## High-Confidence Predictions under Adversarial Uncertainty

Andrew Drucker

MIT
Feb. 13, 2012

## Setting: prediction on binary sequences

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in\{0,1\}^{\omega}
$$

- Bits of $x$ revealed sequentially.
- Goal: make some nontrivial prediction about unseen bits of sequence $x$, given bits seen so far.



## Setting: prediction on binary sequences

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

- Question: What kinds of assumptions on $x$ are needed to make interesting predictions?
- Our message: Surprisingly weak ones.


## Modeling questions

- Prediction: a game between the Predictor and Nature.
- What kind of opponent is nature?



## Probabilistic models

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

$$
x \sim \mathcal{D}
$$

where $\mathcal{D}$ is some known probability distribution.

## Probabilistic models

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

$$
x \sim \mathcal{D}
$$

where $\mathcal{D}$ is some known probability distribution.

- Problem: how to choose correct $\mathcal{D}$ for realistic applications?


## Classes of assumptions

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

- Adversarial models:

$$
x \in A
$$

where $A \subseteq\{0,1\}^{\omega}$ is some known set.

- Interested in worst-case performance.


## Classes of assumptions

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

- Adversarial models:

$$
x \in A
$$

where $A \subseteq\{0,1\}^{\omega}$ is some known set.

- Interested in worst-case performance.
- These assumptions can be quite "safe"...
- Our focus today.


## Prior work on adversarial prediction

Gales and fractal dimension
[Lutz '03; Athreya, Hitchcock, Lutz, Mayordomo '07]

- Gales: a class of betting strategies, to bet on unseen bits of $x \in A$.
- Goal: reach a fortune of $\infty$, on any $x \in A$.
- The "handicap" we need can be related to measures of fractal dimension for $A . .$.


## Prior work on adversarial prediction

## Ignorant forecasting

- What is the chance of rain tomorrow?

- Basic test of a meteorologist: "calibration."
- If governing distribution $\mathcal{D}$ is known, easy to achieve with Bayes' rule...
- But: calibration can also be achieved by an ignorant forecaster! [Foster, Vohra '98]


## Prior work on adversarial prediction

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

- These works' goal: long-term, overall predictive success.
- Our focus: make a single prediction with high confidence.


## 0-prediction

- Our main scenario: want to predict a single 0 among the bits of $x$.
- Interpretation: choose a time to "safely" perform some action;
$\left[x_{t}=0\right]$ means "time $t$ is safe."



## Possible assumptions

- $\varepsilon$-biased arrivals assumption: bits of $x$ independent, with

$$
\operatorname{Pr}\left[x_{t}=1\right]=\varepsilon .
$$

- Best strategy succeeds with prob. $1-\varepsilon$.


## Possible assumptions

- Very strong assumption...
- Idea (not new): study adversarial "relaxations" of $\varepsilon$-biased model.


## Possible assumptions

- Very strong assumption...
- Idea (not new): study adversarial "relaxations" of $\varepsilon$-biased model.


## D

## Possible assumptions

- Very strong assumption...
- Idea (not new): study adversarial "relaxations" of $\varepsilon$-biased model.



## Possible assumptions

- Very strong assumption...
- Idea (not new): study adversarial "relaxations" of $\varepsilon$-biased model.



## Possible assumptions

- Let

$$
N_{t}:=x_{1}+\ldots+x_{t} .
$$

- $\varepsilon$-sparsity assumption: say that $x$ is $\varepsilon$-sparse if

$$
\lim _{t \rightarrow \infty} N_{t} / t \leq \varepsilon
$$



## Possible assumptions

- Let

$$
N_{t}:=x_{1}+\ldots+x_{t} .
$$

- $\varepsilon$-weak sparsity assumption: say that $x$ is $\varepsilon$-weakly sparse if

$$
\lim _{s \rightarrow \infty} \inf _{t \geq s} N_{t} / t \leq \varepsilon
$$



## Our main result

Theorem
For any $\varepsilon, \gamma>0$, there is a (randomized) 0 -prediction strategy $\mathcal{S}_{\varepsilon, \gamma}$ that succeeds with prob. $\geq 1-\varepsilon-\gamma$, on any $\varepsilon$-weakly sparse sequence.

