Quadratic families of elliptic curves and degree 1 conic bundles

János Kollár

Princeton University

joint with Massimiliano Mella

Elliptic curves

 $E := (y^2 = a_3 x^3 + a_2 x^2 + a_1 x + a_0) \subset \mathbb{A}^2_{xy}$

Major problem 1: Find all solutions. (over Q or number fields or ...)

Major problem 2: Are there infinitely many solutions?

Weak variant: There are "many" $(a_3, \ldots, a_0) \in K^4$ for which *E* has infinitely many solutions.

Families of elliptic curves

 $-a_i(t) \in K[t]$ polynomials - family of elliptic curves

$$E_t := \left(y^2 = a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t)\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Families of elliptic curves

- $-a_i(t) \in K[t]$ polynomials
- family of elliptic curves

$$E_t := \left(y^2 = a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t)\right)$$

- nontrivial family:

at least two of the curves E_t are smooth, elliptic and not isomorphic to each other over K.

- Equivalent to:

discriminant is not identically 0 and not all the $a_i(t)$ are multiples of the same square.

・ロト ・ 西 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・

Main Corollary

- K a number field,
- $-a_i(t) \in K[t]$ polynomials of degree 2,
- nontrivial family. Then

 $E_t := \left(y^2 = a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t)\right)$

has infinitely many solutions for about $\sqrt{\text{all possible } t \in K}$ (arranged by height).

Previous work

- 1. If a_i have degree 1: easy (linear equation for t)
- 2. Degree 2 case: R. Munshi studied the case when the *a_i* are multiples of each other (+ CM case)
- 3. If a_i have degree \geq 3: probably not true (K3 surfaces)

Geometry enters

We focus on the algebraic surface

$$\mathcal{T} := \left(y^2 = a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t)
ight) \subset \mathbb{A}^3_{xyt}$$

・ロト・西・・田・・田・・日・ ひゃう

Geometry enters

We focus on the algebraic surface

$$\mathcal{T} := \left(y^2 = a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t)
ight) \subset \mathbb{A}^3_{xyt}$$

Theorem

- K field of characteristic $\neq 2$
- $-a_i(t) \in K[t]$ polynomials of degree 2
- giving a nontrivial family.
- \Rightarrow T is unirational over K.

unirational: there is a dominant map $\phi : \mathbb{P}^2 \dashrightarrow T$, so $\phi(\mathbb{P}^2(K))$ gives "many" *K*-points on *T*.

Conic bundles

Projection to x-axis (using deg $a_i = 2$)

$$\mathcal{T}:=ig(y^2=b_2(x)t^2+b_1(x)t+b_0(x)ig)\subset\mathbb{A}^3_{xyt}$$

where the $b_i(x) \in K[x]$ are cubics.

 $T \to \mathbb{A}^1_{\times}$ is a conic bundle.

Conic bundles

Projection to x-axis (using deg $a_i = 2$)

$$\mathcal{T}:=ig(y^2=b_2(x)t^2+b_1(x)t+b_0(x)ig)\subset\mathbb{A}^3_{xyt}$$

where the $b_i(x) \in K[x]$ are cubics.

 $T \to \mathbb{A}^1_{\times}$ is a conic bundle.

Compactify: $S \to \mathbb{P}^1$, generic fibers are smooth, rational. Max Noether (1870): birational to $\mathbb{P}^1 \times \mathbb{P}^1$ over \mathbb{C} .

Corollary: S is rational after a finite degree field extension K'/K (In our case, degree | $2^7 \cdot 7!$)

Minimal conic bundles

 $S \to \mathbb{P}^1$ such that every fiber is a conic; general fibers: smooth conics, special fibers: conjugate pairs of lines.

Main invariant: $\delta(S) =$ number of singular fibers

Degree: $(K_{S}^{2}) = 8 - \delta(S)$

Minimal conic bundles

 $S \to \mathbb{P}^1$ such that every fiber is a conic; general fibers: smooth conics, special fibers: conjugate pairs of lines.

