Rational Proofs

Azar
Micali

Central Question $x \in L$?

What problems have efficient proofs? (Rounds, Communication,Time)

Interactive Proofs $x \in L ?$

IP
 AM
 [GMR 85, BM 85]

Interactive Proofs $x \in L ?$

IP = PSPACE
[LFKN 90, Shamir 90]
And they lived happily ever after...

Many Centuries Later...

$x \in L ?$

Centuries Later...

$x \in L ?$

Centuries Later...

Centuries Later...

Centuries Later... \&

How to pay a Math Expert? x in L ?

How to pay a Math Expert?

 x in L ?

Fixed Price:

Correct Proof:\$1
Incorrect Proof: \$0

Can we do better?

 x in L ?

Can we do better?

 x in L ?

Can we prove more theorems?
Can we prove them faster?

Can we do better?

 x in L ?

Fewer Rounds?

Our Central Question x in L ?

What's the largest class of problems for which we can guarantee correctness of solution using monetary incentives?

Rational MA

$L \in$ Rational MA iff

$L \in$ Rational MA iff

 π output function (poly time) R reward function (poly time)

$L \in$ Rational MA iff

π output function (poly time) R reward function (poly time) x in L ?

$L \in$ Rational MA iff

π output function (poly time) R reward function (poly time) x in L ?

 yI

$L \in$ Rational MA iff

π output function (poly time)
 R reward function (poly time)
 x in L ?

yI

$L \in$ Rational MA iff

π output function (poly time)
 R reward function (poly time)
 x in L ?

yI

random r

$L \in$ Rational MA iff

π output function (poly time)
 R reward function (poly time)
 x in L ?

yI

random ri

$L \in$ Rational MA iff

π output function (poly time)
 R reward function (poly time)
 x in L ?

yI

random ri

$L \in$ Rational MA iff

π output function (poly time) R reward function (poly time)
 x in L ?

Transcript $T=\left(x ; y_{ı}, r_{1}, \ldots, y_{k}, r_{k}\right)$

$L \in$ Rational MA iff

 π output function (poly time) R reward function (poly time)x in L ?

Transcript $\mathrm{T}=\left(\mathrm{x} ; \mathrm{y}_{\mathrm{l}}, \mathrm{r}_{\mathrm{l}}, \ldots, \mathrm{y}_{\mathrm{k}}, \mathrm{r}_{\mathrm{k}}\right)$

$L \in$ Rational MA iff

 π output function (poly time) R reward function (poly time)x in L?
yI

Output $=\pi(x, T)$

$L \in$ Rational MA iff

 π output function (poly time) R reward function (poly time)x in L?
yI

Output $=\pi(x, T)$

$L \in$ Rational MA iff

π output function (poly time) R reward function (poly time)

Output $=\pi(x, T)$

$L \in$ Rational MA iff

π output function (poly time) R reward function (poly time)

Output $=\pi(x, T)$

Merlin chooses Transcript T^{*} that maximizes $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{T})]$

$L \in$ Rational MA iff

$L \in$ Rational MA iff

Our Central Question

Our Central Question

Our Central Question

Theorem I

$$
\# P \subset R M A[?]
$$

Theorem I

$$
\# P \subset R M A[1]
$$

Theorem I

$$
\# P \subset R M A[1]
$$

Remark: \#P is not in MA unless polynomial hierarchy collapses!

Theorem I

$$
\# P \subset R M A[1]
$$

Need to:
I.Formally define RMA[I]
2. Recall definition of \#P
3. Prove the Theorem

RMA[I]

$f(x)$?

RMA[I]

$f(x)$?

RMA[I]

$f(x)$?

$R(x, y)$
$\pi(x, y)$

RMA[I]

$$
f(x) ?
$$

$R(x, y)$
$\pi(x, y)$

Choose ${ }^{*}$

$$
y^{*}=\operatorname{argmax}_{y} E_{r}[R(x, y, r)]
$$

RMA[I]

$f(x)$?