- Can do nearly as well as under $\varepsilon$-biased arrivals!


## Our main result

Theorem
For any $\varepsilon, \gamma>0$, there is a (randomized) 0 -prediction strategy $\mathcal{S}_{\varepsilon, \gamma}$ that succeeds with prob. $\geq 1-\varepsilon-\gamma$, on any $\varepsilon$-weakly sparse sequence.

- Can do nearly as well as under $\varepsilon$-biased arrivals!
- (Adversary's sequence gets fixed before randomness in $\mathcal{S}_{\varepsilon, \gamma} \ldots$ )


## Proof ideas

- Divide sequence into "epochs:"

$$
x=\begin{aligned}
& 0111100101100000 \ldots . \\
& E_{1} E_{2} \quad E_{3}
\end{aligned}
$$

- ( $r$-th epoch of length $K_{r}=\Theta\left(r^{2}\right)$.)
- Run a separate 0-prediction algorithm for each individual epoch.


## Proof ideas

$$
x=\begin{aligned}
& 01110010110000 \ldots \\
& E_{1} E_{2} \quad E_{3}
\end{aligned}
$$

- Easy claim: $x$ is $\varepsilon$-weakly sparse
$\Downarrow$
$\exists$ a subsequence of "nice" epochs, whose 1-densities are $\alpha<\varepsilon+\gamma$.


## Proof ideas

$$
x=\begin{aligned}
& 01110010110000 \ldots \\
& E_{1} E_{2} \quad E_{3}
\end{aligned}
$$

Idea: give an algorithm $\mathcal{S}$ with the properties:
(1) Makes a 0-prediction with noticeable prob. on each nice epoch;
(2) On every epoch,

$$
\operatorname{Pr}[\text { true prediction }] \geq\left(\frac{1-\alpha}{\alpha}\right) \cdot \operatorname{Pr}[\text { false prediction }] .
$$

## Proof ideas

$$
x=\begin{aligned}
& 01110010110000 \ldots \\
& E_{1} E_{2} \quad E_{3}
\end{aligned}
$$

Idea: give an algorithm $\mathcal{S}$ with the properties:
(1) Makes a 0-prediction with noticeable prob. on each nice epoch;
(2) On every epoch,

$$
\operatorname{Pr}[\text { true prediction }] \geq\left(\frac{1-\alpha}{\alpha}\right) \cdot \operatorname{Pr}[\text { false prediction }] .
$$

(Would achieve our goal!)

## Proof ideas

$$
\operatorname{Pr}[\text { true prediction }] \stackrel{?}{\geq}\left(\frac{1-\alpha}{\alpha}\right) \cdot \operatorname{Pr}[\text { false prediction }]
$$

## Proof ideas

$$
\operatorname{Pr}[\text { true prediction }] \stackrel{?}{\geq}\left(\frac{1-\alpha}{\alpha}\right) \cdot \operatorname{Pr}[\text { false prediction }]
$$

- Whoops-can't achieve this!


## Proof ideas

$$
\operatorname{Pr}[\text { true prediction }] \stackrel{?}{\geq}\left(\frac{1-\alpha}{\alpha}\right) \cdot \operatorname{Pr}[\text { false prediction }]
$$

- Whoops-can't achieve this!
- Modified goal: an upper bound

$$
\begin{array}{r}
\left(\frac{1-\alpha}{\alpha}\right) \cdot \operatorname{Pr}[\text { false prediction }]-\operatorname{Pr}[\text { true prediction }] \\
\leq(\mathbf{s m a l l})
\end{array}
$$

## Proof ideas

$$
\operatorname{Pr}[\text { true prediction }] \stackrel{?}{\geq}\left(\frac{1-\alpha}{\alpha}\right) \cdot \operatorname{Pr}[\text { false prediction }]
$$

- Whoops-can't achieve this!
- Modified goal: an upper bound

$$
\begin{array}{r}
\left(\frac{1-\alpha}{\alpha}\right) \cdot \operatorname{Pr}[\text { false prediction }]-\operatorname{Pr}[\text { true prediction }] \\
\leq O\left(1 /\left|K_{r}\right|\right)
\end{array}
$$

## Proof ideas

- During the $r$-th epoch, alg. maintains a stack of "chips" (initially empty);



## Proof ideas

- During the $r$-th epoch, alg. maintains a stack of "chips" (initially empty);

stack's height
$\downarrow$
algorithm's "courage" to predict next bit of $x$ will be a 0 .


