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Elliptic curves

E :=
(
y 2 = a3x

3 + a2x
2 + a1x + a0

)
⊂ A2

xy

Major problem 1: Find all solutions.
(over Q or number fields or ...)

Major problem 2: Are there infinitely many solutions?

Weak variant: There are “many” (a3, . . . , a0) ∈ K 4

for which E has infinitely many solutions.



Families of elliptic curves

– ai(t) ∈ K [t] polynomials
– family of elliptic curves

Et :=
(
y 2 = a3(t)x3 + a2(t)x2 + a1(t)x + a0(t)

)

– nontrivial family:
at least two of the curves Et are smooth, elliptic and
not isomorphic to each other over K .

– Equivalent to:
discriminant is not identically 0 and
not all the ai(t) are multiples of the same square.
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Main Corollary
– K a number field,
– ai(t) ∈ K [t] polynomials of degree 2,
– nontrivial family. Then

Et :=
(
y 2 = a3(t)x3 + a2(t)x2 + a1(t)x + a0(t)

)
has infinitely many solutions for about
√

all possible t ∈ K (arranged by height).



Previous work

1. If ai have degree 1: easy (linear equation for t)

2. Degree 2 case: R. Munshi studied the case when
the ai are multiples of each other (+ CM case)

3. If ai have degree ≥ 3: probably not true (K3 surfaces)



Geometry enters

We focus on the algebraic surface

T :=
(
y 2 = a3(t)x3 + a2(t)x2 + a1(t)x + a0(t)

)
⊂ A3

xyt

Theorem
– K field of characteristic 6= 2
– ai(t) ∈ K [t] polynomials of degree 2
– giving a nontrivial family.
⇒ T is unirational over K .

unirational: there is a dominant map φ : P2 99K T , so
φ
(
P2(K )

)
gives “many” K -points on T .
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Conic bundles

Projection to x-axis (using deg ai = 2)

T :=
(
y 2 = b2(x)t2 + b1(x)t + b0(x)

)
⊂ A3

xyt

where the bi(x) ∈ K [x ] are cubics.

T → A1
x is a conic bundle.

Compactify: S → P1, generic fibers are smooth, rational.

Max Noether (1870): birational to P1 × P1 over C.

Corollary: S is rational after a finite degree
field extension K ′/K (In our case, degree | 27 · 7!)
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Minimal conic bundles

S → P1 such that every fiber is a conic;
general fibers: smooth conics,
special fibers: conjugate pairs of lines.

Main invariant: δ(S) = number of singular fibers

Degree:
(
K 2

S

)
= 8− δ(S)

Arithmetic gets harder as δ(S) increases

Del Pezzo cases: 0 ≤ δ(S) ≤ 7
Boundary case: δ(S) = 8 ( families of g = 1 curves)
Hard cases: δ(S) ≥ 9 ( families of g ≥ 2 hyperelliptic curves)
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Our surface T

T =
(
y 2 = b2(x)t2 + b1(x)t + b0(x)

)
⊂ A3

xyt

where the bi(x) ∈ K [x ] are cubics.

Singular fibers:
– at roots of b21 − 4b2b0: 6 singular fibers
– at infinity: need to blow up/down to get that

singular iff a3(t) is not a square.

⇒ δ(T ) = 7 so T is a degree 1 conic bundle.



Theorem
– K field of characteristic 6= 2
– π : S → P1 conic bundle with δ(S) ≤ 7, then

S is unirational over K ⇔ S(K ) 6= ∅.

– Segre (1951), Manin (1966): δ(S) ≤ 5
– δ(S) = 6: Manin knew many cases
– δ(S) = 7: there is always a K -point since (K 2

S ) = 1.
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Geometry for δ(S) = 5, 6, 7: Weak del Pezzo

• −KS is semiample (with few of exceptions)
• maps by | − KS | or | − 2KS |:

δ(S) = 5: S ↪→ P3 as a cubic (with a line)

δ(S) = 6: S → P2 double cover, deg 4 ramification

δ(S) = 7: | − KS | is a pencil but | − 2KS | gives
S → Q ⊂ P3 double cover,

Q: quadric cone, degree 2 · 3 ramification.

Bertini involution: τB : S → S over Q
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Classification of degree 1 conic bundles I

– | − KS | pencil with a unique base point p∗ ∈ S(K )
– π : S → P1

– F ∗: fiber of π containing p∗.

(General case) F ∗ smooth. Thus F ∗ ∼= P1 over K . Good!
(Pf: Conic rational over K iff it has a K -point.)

(Special case) F ∗ singular. Thus p∗ is the
unique singular point of F ∗.

Two pencils: double cover σ : S → P1 × P1
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Classification of degree 1 conic bundles II

σ : S → P1 × P1 double cover

(General case) In suitable coordinates:

y 2 = x4 + a3(t)x3 + a2(t)x2 + a1(t)x + a0(t)

where deg ai ≤ 2 and deg a3 = 2.

(Special case) In suitable coordinates:

y 2 = a3(t)x3 + a2(t)x2 + a1(t)x + a0(t),

where deg ai ≤ 2 and deg a3 = 2.
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Unirationality in general case

Lemma (Enriques criterion)

A conic bundle S → P1 is unirational iff there is a
multi-section s : P1 → S.

We have P1 ∼= F ∗ ⊂ S a fiber;

Bertini involution τB 6= σ-involution;

⇒ τB(F ∗) ⊂ S is a (degree 8) multi-section;

⇒ S is unirational.

