Quadratic families of elliptic curves and
 degree 1 conic bundles

János Kollár

Princeton University
joint with Massimiliano Mella

Elliptic curves

$E:=\left(y^{2}=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\right) \subset \mathbb{A}_{x y}^{2}$
Major problem 1: Find all solutions. (over \mathbf{Q} or number fields or ...)

Major problem 2: Are there infinitely many solutions?
Weak variant: There are "many" $\left(a_{3}, \ldots, a_{0}\right) \in K^{4}$ for which E has infinitely many solutions.

Families of elliptic curves

$-a_{i}(t) \in K[t]$ polynomials

- family of elliptic curves

$$
E_{t}:=\left(y^{2}=a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)\right)
$$

Families of elliptic curves

- $a_{i}(t) \in K[t]$ polynomials
- family of elliptic curves

$$
E_{t}:=\left(y^{2}=a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)\right)
$$

- nontrivial family:
at least two of the curves E_{t} are smooth, elliptic and not isomorphic to each other over K.
- Equivalent to:
discriminant is not identically 0 and not all the $a_{i}(t)$ are multiples of the same square.

Main Corollary

- K a number field,
- $a_{i}(t) \in K[t]$ polynomials of degree 2,
- nontrivial family. Then

$$
E_{t}:=\left(y^{2}=a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)\right)
$$

has infinitely many solutions for about $\sqrt{\text { all possible } t \in K}$ (arranged by height).

Previous work

1. If a_{i} have degree 1: easy (linear equation for t)
2. Degree 2 case: R. Munshi studied the case when the a_{i} are multiples of each other (+ CM case)
3. If a_{i} have degree ≥ 3 : probably not true (K3 surfaces)

Geometry enters

We focus on the algebraic surface

$$
T:=\left(y^{2}=a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)\right) \subset \mathbb{A}_{x y t}^{3}
$$

Geometry enters

We focus on the algebraic surface

$$
T:=\left(y^{2}=a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)\right) \subset \mathbb{A}_{x y t}^{3}
$$

Theorem

- K field of characteristic $\neq 2$
$-a_{i}(t) \in K[t]$ polynomials of degree 2
- giving a nontrivial family.
$\Rightarrow T$ is unirational over K.
unirational: there is a dominant map $\phi: \mathbb{P}^{2} \rightarrow T$, so $\phi\left(\mathbb{P}^{2}(K)\right)$ gives "many" K-points on T.

Conic bundles

Projection to x-axis (using $\operatorname{deg} a_{i}=2$)

$$
T:=\left(y^{2}=b_{2}(x) t^{2}+b_{1}(x) t+b_{0}(x)\right) \subset \mathbb{A}_{x y t}^{3}
$$

where the $b_{i}(x) \in K[x]$ are cubics.
$T \rightarrow \mathbb{A}_{x}^{1}$ is a conic bundle.

Conic bundles

Projection to x-axis (using $\operatorname{deg} a_{i}=2$)

$$
T:=\left(y^{2}=b_{2}(x) t^{2}+b_{1}(x) t+b_{0}(x)\right) \subset \mathbb{A}_{x y t}^{3}
$$

where the $b_{i}(x) \in K[x]$ are cubics.
$T \rightarrow \mathbb{A}_{x}^{1}$ is a conic bundle.
Compactify: $S \rightarrow \mathbb{P}^{1}$, generic fibers are smooth, rational.
Max Noether (1870): birational to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ over \mathbb{C}.
Corollary: S is rational after a finite degree field extension $K^{\prime} / K\left(\ln\right.$ our case, degree $\left.\mid 2^{7} \cdot 7!\right)$

Minimal conic bundles

$S \rightarrow \mathbb{P}^{1}$ such that every fiber is a conic; general fibers: smooth conics, special fibers: conjugate pairs of lines.