## Proof ideas

- During the $r$-th epoch, alg. maintains a stack of "chips" (initially empty);

stack's height
$\uparrow$
algorithm's "courage" to predict next bit of $x$ will be a 0 .


## Stack dynamics <br> - Assume

$$
\alpha<\frac{p}{d}=1-\frac{q}{d}<\varepsilon+\gamma
$$

## Stack dynamics

- Assume

$$
\alpha<\frac{p}{d}=1-\frac{q}{d}<\varepsilon+\gamma .
$$

- Observe a 0: add p "courage chips."
- Observe a 1: remove $q$ chips.
e.g., $p=1$ :

$t \longrightarrow$


## Making predictions

- Let $H_{t}=$ stack height after observing first $t$ bits of $r$-th epoch.


## Making predictions

- Let $H_{t}=$ stack height after observing first $t$ bits of $r$-th epoch.
- Overall algorithm for epoch $r$ :


## Making predictions

- Let $H_{t}=$ stack height after observing first $t$ bits of $r$-th epoch.
- Overall algorithm for epoch $r$ :
(1) Choose $t^{*}$ uniformly from $\left\{1,2, \ldots, K_{r}\right\}$;


## Making predictions

- Let $H_{t}=$ stack height after observing first $t$ bits of $r$-th epoch.
- Overall algorithm for epoch $r$ :
(1) Choose $t^{*}$ uniformly from $\left\{1,2, \ldots, K_{r}\right\}$;
(2) Observe first $t^{*}-1$ bits;


# $00010001 ? ? ?$ ? ? 

$t^{*}$

## Making predictions

- Let $H_{t}=$ stack height after observing first $t$ bits of $r$-th epoch.
- Overall algorithm for epoch $r$ :
(1) Choose $t^{*}$ uniformly from $\left\{1,2, \ldots, K_{r}\right\}$;
(2) Observe first $t^{*}-1$ bits;

$$
00110001 \underbrace{?}_{t^{*}} ? ? ? ?
$$

(3) Predict a 0 on step $t^{*}$ with probability

$$
\frac{H_{t^{*}-1}}{d \cdot K_{r}}
$$

else make no prediction this epoch.

## Analysis ideas

(1) If fraction of 1 s in $r$-th epoch is $\langle\alpha<p / d$, a 0 -prediction is made in epoch $r$ with $\Omega(1)$ prob.


## Analysis ideas

(1) If fraction of 1 s in $r$-th epoch is $<\alpha<p / d$, a 0 -prediction is made in epoch $r$ with $\Omega(1)$ prob.

$\Longrightarrow$ Eventually (in some epoch), a prediction is made.

## Analysis ideas

(2) To compare odds of correct and incorrect 0-predictions,

## Analysis ideas

(2) To compare odds of correct and incorrect 0-predictions, analyze each chip's contribution.

## Analysis ideas

(2) To compare odds of correct and incorrect 0-predictions, analyze each chip's contribution.


## Analysis ideas

(2) To compare odds of correct and incorrect 0-predictions, analyze each chip's contribution.


## Analysis ideas

- Intuition:
- If a chip remains on the stack long enough, fraction of 1 s while it's on is $\lesssim p / d$.


## GOOD!

- Total contribution to failure probability of other ("bad") chips is small.
- We can analyze all chips in a simple, unified way...


## Analysis ideas

- Fix attention to a chip $c$ on input $x$.

- Let zeros(c) (ones(c)) denote the number of zeros (ones) appearing after steps where $c$ is on the stack.


## Analysis ideas



- Chip c's contribution to success and failure probabilities:



## Analysis ideas



Claim:

$$
q \cdot \operatorname{ones}(c)-p \cdot \operatorname{zeros}(c) \leq q .
$$

## Analysis ideas



Claim:

$$
q \cdot \operatorname{ones}(c)-p \cdot \operatorname{zeros}(c) \leq q .
$$

Proof: LHS bounded by the net loss in stack height between first appearance of $c$ and (possible) removal...

