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Time and Space

The two most fundamental computational resources are time and
memory (space)

Many fundamental results in complexity theory concern the
relationship between these two

For even very simple problems, it is sometimes possible to
dramatically reduce the space without increasing time much. Other
times this doesn’t appear to be the case.
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Time and Space

Example: “Element Distinctness”. Given a list of n integers (say,
log2 n bits each), are there any duplicates?

I One approach: Sort them (O(n log n) time, O(n) space), then scan the
sorted list for duplicates.

I Another: Check all n(n− 1)/2 pairs for equality. (O(n2) time, O(log n)
space)

Example: “CNF-SAT”. Given boolean formula on n variables in CNF,
is it satisfiable?

I Trivial algorithm: Exhaustively enumerate all assignments and check.
(O(2n) time, O(n) space)

I If ETH holds, then there is no O(2(1−ε)n) time algorithm, even with
exponential space.
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Time and Space

Basic question: Which problems require large amounts of memory to
be solved efficiently?

Which problems have true time-space trade-offs? Can we explain why
they do or don’t?

Besides concrete problems, the important meta-algorithm ”Dynamic
Programming” always trades space for time.

Basic question: What are the limits of the strategy?
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Known Tradeoffs in Concrete Models

Questions like these have been asked almost since the inception of the
field.

Much work in “decision tree” / “branching program” models.

I Sorting (in a “structured” model) [Borodin, Cook ’82]
I Element distinctness [Beame ’91]

F (Our earlier examples are tight, in “R-way branching programs”)

I Explicit function in P which only has subexponential size boolean
branching programs with superlinear length [Ajtai ’99].

I Extension to inapproximiability for randomized branching programs.
[Beame, Saks, Sun, Vee ’02].
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Known Tradeoffs in Concrete Models

Questions like these have been asked almost since the inception of the
field.

Much work in “decision tree” / “branching program” models.

Much work on “pebble games” on DAGs
I Given a directed acyclic graph, a “pebble” may be placed on any node,

all of whose predecessors are pebbled, and removed at any time. The
goal is to pebble all nodes, in some order, using few pebbles.

I Pebble games model the process of allocating registers to compute the
result of a specific circuit.

I Theme: High connectivity inhibits efficient small space algorithms.
F (Paul, Tarjan ’77) DAGs built from expanders become exponentially

difficult to pebble with reduced space.
F (Lipton, Tarjan ’80) Any planar DAG of degree O(1) with n vertices

can be pebbled with n2/3 pebbles, and n5/3 steps.
F (Alon, Seymour, Thomas ’90) Any DAG of degree O(1) free of

Kh-minors can be pebbled with h3/2n1/2 pebbles.
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Known Tradeoffs in Concrete Models

Questions like these have been asked almost since the inception of the
field.

Much work in “decision tree” / “branching program” models.

Much work on “pebble games” on DAGs

For (restricted) circuits (AC 0, monotone, algebraic...)

I Valiant [’76] shows that any algebraic circuit over a finite field
computing a linear transformation whose matrix has the property that,
any square submatrix is full rank, has the graph-theoretic property of
being a ’superconcentrator’.
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Superconcentrator

Definition

A superconcentrator of capacity n is a DAG G = (V ,E ) with two disjoint
sets of vertices I ,O ⊂ V , |I | = |O| = n such that for all subsets
I ′ ⊆ I ,O ′ ⊆ O with |I ′| = |O ′|, there exist |I ′| vertex-disjoint paths
connecting I ′ and O ′.
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Known Tradeoffs in Concrete Models

Questions like these have been asked almost since the inception of the
field.

Much work in “decision tree” / “branching program” models.

Much work on “pebble games” on DAGs

For (restricted) circuits (AC 0, monotone, algebraic...)
I Valiant [’76] shows that for any algebraic circuit over a finite field (or

any) computing a linear transformation, whose matrix has the property
that any square submatrix is full rank, has the graph-theoretic property
of being a ’superconcentrator’.

I Savage [’77], Tompa [’81], others use such arguments to show that the
Fourier Transform and similar e.g. cannot be computed with space
n1−ε without using time n1+ε.
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Known Tradeoffs in Concrete Models

In Proof Complexity, no trade-offs known until much more recently.

(Ben-Sasson, Nordstrom ’08) First tradeoffs of any kind, in
Resolution, for sublinear space.

(B., Beame, Impagliazzo ’12) Tradeoffs even up to exponential space,
with superpolynomial blowups in time.

This result is different from previous time-space tradeoff results in
that it technically extends the previously known (tight) lower bounds
for time. It is a purely combinatorial argument and doesn’t reduce to
pebbling.
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Bottleneck Counting Argument

Many lower bounds follow Haken [’85]’s bottleneck counting scheme.

I Map input assignments to gates of the circuit and prove that the
probability that any assignment goes to a particular gate is small, e.g.
< ε.

I Conclude that there are at least ε−1 gates.
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Bottleneck Counting Argument

In Haken’s work this map is ad hoc.

In the “method of random restrictions”, it’s based on the way in
which the circuit simplifies when many inputs are fixed.

In Razborov’s “method of approximations”, it’s based on successive
approximations (of low complexity) to the gates of the circuit.

Janos Simon [’97, et.al ’13] points out the commonalities of these.
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Bottlenecks and Tradeoffs

In [BBI’12], we derived a time space tradeoff, starting from a tight running
time lower bound, which we might sketch as follows:

Consider a short proof, and consider the map from the size lower
bound. By varying the parameters to define it, obtain a second map.
We have Pr~x [f1(~x) = g ] ≤ ε and Pr~x [f2(~x) = g ] ≤ ε for all gates g .

However, now prove also that for any g1, g2 that
Pr~x [f1(~x) = g1 ∧ f2(~x) = g2] ≤ ε2.

If the size of the DAG is ≈ ε−1, we have a weak form of expansion,
and morally it implies a space lower bound.
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Open Questions

Can we use arguments like this to extend monotone circuit size lower
bounds to time-space tradeoffs?

What about in algebraic circuits?

Thanks!
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