Main invariant: $\delta(S)=$ number of singular fibers
Degree: $\left(K_{S}^{2}\right)=8-\delta(S)$

Minimal conic bundles

$S \rightarrow \mathbb{P}^{1}$ such that every fiber is a conic; general fibers: smooth conics,
special fibers: conjugate pairs of lines.
Main invariant: $\delta(S)=$ number of singular fibers
Degree: $\left(K_{S}^{2}\right)=8-\delta(S)$
Arithmetic gets harder as $\delta(S)$ increases
Del Pezzo cases: $0 \leq \delta(S) \leq 7$
Boundary case: $\delta(S)=8$ (families of $g=1$ curves) Hard cases: $\delta(S) \geq 9$ (families of $g \geq 2$ hyperelliptic curves)

Our surface T

$T=\left(y^{2}=b_{2}(x) t^{2}+b_{1}(x) t+b_{0}(x)\right) \subset \mathbb{A}_{x y t}^{3}$ where the $b_{i}(x) \in K[x]$ are cubics.
Singular fibers:

- at roots of $b_{1}^{2}-4 b_{2} b_{0}$: 6 singular fibers
- at infinity: need to blow up/down to get that singular iff $a_{3}(t)$ is not a square.
$\Rightarrow \delta(T)=7$ so T is a degree 1 conic bundle.

Theorem

- K field of characteristic $\neq 2$
$-\pi: S \rightarrow \mathbb{P}^{1}$ conic bundle with $\delta(S) \leq 7$, then
S is unirational over $K \quad \Leftrightarrow \quad S(K) \neq \emptyset$.

Theorem

-K field of characteristic $\neq 2$
$-\pi: S \rightarrow \mathbb{P}^{1}$ conic bundle with $\delta(S) \leq 7$, then
S is unirational over $K \quad \Leftrightarrow \quad S(K) \neq \emptyset$.

- Segre (1951), Manin (1966): $\delta(S) \leq 5$
$-\delta(S)=6$: Manin knew many cases
$-\delta(S)=7$: there is always a K-point since $\left(K_{S}^{2}\right)=1$.

Geometry for $\delta(S)=5,6,7$: Weak del Pezzo

- $-K_{S}$ is semiample (with few of exceptions)
- maps by $\left|-K_{S}\right|$ or $\left|-2 K_{S}\right|$:

Geometry for $\delta(S)=5,6,7$: Weak del Pezzo

- $-K_{S}$ is semiample (with few of exceptions)
- maps by $\left|-K_{S}\right|$ or $\left|-2 K_{S}\right|$:
$\delta(S)=5: S \hookrightarrow \mathbb{P}^{3}$ as a cubic (with a line)

Geometry for $\delta(S)=5,6,7$: Weak del Pezzo

- $-K_{S}$ is semiample (with few of exceptions)
- maps by $\left|-K_{S}\right|$ or $\left|-2 K_{S}\right|$:
$\delta(S)=5: S \hookrightarrow \mathbb{P}^{3}$ as a cubic (with a line)
$\delta(S)=6: S \rightarrow \mathbb{P}^{2}$ double cover, deg 4 ramification

Geometry for $\delta(S)=5,6,7$: Weak del Pezzo

- $-K_{S}$ is semiample (with few of exceptions)
- maps by $\left|-K_{S}\right|$ or $\left|-2 K_{S}\right|$:
$\delta(S)=5: S \hookrightarrow \mathbb{P}^{3}$ as a cubic (with a line)
$\delta(S)=6: S \rightarrow \mathbb{P}^{2}$ double cover, deg 4 ramification
$\delta(S)=7:\left|-K_{S}\right|$ is a pencil but $\left|-2 K_{S}\right|$ gives
$S \rightarrow Q \subset \mathbb{P}^{3}$ double cover, Q : quadric cone, degree $2 \cdot 3$ ramification.

Bertini involution: $\tau_{B}: S \rightarrow S$ over Q

Classification of degree 1 conic bundles I

$-\left|-K_{S}\right|$ pencil with a unique base point $p^{*} \in S(K)$
$-\pi: S \rightarrow \mathbb{P}^{1}$

- F^{*} : fiber of π containing p^{*}.