$\mathrm{R}(\mathrm{x}, \mathrm{y})$
$\pi\left(x, y^{*}\right)=f(x)$

Choose y^{*}

$$
y^{*}=\operatorname{argmax}_{y} E_{r}[R(x, y, r)]
$$

RMA[I]

$\mathrm{f}:\{0, I\}^{*} \rightarrow\{0, I\}^{*}$ is in RMA $[I]$ if there exist
I. A polynomial $p(n)>0$
2. A randomized polynomial time function $R(x, y)$ such that, for every $x \in\{0, I\}^{n}$, there exists a unique $y^{*} \in\{0, I\}^{p(n)}$ maximizing $E[R(x, y)]$
3. A polynomial time function $\pi(x, y)$ such that $\pi\left(x, y^{*}\right)=f(x)$

Proof Sketch

$$
\# P \subset R M A[1]
$$

Recall \#P

$$
M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\}, M \in P
$$

Input:

$$
x \in\{0,1\}^{n}
$$

Output: $\#\{y: M(x, y)=1\}$

$M \in P$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$\#\{y: M(x, y)=1\} ?$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$\#\{y: M(x, y)=I\} ?$
$2^{301}+13$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$\#\{y: M(x, y)=1\} ?$
$2^{301}+13$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$\#\{y: M(x, y)=1\} ?$
$2^{301}+13$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$$
\#\{y: M(x, y)=1\} ?
$$

$$
2^{301}+13
$$

$$
M\left(x, y_{1}\right), M\left(x, y_{2}\right), \ldots
$$

\#P Problems

Input: $M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\}$

$$
x \in\{0,1\}^{n}
$$

$$
\#\{y: M(x, y)=I\} ?
$$

$$
2^{301}+13
$$

$$
M\left(x, y_{1}\right), M\left(x, y_{2}\right), \ldots
$$

No I-round proof so far

Economics To The Rescue!

Asymmetric Information

Asymmetric Information

Asymmetric Information

What is information?

Asymmetric Information

What is information?
How do we guarantee it is correct?

Computation View

$$
x, L
$$

Prover

Computation View x, L

Information is output of a hard to compute function

Computation View
 $$
x, L
$$

Information is output of a hard to compute function
Correctness guaranteed by proof

Economics View

Economics View

Information: distribution \mathcal{D} over $\Omega=$ states of the world

Economics View

Information: distribution \mathcal{D} over $\Omega=$ states of the world

Correctness from incentives

Economics View

Economics View

Q : How do we guarantee D is correct?
A: Proper Scoring Rules!

Proper Scoring Rules [Good 52, Brier 50]

Proper Scoring Rules [Good 52, Brier 50]
 $$
\begin{gathered} \Omega=\left\{\mathbb{N}^{2}, \mathbb{M}\right\} \\ \mathcal{D} \in \Delta(\Omega) \end{gathered}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathbb{M}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathbb{X}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathbb{X}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{\text { 罾, }, \mathbb{M}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

$$
\omega \leftarrow \mathcal{D}
$$

Proper Scoring Rules [Good 52, Brier 50]

$$
\begin{gathered}
\Omega=\{, \mathbb{M}\} \\
\mathcal{D} \in \Delta(\Omega)
\end{gathered}
$$

$$
\omega \leftarrow \mathcal{D}
$$

Proper Scoring Rules

$$
\Omega=\{\text { (20) }, \quad\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\omega \leftarrow \mathcal{D}
$$

Proper Scoring Rules

$$
\Omega=\{\quad, \mathbb{M}\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\omega \leftarrow \mathcal{D}
$$

Proper Scoring Rules

$$
\Omega=\{\quad, \mathbb{M}\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\omega \leftarrow \mathcal{D}
$$

$60 \% \cdot S(\mathcal{P}$, Boston $)+40 \% S(\mathcal{P}, N Y)$

Proper Scoring Rules

$$
\Omega=\{\quad, \mathbb{M}\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\omega \leftarrow \mathcal{D}
$$

$\max _{\mathcal{P}}[60 \% \cdot S(\mathcal{P}$, Boston $)+40 \% S(\mathcal{P}, N Y)]$