## Analysis ideas



Claim:

$$
q \cdot \operatorname{ones}(c)-p \cdot \operatorname{zeros}(c) \leq q .
$$

Proof: LHS bounded by the net loss in stack height between first appearance of $c$ and (possible) removal...
c removed along with $\leq q$ other chips!

## Analysis ideas



Let's sum over all c (at most $p \cdot K_{r}$ chips total):

$$
q \cdot \sum_{c} \operatorname{ones}(c)-p \cdot \sum_{c} \operatorname{zeros}(c) \leq p q K_{r} .
$$

## Analysis ideas



Let's sum over all c (at most $p \cdot K_{r}$ chips total):

$$
(q / p) \cdot \sum_{c} \operatorname{ones}(c)-\sum_{c} \operatorname{zeros}(c) \leq q K_{r} .
$$

## Analysis ideas



Let's sum over all $c$ (at most $p \cdot K_{r}$ chips total):

$$
(q / p) \cdot \frac{\sum_{c} \operatorname{ones}(c)}{d \cdot K_{r}^{2}}-\sum_{c} \frac{\operatorname{zeros}(c)}{d \cdot K_{r}^{2}} \leq \frac{q}{d K_{r}}
$$

## Analysis ideas


$(q / p) \cdot \operatorname{Pr}[$ failure in epoch $r]-\operatorname{Pr}[$ success in epoch $r]$

$$
\leq O\left(K_{r}\right)=O\left(r^{-2}\right) .
$$

## Analysis ideas


$(q / p) \cdot \operatorname{Pr}[$ failure in epoch $r]-\operatorname{Pr}[$ success in epoch $r]$

$$
\leq O\left(K_{r}\right)=O\left(r^{-2}\right) .
$$

Q.E.D.

## Also in the paper

- Bit prediction for broader classes of assumptions:
- E.g., predict a bit (0 or 1 ), under the assumption that a certain word appears only rarely.


## Also in the paper

- Bit prediction for broader classes of assumptions:
- E.g., predict a bit (0 or 1 ), under the assumption that a certain word appears only rarely.
- Results are quantitatively weaker (by necessity)...


## Also in the paper

- Bit prediction for broader classes of assumptions:
- E.g., predict a bit (0 or 1 ), under the assumption that a certain word appears only rarely.
- Results are quantitatively weaker (by necessity)...
- General statement involves finite automata.


## Also in the paper

- Also: high-confidence predictions under no assumptions on $x$ !


## Ignorant interval-forecasting

- Sequence $x \in\{0,1\}^{\omega}$ : now completely arbitrary.
- Goal: predict the fraction of 1 s in an unseen interval, with high accuracy and high confidence.


## Ignorant interval-forecasting

- Sequence $x \in\{0,1\}^{\omega}$ : now completely arbitrary.
- Goal: predict the fraction of 1 s in an unseen interval, with high accuracy and high confidence.
(Huh?)


## Ignorant interval-forecasting

- Our "hook"-we get to choose the position and size of the prediction-interval.
- Interval-forecaster alg.: makes a prediction of form:
"A p fraction of the next $N$ bits will be 1s."


## Ignorant interval-forecasting

Theorem
For any $\varepsilon, \delta>0$, there is a ignorant interval-forecaster $\mathcal{S}_{\varepsilon, \delta}$ that is accurate to $\pm \varepsilon$, with success probability $1-\delta$.

## Ignorant interval-forecasting

Theorem
For any $\varepsilon, \delta>0$, there is a ignorant interval-forecaster $\mathcal{S}_{\varepsilon, \delta}$ that is accurate to $\pm \varepsilon$, with success probability $1-\delta$.

Runtime of $\mathcal{S}_{\varepsilon, \delta}$ is finite: $=2^{O\left(\varepsilon^{-2} \delta^{-1}\right)}$.

## The approach

- Consider $x \in\{0,1\}^{2^{n}}, \quad n=\left\lceil 4 /\left(\varepsilon^{2} \delta\right)\right\rceil$.
- Arrange bits of $x$ on leaves of a binary tree $\mathcal{T}$.