Problems in the Special Case:
– F ∗ is not rational and
– even if we find a rational fiber F0, then τB(F0) = F0.



Unirationality in general case

Lemma (Enriques criterion)

A conic bundle S → P1 is unirational iff there is a
multi-section s : P1 → S.

We have P1 ∼= F ∗ ⊂ S a fiber;

Bertini involution τB 6= σ-involution;

⇒ τB(F ∗) ⊂ S is a (degree 8) multi-section;

⇒ S is unirational.

Problems in the Special Case:
– F ∗ is not rational and
– even if we find a rational fiber F0, then τB(F0) = F0.



Unirationality in general case

Lemma (Enriques criterion)

A conic bundle S → P1 is unirational iff there is a
multi-section s : P1 → S.

We have P1 ∼= F ∗ ⊂ S a fiber;

Bertini involution τB 6= σ-involution;

⇒ τB(F ∗) ⊂ S is a (degree 8) multi-section;

⇒ S is unirational.

Problems in the Special Case:
– F ∗ is not rational and
– even if we find a rational fiber F0, then τB(F0) = F0.



Multiplication maps (a side direction)

E elliptic curve: we have mE : x 7→ m · x .

S with elliptic pencil: these glue to mS : S 99K S .

Compute: let F ⊂ S be a smooth fiber. Then

either: F consists of 6-torsion points
or: m2(F ) or m3(F ) is a multi-section.

Corollary: If S has a K -point that is not 6-torsion
then S is unirational.

Main problem: Can p∗ be the only K -point?



Historic note: Secant map for cubic surfaces

FK ⊂ P3 cubic surface over K ,
p1, p2 ∈ F : let ` be the line through them,
` ∩ F = {p1, p2, q}, we get

φ : F × F 99K F given by φ(p1, p2) = q;

descends to Sym2F 99K F .

Working with conjugate point pairs gives the following:

Proposition. Let L/K be a degree 2 field extension.
Weil restriction gives a dominant rational map

φL/K : <L/K (FL) 99K FK .

Corollary. If we have u : P2
L 99K FL then we get

φL/K (u) : P4
K 99K FK .
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Reinterpreting the secant map

F ⊂ P3 cubic surface over K ,
q = unique base point of | − KS |(−p1 − p2).

Concrete geometric question: Find
– class of surfaces X such that for n ≥ 1 there are
– linear systems |Bn| such that for general {p1, . . . , pn} ⊂ X
– |Bn|(−p1 − · · · − pn) has a unique base point.

Abstract question: For all n ≥ 1 find

φn : SymnX 99K X

Meta Conjecture
Only for conic bundles with δ = 7.
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Multi-secant map for δ(S) = 7

S : conic bundle with δ(S) = 7
KS : canonical class,
F : fiber class.

Theorem
For general {p1, . . . , pn} ⊂ S
| − KS + nF |(−2p1 − · · · − 2pn) is a
pencil with a unique base point.



Corollary

S: conic bundle with δ(S) = 7. Then
– multi-secant map is defined on an open subset of Sn

– combining with the Weil restriction gives

φ : P1290240 99K S .

(exponent = 2n for n = 7! · 27)



More economical method?

Step 1. Pick x , y ∈ K at random. Solve for t to get
conjugate pair r1, r

′
1 ∈ S .

Step 2. q, q′ : projection of r2 ∼ −2r1, r
′
2 ∼ −2r ′1 to A2

xt

Step 3. Look for the unique curve C ∗ in
| − 4KS + 7F |(−p∗ − 8q − 8q′)

Birational preimage of the new F ∗ after
elementary transformation at q, q′

plus Bertini involution.



More economical method?

Step 1. Pick x , y ∈ K at random. Solve for t to get
conjugate pair r1, r

′
1 ∈ S .

Step 2. q, q′ : projection of r2 ∼ −2r1, r
′
2 ∼ −2r ′1 to A2

xt

Step 3. Look for the unique curve C ∗ in
| − 4KS + 7F |(−p∗ − 8q − 8q′)

Birational preimage of the new F ∗ after
elementary transformation at q, q′

plus Bertini involution.



More economical method?

Step 1. Pick x , y ∈ K at random. Solve for t to get
conjugate pair r1, r

′
1 ∈ S .

Step 2. q, q′ : projection of r2 ∼ −2r1, r
′
2 ∼ −2r ′1 to A2

xt

Step 3. Look for the unique curve C ∗ in
| − 4KS + 7F |(−p∗ − 8q − 8q′)

Birational preimage of the new F ∗ after
elementary transformation at q, q′

plus Bertini involution.



More economical method?

Step 1. Pick x , y ∈ K at random. Solve for t to get
conjugate pair r1, r

′
1 ∈ S .

Step 2. q, q′ : projection of r2 ∼ −2r1, r
′
2 ∼ −2r ′1 to A2

xt

Step 3. Look for the unique curve C ∗ in
| − 4KS + 7F |(−p∗ − 8q − 8q′)

Birational preimage of the new F ∗ after
elementary transformation at q, q′

plus Bertini involution.



– there are polynomials f , g ,F ,G ,H of degrees 8,6,17,17,26

– C ∗ is given by x = f /g , t = F/G , y = H/(gG )

– multiplicity 8 at q, q′,

– multiplicity 1 at p∗ and

–
(
H/(gG )

)2
= a3(F/G )(f /g)3 + · · ·+ a0(F/G ).