Main invariant: $\delta(S) =$ number of singular fibers

Degree: $(K_{S}^{2}) = 8 - \delta(S)$

Arithmetic gets harder as $\delta(S)$ increases

Del Pezzo cases: $0 \le \delta(S) \le 7$ Boundary case: $\delta(S) = 8$ (families of g = 1 curves) Hard cases: $\delta(S) \ge 9$ (families of $g \ge 2$ hyperelliptic curves)

Our surface T

 $T = (y^2 = b_2(x)t^2 + b_1(x)t + b_0(x)) \subset \mathbb{A}^3_{xyt}$ where the $b_i(x) \in K[x]$ are cubics.

Singular fibers:

- at roots of $b_1^2 - 4b_2b_0$: 6 singular fibers

- at infinity: need to blow up/down to get that singular iff $a_3(t)$ is not a square.

 $\Rightarrow \delta(T) = 7$ so T is a degree 1 conic bundle.

Theorem

- K field of characteristic $\neq 2$
- $-\pi: S \to \mathbb{P}^1$ conic bundle with $\delta(S) \leq 7$, then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

S is unirational over $K \Leftrightarrow S(K) \neq \emptyset$.

Theorem

- K field of characteristic $\neq 2$
- $-\pi: S \to \mathbb{P}^1$ conic bundle with $\delta(S) \leq 7$, then

S is unirational over $K \Leftrightarrow S(K) \neq \emptyset$.

- Segre (1951), Manin (1966): $\delta(S) \le 5$ - $\delta(S) = 6$: Manin knew many cases - $\delta(S) = 7$: there is always a K-point since $(K_S^2) = 1$.

-K_S is semiample (with few of exceptions)
maps by | - K_S| or | - 2K_S|:

-K_S is semiample (with few of exceptions)
maps by | - K_S| or | - 2K_S|:

 $\delta(S) = 5: S \hookrightarrow \mathbb{P}^3$ as a cubic (with a line)

- -K_S is semiample (with few of exceptions)
 maps by | K_S| or | 2K_S|:
- $\delta(S) = 5: S \hookrightarrow \mathbb{P}^3$ as a cubic (with a line)
- $\delta(S) = 6: S \to \mathbb{P}^2$ double cover, deg 4 ramification

• $-K_S$ is semiample (with few of exceptions) • maps by $|-K_S|$ or $|-2K_S|$: $\delta(S) = 5: S \hookrightarrow \mathbb{P}^3$ as a cubic (with a line) $\delta(S) = 6: S \to \mathbb{P}^2$ double cover, deg 4 ramification $\delta(S) = 7: |-K_S|$ is a pencil but $|-2K_S|$ gives $S \to Q \subset \mathbb{P}^3$ double cover, Q: quadric cone, degree 2 · 3 ramification.

Bertini involution: $\tau_B : S \to S$ over Q

- $|-K_S|$ pencil with a unique base point $p^* \in S(K)$ $-\pi: S \to \mathbb{P}^1$
- F^* : fiber of π containing p^* .

- $|-|-K_S|$ pencil with a unique base point $p^* \in S(K)$ $-\pi: S o \mathbb{P}^1$
- F^* : fiber of π containing p^* .
- (General case) F^* smooth. Thus $F^* \cong \mathbb{P}^1$ over K. Good! (Pf: Conic rational over K iff it has a K-point.)

- $|-K_{\mathcal{S}}|$ pencil with a unique base point $p^* \in \mathcal{S}(\mathcal{K})$ $-\pi: \mathcal{S} o \mathbb{P}^1$
- F^* : fiber of π containing p^* .
- (General case) F^* smooth. Thus $F^* \cong \mathbb{P}^1$ over K. Good! (Pf: Conic rational over K iff it has a K-point.)

(Special case) F^* singular. Thus p^* is the unique singular point of F^* .

- $|-|-K_S|$ pencil with a unique base point $p^* \in S(K)$ $-\pi: S \to \mathbb{P}^1$
- F^* : fiber of π containing p^* .
- (General case) F^* smooth. Thus $F^* \cong \mathbb{P}^1$ over K. Good! (Pf: Conic rational over K iff it has a K-point.)

- (Special case) F^* singular. Thus p^* is the unique singular point of F^* .
- **Two pencils:** double cover $\sigma : S \to \mathbb{P}^1 \times \mathbb{P}^1$

 $\sigma: \mathcal{S} \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ double cover

(General case) In suitable coordinates:

 $y^{2} = x^{4} + a_{3}(t)x^{3} + a_{2}(t)x^{2} + a_{1}(t)x + a_{0}(t)$

where deg $a_i \leq 2$ and deg $a_3 = 2$.

