dense amongst CMC planes of finite
type in S3.
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CMC tori in R3

Theorem (Ercolani–Knörrer–Trubowitz ’93, Jaggy ’94)

For every g > 0, there exist CMC tori of spectral genus g . There
are at least countably many spectral curves of genus g satisfying
the periodicity conditions.

In the Euclidean case, CMC tori are not dense amongst CMC
planes of finite type.
Writing

Pg
λ0

= {Xa ∈ Hg | Xa is a spectral curve

of a CMC torus with Sym point λ0},

the closure of Pg
λ0

is contained in the real subvariety

Sgλ0
= {Xa ∈ H | all Θ ∈ Ba vanish at λ0},

which has codimension at least 2.
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The set

Sg =
⋃

λ0∈S1

Sgλ0

= {Xa ∈ H | all Θ ∈ Ba have a common root on S1},

which contains the closure of spectral curves of CMC tori, is in
general not a subvariety.

However it is contained in the subvariety

Rg = {Xa ∈ Hg | all Θ ∈ Ba have a common root }.

Emma Carberry and Martin Schmidt Constant Mean Curvature Tori in R3 and S3



The set

Sg =
⋃

λ0∈S1

Sgλ0

= {Xa ∈ H | all Θ ∈ Ba have a common root on S1},

which contains the closure of spectral curves of CMC tori, is in
general not a subvariety.

However it is contained in the subvariety

Rg = {Xa ∈ Hg | all Θ ∈ Ba have a common root }.

Emma Carberry and Martin Schmidt Constant Mean Curvature Tori in R3 and S3



Intuitive Picture

Recall that for real varieties we may have smooth points of
different dimension within the same irreducible component

Figure : Cartan’s Umbrella: z(x2 + y2) = x3

Rg has smooth points of different dimensions, with those of the
highest dimension (the “cloth”) contained in Sg .
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Theorem (—–, Schmidt)

For Xa ∈ Rg , if

dim
Xa

Rg = 2g − 1 (i.e. codimension 1 in Hg )

then Xa belongs to the closure of the spectral curves of constant
mean curvature tori in R3. This closure is contained in Sg .
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The 2-plane Ba of differentials allows us to define new integer
invariants of a CMC immersion f : R2 → R3.

Taking a basis Θ1,Θ2 of Ba, the function

h; =
Θ1

Θ2
: CP1 → CP1

is well-defined up to Möbius transformations, and has degree

deg(h) = g + 1− deg(gcd(Ba)).

On S1, the function h is real-valued so

h̃ =
h + i

h − i
: S1 → S1

and we call the degree degS1 h of this map the real degree of h.
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Theorem (—–, Schmidt)

Define Vj = {a ∈ Hg \ Sg | degS1 h̃ = j}. Then for g ≥ 1, the set
Hg \Sg is the following union of non-empty, open and disjoint sets:

Hg \ Sg = V1−g ∪ V3−g ∪ . . . ∪ Vg−3 ∪ Vg−1.
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Theorem (—–, Schmidt)

For Xa ∈ Rg the following statements are equivalent:

(1) dimaRg = 2g − 1 (i.e. codimension 1 in Hg )

(2) a belongs to the closure of at least two different Vj ,
j = 1− g , 3− g , . . . , g − 3, g − 1

(3) a belongs to the closure of {ã ∈ Hg | deg(gcd(Bã)) = 1}.
(4) There exists λ0 ∈ S1 such that a ∈ Sg

λ0
with

dima S
g
λ0

= 2g − 2.

Moreover, if one of these equivalent conditions is satisfied than Xa

belongs to the closure of the spectral curves of constant mean
curvature tori in R3. This closure is contained in Sg .
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Period-Preserving Deformations

Let F → Hg denote the frame bundle of B.

Elements of F are of the form (a,Θ1,Θ2).

Writing

Θk :=
bk(λ)dλ

λy

we may represent the differentials Θk by polynomials bk of degree
g + 1, real with respect to ρ.

Suppose we have a tangent vector (ȧ, ḃ1, ḃ2) ∈ T(a,b1,b2)F which
infinitesimally preserves the periods of the differentials Θ1,Θ2.
Then

Θ̇k = dq̇k for some meromorphic functions q̇k on X
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We may write

q̇k =
ick(λ)

y
,

where ck is a polynomial of degree g + 1 which is real with respect
to ρ. Equating partial derivatives

∂

∂λ
q̇kdλ =

∂

∂t
Θk

which expands to

(2λac ′1 − ac1 − λa′c1)i = 2aḃ1 − ȧb1, (1)

(2λac ′2 − ac2 − λa′c2)i = 2aḃ2 − ȧb2, (2)

where a dot denotes the derivative with respect to t, evaluated at
t = 0, whilst a prime means the derivative with respect to λ.
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Computing c2 (1) − c1 (2) gives

2a
(
c ′1c2λ− c ′2c1λ+ c1ḃ2 − c1ḃ1

)
= ȧ(c1b2 − c2b1).

so any roots of a at which ȧ does not vanish are roots of
c1b2 − c2b1. In fact from (1) and (2) the same is true at all roots
of a so

c1b2 − c2b1 = Qa (3)

with Q a polynomial of degree two, real with respect to ρ.
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A tangent vector to F at (a,Θ1,Θ2) which infinitesimally
preserved periods defined

1 polynomials c1, c2 satisfying (1) and (2)

2 a quadratic polynomial Q(λ) satisfying (3).

Conversely, given a quadratic polynomial Q(λ) we try to

1 solve (3) for c1, c2

2 solve (1) and (2) for (ȧ, ḃ1, ḃ2)

Flowing along the resulting vector field preserves periods, a useful
technique in proving the above results.
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