Classification of degree 1 conic bundles I

$-\left|-K_{S}\right|$ pencil with a unique base point $p^{*} \in S(K)$
$-\pi: S \rightarrow \mathbb{P}^{1}$

- F^{*} : fiber of π containing p^{*}.
(General case) F^{*} smooth. Thus $F^{*} \cong \mathbb{P}^{1}$ over K. Good! (Pf: Conic rational over K iff it has a K-point.)

Classification of degree 1 conic bundles I

$-\left|-K_{S}\right|$ pencil with a unique base point $p^{*} \in S(K)$
$-\pi: S \rightarrow \mathbb{P}^{1}$

- F^{*} : fiber of π containing p^{*}.
(General case) F^{*} smooth. Thus $F^{*} \cong \mathbb{P}^{1}$ over K. Good! (Pf: Conic rational over K iff it has a K-point.)
(Special case) F^{*} singular. Thus p^{*} is the unique singular point of F^{*}.

Classification of degree 1 conic bundles I

$-\left|-K_{S}\right|$ pencil with a unique base point $p^{*} \in S(K)$
$-\pi: S \rightarrow \mathbb{P}^{1}$

- F^{*} : fiber of π containing p^{*}.
(General case) F^{*} smooth. Thus $F^{*} \cong \mathbb{P}^{1}$ over K. Good! (Pf: Conic rational over K iff it has a K-point.)
(Special case) F^{*} singular. Thus p^{*} is the unique singular point of F^{*}.
Two pencils: double cover $\sigma: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$

Classification of degree 1 conic bundles II

$\sigma: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ double cover
(General case) In suitable coordinates:

$$
y^{2}=x^{4}+a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)
$$

where $\operatorname{deg} a_{i} \leq 2$ and $\operatorname{deg} a_{3}=2$.

Classification of degree 1 conic bundles II

$\sigma: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ double cover
(General case) In suitable coordinates:

$$
y^{2}=x^{4}+a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)
$$

where $\operatorname{deg} a_{i} \leq 2$ and $\operatorname{deg} a_{3}=2$.
(Special case) In suitable coordinates:

$$
y^{2}=a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)
$$

where $\operatorname{deg} a_{i} \leq 2$ and $\operatorname{deg} a_{3}=2$.

Classification of degree 1 conic bundles II

$\sigma: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ double cover
(General case) In suitable coordinates:

$$
y^{2}=x^{4}+a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)
$$

where $\operatorname{deg} a_{i} \leq 2$ and $\operatorname{deg} a_{3}=2$.
Bertini involution $\neq \sigma$-involution

Classification of degree 1 conic bundles II

$\sigma: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ double cover
(General case) In suitable coordinates:

$$
y^{2}=x^{4}+a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)
$$

where $\operatorname{deg} a_{i} \leq 2$ and $\operatorname{deg} a_{3}=2$.
Bertini involution $\neq \sigma$-involution
(Special case) In suitable coordinates:

$$
y^{2}=a_{3}(t) x^{3}+a_{2}(t) x^{2}+a_{1}(t) x+a_{0}(t)
$$

where $\operatorname{deg} a_{i} \leq 2$ and $\operatorname{deg} a_{3}=2$.
Bertini involution $=\sigma$-involution

Unirationality in general case

Lemma (Enriques criterion)

A conic bundle $S \rightarrow \mathbb{P}^{1}$ is unirational iff there is a multi-section $s: \mathbb{P}^{1} \rightarrow S$.

Unirationality in general case

Lemma (Enriques criterion)

A conic bundle $S \rightarrow \mathbb{P}^{1}$ is unirational iff there is a multi-section $s: \mathbb{P}^{1} \rightarrow S$.

We have $\mathbb{P}^{1} \cong F^{*} \subset S$ a fiber;
Bertini involution $\tau_{B} \neq \sigma$-involution;
$\Rightarrow \tau_{B}\left(F^{*}\right) \subset S$ is a (degree 8) multi-section;
$\Rightarrow S$ is unirational.