 $\sigma: \mathcal{S} \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ double cover

(General case) In suitable coordinates:

 $y^2 = x^4 + a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t)$

where deg $a_i \leq 2$ and deg $a_3 = 2$.

(Special case) In suitable coordinates:

$$y^2 = a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t),$$

where deg $a_i \leq 2$ and deg $a_3 = 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $\sigma: \mathcal{S} \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ double cover

(General case) In suitable coordinates:

$$y^2 = x^4 + a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t)$$

where deg $a_i \le 2$ and deg $a_3 = 2$. Bertini involution $\ne \sigma$ -involution

 $\sigma: \mathcal{S} \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$ double cover

(General case) In suitable coordinates:

$$y^2 = x^4 + a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t)$$

where deg $a_i \le 2$ and deg $a_3 = 2$. Bertini involution $\ne \sigma$ -involution

(Special case) In suitable coordinates:

$$y^2 = a_3(t)x^3 + a_2(t)x^2 + a_1(t)x + a_0(t),$$

where deg $a_i \leq 2$ and deg $a_3 = 2$.

Bertini involution = σ -involution

Unirationality in general case

Lemma (Enriques criterion)

A conic bundle $S \to \mathbb{P}^1$ is unirational iff there is a multi-section $s : \mathbb{P}^1 \to S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Unirationality in general case

Lemma (Enriques criterion)

A conic bundle $S \to \mathbb{P}^1$ is unirational iff there is a multi-section $s : \mathbb{P}^1 \to S$.

We have $\mathbb{P}^1 \cong F^* \subset S$ a fiber;

Bertini involution $\tau_B \neq \sigma$ -involution;

 $\Rightarrow \tau_B(F^*) \subset S$ is a (degree 8) multi-section;

 \Rightarrow *S* is unirational.

Unirationality in general case

Lemma (Enriques criterion)

A conic bundle $S \to \mathbb{P}^1$ is unirational iff there is a multi-section $s : \mathbb{P}^1 \to S$.

We have $\mathbb{P}^1 \cong F^* \subset S$ a fiber;

Bertini involution $\tau_B \neq \sigma$ -involution;

 $\Rightarrow \tau_B(F^*) \subset S$ is a (degree 8) multi-section;

 \Rightarrow *S* is unirational.

Problems in the Special Case:

- $-F^*$ is not rational and
- even if we find a rational fiber F_0 , then $\tau_B(F_0) = F_0$.

Multiplication maps (a side direction)

- *E* elliptic curve: we have $m_E : x \mapsto m \cdot x$.
- *S* with elliptic pencil: these glue to $m_S : S \dashrightarrow S$.

Compute: let $F \subset S$ be a smooth fiber. Then

either: F consists of 6-torsion points or: $m_2(F)$ or $m_3(F)$ is a multi-section.

Corollary: If *S* has a *K*-point that is not 6-torsion then *S* is unirational.

Main problem: Can p^* be the only K-point?

Historic note: Secant map for cubic surfaces

 $F_{\mathcal{K}} \subset \mathbb{P}^3$ cubic surface over \mathcal{K} , $p_1, p_2 \in F$: let ℓ be the line through them, $\ell \cap F = \{p_1, p_2, q\}$, we get

 $\phi: F \times F \dashrightarrow F$ given by $\phi(p_1, p_2) = q$;

descends to $\text{Sym}^2 F \dashrightarrow F$.

Historic note: Secant map for cubic surfaces

 $F_{\mathcal{K}} \subset \mathbb{P}^3$ cubic surface over \mathcal{K} , $p_1, p_2 \in F$: let ℓ be the line through them, $\ell \cap F = \{p_1, p_2, q\}$, we get

 $\phi: F \times F \dashrightarrow F$ given by $\phi(p_1, p_2) = q$;

descends to $\text{Sym}^2 F \dashrightarrow F$.