Quadratic Scoring Rule
 [Brier I950]

$$
S(\mathcal{D}, \omega)=2 \mathcal{D}(\omega)-\sum_{x \in \operatorname{supp}(\mathcal{D})} \mathcal{D}(x)^{2}-1
$$

Quadratic Scoring Rule [Brier 1950]

$$
S(\mathcal{D}, \omega)=2 \mathcal{D}(\omega)-\sum_{x \in \operatorname{supp}(\mathcal{D})} \mathcal{D}(x)^{2}-1
$$

Truthful
 Bounded

Quadratic Scoring Rule [Brier 1950]

$$
S(\mathcal{D}, \omega)=2 \mathcal{D}(\omega)-\sum_{x \in \operatorname{supp}(\mathcal{D})} \mathcal{D}(x)^{2}-1
$$

I. D hard to encode
2. S hard to compute
3. Different settings

Quadratic Scoring Rule [Brier 1950]

$$
S(\mathcal{D}, \omega)=2 \mathcal{D}(\omega)-\sum_{x \in \operatorname{supp}(\mathcal{D})} \mathcal{D}(x)^{2}-1
$$

I. D hard to encode 2. S hard to compute
3. Different settings

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{n^{c}} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$$
\#\{y: M(x, y)=I\} ?
$$

$$
2^{301}+13
$$

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{n^{c}} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$$
\operatorname{Pr} y[M(x, y)=I] ?
$$

Reduce the problem to question about probabilities

\#P Problems

$$
\begin{gathered}
\text { Input: } M:\{0,1\}^{n} \times\{0,1\}^{n^{c}} \rightarrow\{0,1\} \\
x \in\{0,1\}^{n}
\end{gathered}
$$

$$
\operatorname{Pr} y[M(x, y)=I] ?
$$

Merlin knows $\mathrm{q}=\operatorname{Pr}_{y}[\mathrm{M}(\mathrm{x}, \mathrm{y})=\mathrm{I}]$ Need to incentivize him to reveal q

How do scoring rules apply?

$\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)$

How do scoring rules apply?

$\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)$
$\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]$

How do scoring rules apply?

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{\text {poly }(n)}\right\}
$$

How do scoring rules apply?

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

Sampling $\omega=M(x$, Unif)

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

Our Rational Proof for \#P

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{p o l y(n)}\right\}
$$

$$
\mathcal{D}=\operatorname{argmax}_{\mathcal{P}}\{q \cdot S(\mathcal{P}, 1)+(1-q) \cdot S(\mathcal{P}, 0)\}
$$

Theorem I

$$
\# P \subset R M A[1]
$$

Theorem I

$$
\# P \subset R M A[1]
$$

Zero-Knowledge Rational Proof!

Theorem I

$$
\# P \subset R M A[1]
$$

Zero-Knowledge Rational Proof!

Computationally Sound Rational Proof!

Theorem 2

$$
P^{\# P} \subset R M A[1] \subset N P^{\# P}
$$

Theorem 2

$$
P^{\# P} \subset R M A[1] \subset N P^{\# P}
$$

There are things money can't buy

Theorem 2

$P^{\# P} \subset R M A[1] \subset N P^{\# P}$

Economics View: Computational Limit on Contracts

Proof Sketch

$R M A[1] \subset N P^{\# P}$

RMA[1]

A Language L is in RMA[1] if there exist
I. A polynomial p(n)
2. A randomized polynomial time function $R(x, y)$ such that, for every $x \in\{0, I\}^{n}$, there exists a unique $y^{*} \in\{0, I\}^{p(n)}$ maximizing $\quad E[R(x, y)]$
3. A polynomial time predicate $\pi(x, y)$ such that $\pi\left(x, y^{*}\right)=L(x)$

RMA[1]

A Language L is in RMA[1] if there exist
I. A polynomial p(n)
2. A randomized polynomial time function $R(x, y)$ such that, for every $x \in\{0, I\}^{n}$, there exists a unique $y^{*} \in\{0, I\}^{p(n)}$ maximizing $\quad E[R(x, y)]$
3. A polynomial time predicate $\pi(x, y)$ such that $\pi\left(x, y^{*}\right)=L(x)$

