
Scattering Theory and Currents on the
Conformal Boundary

Tom Banks

Nati-Fest, September 16, 2016



Birthday
Quantum Gravity S Operator not in Fock Space
Currents on the Conformal Boundary
BMS Spectrum: Fourier Dual of the Boundary
Operator Valued (Half) Measures on the Null Cone
The Fuzzy Spinor Bundle: UV/IR Beyond AdS/CFT



HAPPY BIRTHDAY NATI

I Nathan Seiberg has Been Many Things

I Sharpshooter

I Weatherman

I Card Shark

I SUSY Evangelist

I But Always The Most Creative and Productive Physicist of
His Generation



Nati Revealing the Wonders of SUSY 
Gauge Theory to the Worl 





HAPPY BIRTHDAY NATI

I Nathan Seiberg has Been Many Things

I Sharpshooter

I Weatherman

I Card Shark

I SUSY Evangelist

I But Always The Most Creative and Productive Physicist of
His Generation



HAPPY BIRTHDAY NATI

I Nathan Seiberg has Been Many Things

I Sharpshooter

I Weatherman

I Card Shark

I SUSY Evangelist

I But Always The Most Creative and Productive Physicist of
His Generation



HAPPY BIRTHDAY NATI

I Nathan Seiberg has Been Many Things

I Sharpshooter

I Weatherman

I Card Shark

I SUSY Evangelist

I But Always The Most Creative and Productive Physicist of
His Generation



HAPPY BIRTHDAY NATI

I Nathan Seiberg has Been Many Things

I Sharpshooter

I Weatherman

I Card Shark

I SUSY Evangelist

I But Always The Most Creative and Productive Physicist of
His Generation



HAPPY BIRTHDAY NATI

I Nathan Seiberg has Been Many Things

I Sharpshooter

I Weatherman

I Card Shark

I SUSY Evangelist

I But Always The Most Creative and Productive Physicist of
His Generation



No S-matrix in Non-Perturbative Quantum Gravity

I IR divergences in 4d - Weinberg, Fadeev Kulish, Akhoury et.
al., Bloch-Nordsieck inclusive cross sections only a practical
answer.

I In regions of moduli space with no dimensionless parameters,
divergence of series in

pi ·pj
M2

P
implies zero momentum essential

singularities.

I Matrix Theory: States of small matrices with |PT | ∼ 1/
√
N

Survive Large N limit.

I Throws Doubt on Claim that S matrix is large radius limit of
CFT Correlators.
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Currents on the Boundary

I Momentum Flow (Sterman-Weinberg, Maldacena Hofman,
Strominger et. al.): Bondi-Metzner-Sachs

I BMS Spectrum, P2 = 0,P = p+(±1,±Ω) : Fourier Dual of
the Conformal Boundary

I Q± j
α (P),Q± j

α (P̃) PαβQ
± j
β (P) = 0 etc .

I Awada Gibbons Shaw:
[Q± j

α (P), Q̄± j
β (P ′)]+ = ±δ(P · P ′)γµαβMµ(P,P ′)Z ij .

I S Maps AGS Algebra on Negative Null Cone to That on
Positive Null Cone SQ− = Q+S .
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Exclusive Sterman Weinberg Jets

I Support of Q(P)|jet〉 for p+ > 0 is a finite number of
spherical caps with finite opening angle.

I Q(p+ = 0,Ω)|jet〉 is a half density on the sphere, vanishing in
annuli surrounding caps.

I Exclusive: quantum information in zero modes kept.

I Detailed definition of annuli requires finite area diamond
cutoff.
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Fuzzy Spinors and Finite Diamonds - TB, Kehayias,
Fischler

I ψIJ = −ψJI , I , J = 1 . . .N Cutoff chiral spinor bundle on the
2 sphere. Unique cutoff preserving rotational symmetry of
fixed time-like geodesic. Represents diamond of proper time N
along geodesic (CEP).

I Annulus constraints: ψ block diagonal, with blocks of size Ea

with
∑

Ea � N and one large block.
∑

Ea becomes an
asymptotic conservation law.

I Consistency conditions for different geodesics in Minkowski
space implies large N limit U(N,−N) with Ea →∞ but∑

Ea � N. must be super-Poincare invariant. No explicit
form yet.

I Generalizes to more dimensions. Known class of tensor models
leads to Newton’s law scaling for large impact parameter limit
of scattering.

I Same model, with N kept finite leads to model of stable dS
space. Constraint defining particles explains dS temperature.
Thermalization of localized states in time t > N.
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HST and Compactification

I Compactifications to 4D with minimal SUSY, classified by
superalgebras

[ψA
i (P), ψ† j

B (Q)]+ = δji δ
A
BZ (P,Q).

[Z (P,Q), ψA
i (R)] =

∑
S

f (P,Q,R, S)ψA
i (S).

[Z (P,Q),Z (R, S)] =
∑

g(P,Q,R, S ,T ,U)Z (T ,U).

I Finite dimensional unitary representation (fixed i,j,A,B) must
decompose under large N SUSY algebra as 1 spin 2 massless
multiplet, plus lower spins.

I Discrete set of possibilities, so no continuous moduli. Easy to
understand how approximate continuous moduli can exist
when length scales � LP . In process of understanding string
theory limits where ”cycle shrinks to zero”. Key seems to be
fractional winding numbers for fuzzy manifolds, but details of
the rules are unclear.
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