## The approach

Forecasting algorithm:


## The approach

Forecasting algorithm:

(1) Pick a uniform $t^{*} \in\{0,1, \ldots, n-1\}$;

## The approach

Forecasting algorithm:

(1) Pick a uniform $t^{*} \in\{0,1, \ldots, n-1\}$;
(2) Take a random walk in $\mathcal{T}$ of length $t^{*}$;

## The approach

Forecasting algorithm:

(1) Pick a uniform $t^{*} \in\{0,1, \ldots, n-1\}$;
(2) Take a random walk in $\mathcal{T}$ of length $t^{*}$;
(3) Predict that
(fraction of 1 s in right subtree) $=$
(fraction of 1 s in left subtree).

## Analysis idea

- Extend to a length- $n$ random walk; for $0 \leq t \leq n$ let

$$
X(t) \in[0,1]
$$

denote the fraction of 1 s below the $t$-th step vertex.

## Analysis idea

- Extend to a length- $n$ random walk; for $0 \leq t \leq n$ let

$$
X(t) \in[0,1]
$$

denote the fraction of 1 s below the $t$-th step vertex.

- Fact:

$$
X(0), X(1), \ldots, X(n)
$$

is a martingale (for any $x$ ), from which:

$$
\mathbb{E}[(X(t+1)-X(t))(X(s+1)-X(s))]=0
$$

for all $s<t$.

## Analysis idea

- Extend to a length- $n$ random walk; for $0 \leq t \leq n$ let

$$
X(t) \in[0,1]
$$

denote the fraction of 1 s below the $t$-th step vertex.

- Fact:

$$
X(0), X(1), \ldots, X(n)
$$

is a martingale (for any $x$ ), from which:

$$
\mathbb{E}[(X(t+1)-X(t))(X(s+1)-X(s))]=0
$$

for all $s<t$. Thus:

$$
\sum_{0 \leq t<n} \mathbb{E}\left[(X(t+1)-X(t))^{2}\right]=\mathbb{E}\left[(X(n)-X(0))^{2}\right] \leq 1
$$

## Analysis idea

$$
\sum_{0 \leq t<n} \mathbb{E}\left[(X(t+1)-X(t))^{2}\right] \leq 1
$$

- $(X(t+1)-X(t))^{2}$ small $\Longrightarrow t$ is a good choice for $t^{*}$ !
(i.e., left and right subtrees have similar 1-densities).



## Questions

- Characterize the sets $A \subset\{0,1\}^{\omega}$ for which confident 0 -prediction is possible?

Connect prediction to geometry, a la (Lutz et al.)?

## Questions

- Characterize the sets $A \subset\{0,1\}^{\omega}$ for which confident 0 -prediction is possible?

Connect prediction to geometry, a la (Lutz et al.)?

- Find an interval-forecaster running in time poly $\left(\frac{1}{\delta}, \frac{1}{\varepsilon}\right)$ ?


## Questions

- For which distributions $\mathcal{D}$ on $\{0,1\}^{\infty}$ can we extend to a "supporting set" $A$, preserving easiness of prediction?


## Questions

- For which distributions $\mathcal{D}$ on $\{0,1\}^{\infty}$ can we extend to a "supporting set" $A$, preserving easiness of prediction?

D

## Questions

- For which distributions $\mathcal{D}$ on $\{0,1\}^{\infty}$ can we extend to a "supporting set" $A$, preserving easiness of prediction?



## Questions

- Is there a minimax theorem for 0-prediction?
- Hard set $A$ for 0 -prediction $\Rightarrow$ hard distribution $D$ over $A$ ?


## Questions

- Is there a minimax theorem for 0-prediction?
- Hard set $A$ for 0 -prediction $\Rightarrow$ hard distribution $D$ over $A$ ?



## Questions

- Is there a minimax theorem for 0-prediction?
- Hard set $A$ for 0 -prediction $\Rightarrow$ hard distribution $D$ over $A$ ?



## Questions

- Is there a minimax theorem for 0-prediction?
- Hard set $A$ for 0 -prediction $\Rightarrow$ hard distribution $D$ over $A$ ?

- Would give alternate (non-constructive) proof of our main result...


## Thanks!