Working with conjugate point pairs gives the following:

Proposition. Let L/K be a degree 2 field extension. Weil restriction gives a dominant rational map

 $\phi_{L/K}: \Re_{L/K}(F_L) \dashrightarrow F_K.$

Corollary. If we have $u : \mathbb{P}^2_L \dashrightarrow F_L$ then we get

 $\phi_{L/K}(u): \mathbb{P}_K^4 \dashrightarrow F_K.$

 $F \subset \mathbb{P}^3$ cubic surface over K, q = unique base point of $|-K_S|(-p_1 - p_2)$.

- $F \subset \mathbb{P}^3$ cubic surface over K,
- q = unique base point of $|-K_S|(-p_1-p_2)$.

Concrete geometric question: Find

- class of surfaces X such that for $n \ge 1$ there are
- linear systems $|B_n|$ such that for general $\{p_1, \ldots, p_n\} \subset X$

 $-|B_n|(-p_1-\cdots-p_n)$ has a unique base point.

- $F \subset \mathbb{P}^3$ cubic surface over K,
- q = unique base point of $|-K_S|(-p_1-p_2)$.

Concrete geometric question: Find

- class of surfaces X such that for $n \ge 1$ there are
- linear systems $|B_n|$ such that for general $\{p_1, \ldots, p_n\} \subset X$
- $-|B_n|(-p_1-\cdots-p_n)$ has a unique base point.

Abstract question: For all $n \ge 1$ find

 $\phi_n:\operatorname{Sym}^nX\dashrightarrow X$

 $F \subset \mathbb{P}^3$ cubic surface over K,

q = unique base point of $|-K_S|(-p_1-p_2)$.

Concrete geometric question: Find

- class of surfaces X such that for $n \ge 1$ there are
- linear systems $|B_n|$ such that for general $\{p_1, \ldots, p_n\} \subset X$
- $-|B_n|(-p_1-\cdots-p_n)$ has a unique base point.

Abstract question: For all $n \ge 1$ find

 $\phi_n: \operatorname{Sym}^n X \dashrightarrow X$

Meta Conjecture

Only for conic bundles with $\delta = 7$.

Multi-secant map for $\delta(S) = 7$

S: conic bundle with $\delta(S) = 7$ K_S : canonical class, F: fiber class.

Theorem

For general $\{p_1, \ldots, p_n\} \subset S$ $|-K_S + nF|(-2p_1 - \cdots - 2p_n)$ is a pencil with a unique base point.

Corollary

- *S*: conic bundle with $\delta(S) = 7$. Then
- multi-secant map is defined on an open subset of S^n
- combining with the Weil restriction gives

$$\phi: \mathbb{P}^{1290240} \dashrightarrow S.$$

(exponent = 2n for $n = 7! \cdot 2^7$)

Step 1. Pick $x, y \in K$ at random. Solve for t to get conjugate pair $r_1, r'_1 \in S$.

Step 1. Pick $x, y \in K$ at random. Solve for t to get conjugate pair $r_1, r'_1 \in S$.

Step 2. q, q': projection of $r_2 \sim -2r_1, r'_2 \sim -2r'_1$ to \mathbb{A}^2_{xt}

▲ロト ▲園ト ▲ヨト ▲ヨト - ヨー つくで

- **Step 1.** Pick $x, y \in K$ at random. Solve for t to get conjugate pair $r_1, r'_1 \in S$.
- **Step 2.** q, q': projection of $r_2 \sim -2r_1, r_2' \sim -2r_1'$ to \mathbb{A}^2_{xt}

Step 3. Look for the unique curve C^* in $|-4K_S+7F|(-p^*-8q-8q')$

- **Step 1.** Pick $x, y \in K$ at random. Solve for t to get conjugate pair $r_1, r'_1 \in S$.
- **Step 2.** q, q': projection of $r_2 \sim -2r_1, r_2' \sim -2r_1'$ to \mathbb{A}^2_{xt}

Step 3. Look for the unique curve C^* in $|-4K_S+7F|(-p^*-8q-8q')$

Birational preimage of the new F^* after elementary transformation at q, q'plus Bertini involution. - there are polynomials f, g, F, G, H of degrees 8,6,17,17,26

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うらぐ

- C^* is given by x = f/g, t = F/G, y = H/(gG)
- multiplicity 8 at q, q',
- multiplicity 1 at p^* and
- $-(H/(gG))^{2} = a_{3}(F/G)(f/g)^{3} + \cdots + a_{0}(F/G).$