Scattering Theory and Currents on the Conformal Boundary

Tom Banks

Nati-Fest, September 16, 2016

Birthday
Quantum Gravity S Operator not in Fock Space
Currents on the Conformal Boundary
BMS Spectrum: Fourier Dual of the Boundary
Operator Valued (Half) Measures on the Null Cone
The Fuzzy Spinor Bundle: UV/IR Beyond AdS/CFT

Nathan Seiberg has Been Many Things

Nati Revealing the Wonders of SUSY Gauge Theory to the Worl

- Nathan Seiberg has Been Many Things
- Sharpshooter

- Nathan Seiberg has Been Many Things
- Sharpshooter
- Weatherman

- Nathan Seiberg has Been Many Things
- Sharpshooter
- Weatherman
- Card Shark

- Nathan Seiberg has Been Many Things
- Sharpshooter
- Weatherman
- Card Shark
- SUSY Evangelist

- Nathan Seiberg has Been Many Things
- Sharpshooter
- Weatherman
- Card Shark
- SUSY Evangelist
- But Always The Most Creative and Productive Physicist of His Generation

▶ IR divergences in 4d - Weinberg, Fadeev Kulish, Akhoury et. al., Bloch-Nordsieck inclusive cross sections only a practical answer.

- IR divergences in 4d Weinberg, Fadeev Kulish, Akhoury et. al., Bloch-Nordsieck inclusive cross sections only a practical answer.
- ▶ In regions of moduli space with no dimensionless parameters, divergence of series in $\frac{p_i \cdot p_j}{M_P^2}$ implies zero momentum essential singularities.

- IR divergences in 4d Weinberg, Fadeev Kulish, Akhoury et. al., Bloch-Nordsieck inclusive cross sections only a practical answer.
- In regions of moduli space with no dimensionless parameters, divergence of series in $\frac{p_i \cdot p_j}{M_P^2}$ implies zero momentum essential singularities.
- ▶ Matrix Theory: States of small matrices with $|P_T| \sim 1/\sqrt{N}$ Survive Large N limit.

- IR divergences in 4d Weinberg, Fadeev Kulish, Akhoury et. al., Bloch-Nordsieck inclusive cross sections only a practical answer.
- In regions of moduli space with no dimensionless parameters, divergence of series in $\frac{p_i \cdot p_j}{M_P^2}$ implies zero momentum essential singularities.
- Matrix Theory: States of small matrices with $|P_T| \sim 1/\sqrt{N}$ Survive Large N limit.
- Throws Doubt on Claim that S matrix is large radius limit of CFT Correlators.

► Momentum Flow (Sterman-Weinberg, Maldacena Hofman, Strominger et. al.): Bondi-Metzner-Sachs

- ► Momentum Flow (Sterman-Weinberg, Maldacena Hofman, Strominger et. al.): Bondi-Metzner-Sachs
- ▶ BMS Spectrum, $P^2=0, P=p_+(\pm 1, \pm \Omega)$: Fourier Dual of the Conformal Boundary

- ► Momentum Flow (Sterman-Weinberg, Maldacena Hofman, Strominger et. al.): Bondi-Metzner-Sachs
- ▶ BMS Spectrum, $P^2=0, P=p_+(\pm 1, \pm \Omega)$: Fourier Dual of the Conformal Boundary
- $ightharpoonup Q_{lpha}^{\pm\ j}(P), Q_{lpha}^{\pm\ j}(ilde{P})\ P_{lphaeta}Q_{eta}^{\pm\ j}(P) = 0$ etc.

- ► Momentum Flow (Sterman-Weinberg, Maldacena Hofman, Strominger et. al.): Bondi-Metzner-Sachs
- ▶ BMS Spectrum, $P^2=0, P=p_+(\pm 1, \pm \Omega)$: Fourier Dual of the Conformal Boundary
- Awada Gibbons Shaw: $[Q_{\alpha}^{\pm j}(P), \bar{Q}_{\beta}^{\pm j}(P')]_{+} = \pm \delta(P \cdot P') \gamma_{\alpha\beta}^{\mu} M_{\mu}(P, P') Z^{ij}.$

- Momentum Flow (Sterman-Weinberg, Maldacena Hofman, Strominger et. al.): Bondi-Metzner-Sachs
- ▶ BMS Spectrum, $P^2=0, P=p_+(\pm 1, \pm \Omega)$: Fourier Dual of the Conformal Boundary
- Awada Gibbons Shaw: $[Q_{\alpha}^{\pm\ j}(P), \bar{Q}_{\beta}^{\pm\ j}(P')]_{+} = \pm \delta(P\cdot P')\gamma_{\alpha\beta}^{\mu}M_{\mu}(P,P')Z^{ij}.$
- ▶ S Maps AGS Algebra on Negative Null Cone to That on Positive Null Cone $SQ^- = Q^+S$.

▶ Support of $Q(P)|jet\rangle$ for $p_+>0$ is a finite number of spherical caps with finite opening angle.

- ▶ Support of $Q(P)|jet\rangle$ for $p_+>0$ is a finite number of spherical caps with finite opening angle.
- $igspace Q(p_+=0,oldsymbol{\Omega})| extit{jet}
 angle$ is a half density on the sphere, vanishing in annuli surrounding caps.

- ▶ Support of $Q(P)|jet\rangle$ for $p_+>0$ is a finite number of spherical caps with finite opening angle.
- ▶ $Q(p_+ = 0, \mathbf{\Omega})|jet\rangle$ is a half density on the sphere, vanishing in annuli surrounding caps.
- Exclusive: quantum information in zero modes kept.