Unirationality in general case

Lemma (Enriques criterion)
A conic bundle $S \rightarrow \mathbb{P}^{1}$ is unirational iff there is a multi-section $s: \mathbb{P}^{1} \rightarrow S$.

We have $\mathbb{P}^{1} \cong F^{*} \subset S$ a fiber;
Bertini involution $\tau_{B} \neq \sigma$-involution;
$\Rightarrow \tau_{B}\left(F^{*}\right) \subset S$ is a (degree 8) multi-section;
$\Rightarrow S$ is unirational.

Problems in the Special Case:

$-F^{*}$ is not rational and

- even if we find a rational fiber F_{0}, then $\tau_{B}\left(F_{0}\right)=F_{0}$.

Multiplication maps (a side direction)

E elliptic curve: we have $m_{E}: x \mapsto m \cdot x$.
S with elliptic pencil: these glue to $m_{S}: S \rightarrow S$.
Compute: let $F \subset S$ be a smooth fiber. Then either: F consists of 6 -torsion points or: $m_{2}(F)$ or $m_{3}(F)$ is a multi-section.
Corollary: If S has a K-point that is not 6 -torsion then S is unirational.

Main problem: Can p^{*} be the only K-point?

Historic note: Secant map for cubic surfaces
$F_{K} \subset \mathbb{P}^{3}$ cubic surface over K,
$p_{1}, p_{2} \in F$: let ℓ be the line through them,
$\ell \cap F=\left\{p_{1}, p_{2}, q\right\}$, we get
$\phi: F \times F \rightarrow F$ given by $\phi\left(p_{1}, p_{2}\right)=q$;
descends to $\operatorname{Sym}^{2} F \rightarrow F$.

Historic note: Secant map for cubic surfaces

$F_{K} \subset \mathbb{P}^{3}$ cubic surface over K,
$p_{1}, p_{2} \in F$: let ℓ be the line through them,
$\ell \cap F=\left\{p_{1}, p_{2}, q\right\}$, we get
$\phi: F \times F \rightarrow F$ given by $\phi\left(p_{1}, p_{2}\right)=q$;
descends to $S y m^{2} F \rightarrow F$.
Working with conjugate point pairs gives the following:
Proposition. Let L / K be a degree 2 field extension.
Weil restriction gives a dominant rational map

$$
\phi_{L / K}: \Re_{L / K}\left(F_{L}\right) \rightarrow F_{K} .
$$

Corollary. If we have $u: \mathbb{P}_{L}^{2} \rightarrow F_{L}$ then we get

$$
\phi_{L / K}(u): \mathbb{P}_{K}^{4} \rightarrow F_{K} .
$$

Reinterpreting the secant map
$F \subset \mathbb{P}^{3}$ cubic surface over K, $q=$ unique base point of $\left|-K_{S}\right|\left(-p_{1}-p_{2}\right)$.

Reinterpreting the secant map

$F \subset \mathbb{P}^{3}$ cubic surface over K, $q=$ unique base point of $\left|-K_{S}\right|\left(-p_{1}-p_{2}\right)$.

Concrete geometric question: Find

- class of surfaces X such that for $n \geq 1$ there are
- linear systems $\left|B_{n}\right|$ such that for general $\left\{p_{1}, \ldots, p_{n}\right\} \subset X$
$-\left|B_{n}\right|\left(-p_{1}-\cdots-p_{n}\right)$ has a unique base point.

Reinterpreting the secant map

$F \subset \mathbb{P}^{3}$ cubic surface over K, $q=$ unique base point of $\left|-K_{S}\right|\left(-p_{1}-p_{2}\right)$.

Concrete geometric question: Find

- class of surfaces X such that for $n \geq 1$ there are
- linear systems $\left|B_{n}\right|$ such that for general $\left\{p_{1}, \ldots, p_{n}\right\} \subset X$
$-\left|B_{n}\right|\left(-p_{1}-\cdots-p_{n}\right)$ has a unique base point.
Abstract question: For all $n \geq 1$ find

$$
\phi_{n}: \operatorname{Sym}^{n} X \rightarrow X
$$

Reinterpreting the secant map

$F \subset \mathbb{P}^{3}$ cubic surface over K,
$q=$ unique base point of $\left|-K_{S}\right|\left(-p_{1}-p_{2}\right)$.
Concrete geometric question: Find

- class of surfaces X such that for $n \geq 1$ there are
- linear systems $\left|B_{n}\right|$ such that for general $\left\{p_{1}, \ldots, p_{n}\right\} \subset X$
$-\left|B_{n}\right|\left(-p_{1}-\cdots-p_{n}\right)$ has a unique base point.
Abstract question: For all $n \geq 1$ find

$$
\phi_{n}: \operatorname{Sym}^{n} X \rightarrow X
$$

Meta Conjecture

Only for conic bundles with $\delta=7$.

Multi-secant map for $\delta(S)=7$
S: conic bundle with $\delta(S)=7$
K_{S} : canonical class,
F : fiber class.

```
Theorem
For general \(\left\{p_{1}, \ldots, p_{n}\right\} \subset S\)
\(\left|-K_{S}+n F\right|\left(-2 p_{1}-\cdots-2 p_{n}\right)\) is a pencil with a unique base point.
```


Corollary

S: conic bundle with $\delta(S)=7$. Then

- multi-secant map is defined on an open subset of S^{n}
- combining with the Weil restriction gives

$$
\phi: \mathbb{P}^{1290240} \rightarrow S
$$

(exponent $=2 n$ for $n=7!\cdot 2^{7}$)

More economical method?
Step 1. Pick $x, y \in K$ at random. Solve for t to get conjugate pair $r_{1}, r_{1}^{\prime} \in S$.

More economical method?
Step 1. Pick $x, y \in K$ at random. Solve for t to get conjugate pair $r_{1}, r_{1}^{\prime} \in S$.
Step 2. q, q^{\prime} : projection of $r_{2} \sim-2 r_{1}, r_{2}^{\prime} \sim-2 r_{1}^{\prime}$ to $\mathbb{A}_{x t}^{2}$

More economical method?

Step 1. Pick $x, y \in K$ at random. Solve for t to get conjugate pair $r_{1}, r_{1}^{\prime} \in S$.
Step 2. q, q^{\prime} : projection of $r_{2} \sim-2 r_{1}, r_{2}^{\prime} \sim-2 r_{1}^{\prime}$ to $\mathbb{A}_{x t}^{2}$
Step 3. Look for the unique curve C^{*} in

$$
\left|-4 K_{S}+7 F\right|\left(-p^{*}-8 q-8 q^{\prime}\right)
$$

More economical method?

Step 1. Pick $x, y \in K$ at random. Solve for t to get conjugate pair $r_{1}, r_{1}^{\prime} \in S$.
Step 2. q, q^{\prime} : projection of $r_{2} \sim-2 r_{1}, r_{2}^{\prime} \sim-2 r_{1}^{\prime}$ to $\mathbb{A}_{x t}^{2}$
Step 3. Look for the unique curve C^{*} in

$$
\left|-4 K_{S}+7 F\right|\left(-p^{*}-8 q-8 q^{\prime}\right)
$$

Birational preimage of the new F^{*} after elementary transformation at q, q^{\prime} plus Bertini involution.

- there are polynomials f, g, F, G, H of degrees $8,6,17,17,26$
$-C^{*}$ is given by $x=f / g, t=F / G, y=H /(g G)$
- multiplicity 8 at q, q^{\prime},
- multiplicity 1 at p^{*} and
$-(H /(g G))^{2}=a_{3}(F / G)(f / g)^{3}+\cdots+a_{0}(F / G)$.