- ▶ Support of $Q(P)|jet\rangle$ for $p_+>0$ is a finite number of spherical caps with finite opening angle.
- ▶ $Q(p_+ = 0, \mathbf{\Omega})|jet\rangle$ is a half density on the sphere, vanishing in annuli surrounding caps.
- Exclusive: quantum information in zero modes kept.
- Detailed definition of annuli requires finite area diamond cutoff.

• $\psi_{IJ} = -\psi_{JI}$, $I, J = 1 \dots N$ Cutoff chiral spinor bundle on the 2 sphere. Unique cutoff preserving rotational symmetry of fixed time-like geodesic. Represents diamond of proper time N along geodesic (CEP).

- $\psi_{IJ} = -\psi_{JI}$, I,J=1...N Cutoff chiral spinor bundle on the 2 sphere. Unique cutoff preserving rotational symmetry of fixed time-like geodesic. Represents diamond of proper time N along geodesic (CEP).
- ▶ Annulus constraints: ψ block diagonal, with blocks of size E_a with $\sum E_a \ll N$ and one large block. $\sum E_a$ becomes an asymptotic conservation law.

- $\psi_{IJ} = -\psi_{JI}$, I,J=1...N Cutoff chiral spinor bundle on the 2 sphere. Unique cutoff preserving rotational symmetry of fixed time-like geodesic. Represents diamond of proper time N along geodesic (CEP).
- ▶ Annulus constraints: ψ block diagonal, with blocks of size E_a with $\sum E_a \ll N$ and one large block. $\sum E_a$ becomes an asymptotic conservation law.
- ▶ Consistency conditions for different geodesics in Minkowski space implies large N limit U(N, -N) with $E_a \to \infty$ but $\sum E_a \ll N$. must be super-Poincare invariant. No explicit form yet.

- $\psi_{IJ} = -\psi_{JI}$, I,J=1...N Cutoff chiral spinor bundle on the 2 sphere. Unique cutoff preserving rotational symmetry of fixed time-like geodesic. Represents diamond of proper time N along geodesic (CEP).
- ▶ Annulus constraints: ψ block diagonal, with blocks of size E_a with $\sum E_a \ll N$ and one large block. $\sum E_a$ becomes an asymptotic conservation law.
- ▶ Consistency conditions for different geodesics in Minkowski space implies large N limit U(N, -N) with $E_a \to \infty$ but $\sum E_a \ll N$. must be super-Poincare invariant. No explicit form yet.
- Generalizes to more dimensions. Known class of tensor models leads to Newton's law scaling for large impact parameter limit of scattering.

- $\psi_{IJ} = -\psi_{JI}$, I,J=1...N Cutoff chiral spinor bundle on the 2 sphere. Unique cutoff preserving rotational symmetry of fixed time-like geodesic. Represents diamond of proper time N along geodesic (CEP).
- ▶ Annulus constraints: ψ block diagonal, with blocks of size E_a with $\sum E_a \ll N$ and one large block. $\sum E_a$ becomes an asymptotic conservation law.
- ▶ Consistency conditions for different geodesics in Minkowski space implies large N limit U(N, -N) with $E_a \to \infty$ but $\sum E_a \ll N$. must be super-Poincare invariant. No explicit form yet.
- Generalizes to more dimensions. Known class of tensor models leads to Newton's law scaling for large impact parameter limit of scattering.

HST and Compactification

 Compactifications to 4D with minimal SUSY, classified by superalgebras

$$\begin{split} [\psi_i^A(P), \psi_B^{\dagger,j}(Q)]_+ &= \delta_i^j \delta_B^A Z(P,Q). \\ [Z(P,Q), \psi_i^A(R)] &= \sum_S f(P,Q,R,S) \psi_i^A(S). \\ [Z(P,Q), Z(R,S)] &= \sum_S g(P,Q,R,S,T,U) Z(T,U). \end{split}$$

HST and Compactification

 Compactifications to 4D with minimal SUSY, classified by superalgebras

$$\begin{split} [\psi_i^A(P), \psi_B^{\dagger j}(Q)]_+ &= \delta_i^j \delta_B^A Z(P, Q). \\ [Z(P, Q), \psi_i^A(R)] &= \sum_S f(P, Q, R, S) \psi_i^A(S). \\ [Z(P, Q), Z(R, S)] &= \sum_S g(P, Q, R, S, T, U) Z(T, U). \end{split}$$

► Finite dimensional unitary representation (fixed i,j,A,B) must decompose under large *N* SUSY algebra as 1 spin 2 massless multiplet, plus lower spins.

HST and Compactification

 Compactifications to 4D with minimal SUSY, classified by superalgebras

$$\begin{split} [\psi_i^A(P), \psi_B^{\dagger j}(Q)]_+ &= \delta_i^j \delta_B^A Z(P, Q). \\ [Z(P, Q), \psi_i^A(R)] &= \sum_S f(P, Q, R, S) \psi_i^A(S). \\ [Z(P, Q), Z(R, S)] &= \sum_S g(P, Q, R, S, T, U) Z(T, U). \end{split}$$

- ▶ Finite dimensional unitary representation (fixed i,j,A,B) must decompose under large *N* SUSY algebra as 1 spin 2 massless multiplet, plus lower spins.
- Discrete set of possibilities, so no continuous moduli. Easy to understand how approximate continuous moduli can exist when length scales $\gg L_P$. In process of understanding string theory limits where "cycle shrinks to zero". Key seems to be fractional winding numbers for fuzzy manifolds, but details of the rules are unclear.