Need to show any such L is in NP\#P

Use NP\#P to find y^{*} that maximizes $E[R(x, y)]$

Use NP\#P to find y^{*} that maximizes $E[R(x, y)]$

- $f(y)=E[R(x, y)]$ only takes $2^{\text {poly(n) }}$ possible values

Use $\mathrm{NP}^{\not \# p}$ to find y^{*} that maximizes $E[R(x, y)]$

- $f(y)=E[R(x, y)]$ only takes $2^{\text {poly }(n)}$ possible values
- $f(y)$ can be computed in $P^{\# P}$ for a given y

Use $N^{\# P}$ to find y^{*} that maximizes $E[R(x, y)]$

- $f(y)=E[R(x, y)]$ only takes $2^{\text {poly }(n)}$ possible values
- $f(y)$ can be computed in $P^{\# P}$ for a given y
- Can non-deterministically choose y^{*} maximizing $f(y)$

Use $N^{\# P}$ to find y^{*} that maximizes $E[R(x, y)]$

- $f(y)=E[R(x, y)]$ only takes $2^{\text {poly }(n)}$ possible values
- $f(y)$ can be computed in $P^{\# P}$ for a given y
- Can non-deterministically choose y^{*} maximizing $f(y)$
- Given y^{*}, can compute $\pi\left(x, y^{*}\right)$ in polynomial time to determine whether x $\in L$ or $x \notin L$

Computing $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{y})]$ in $\mathrm{P}^{\# \mathrm{P}}$

Computing $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{y})]$ in $\mathrm{P} \# \mathrm{P}$

- More generally, let $g(x)$ be a randomized polynomial time function

Computing $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{y})]$ in $\mathrm{P}^{\# \mathrm{P}}$

- More generally, let $g(x)$ be a randomized polynomial time function
- Will show that $\mathrm{E}_{\mathrm{r}}[\mathrm{g}(\mathrm{x}, \mathrm{r})]$ can be computed in $\mathrm{P}^{\# P}$

Computing $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{y})]$ in $\mathrm{P} \# \mathrm{P}$

- More generally, let $g(x)$ be a randomized polynomial time function
- Will show that $\mathrm{E}_{\mathrm{r}}[\mathrm{g}(\mathrm{x}, \mathrm{r})]$ can be computed in $\mathrm{P}^{\# \mathrm{P}}$
- Let $\mathrm{z}=\mathrm{g}(\mathrm{x}, \mathrm{r})$. Let z_{i} be its $\mathrm{i}^{\text {th }}$ bit.

Computing $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{y})]$ in $\mathrm{P} \# \mathrm{P}$

- More generally, let $g(x)$ be a randomized polynomial time function
- Will show that $\mathrm{E}_{\mathrm{r}}[\mathrm{g}(\mathrm{x}, \mathrm{r})]$ can be computed in $\mathrm{P}^{\# P}$
- Let $\mathrm{z}=\mathrm{g}(\mathrm{x}, \mathrm{r})$. Let z_{i} be its $\mathrm{i}^{\text {th }}$ bit.
- It suffices to compute $\mathrm{E}_{\mathrm{r}}\left[\mathrm{z}_{\mathrm{i}}\right]$. Let M_{i} be randomized polynomial time Turing Machine computing $z_{i}=g_{i}(x, r)$

Computing $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{y})]$ in $\mathrm{P}^{\# P}$

- More generally, let $g(x)$ be a randomized polynomial time function
- Will show that $\mathrm{E}_{\mathrm{r}}[\mathrm{g}(\mathrm{x}, \mathrm{r})]$ can be computed in $\mathrm{P}^{\# P}$
- Let $\mathrm{z}=\mathrm{g}(\mathrm{x}, \mathrm{r})$. Let z_{i} be its $\mathrm{i}^{\text {th }}$ bit.
- It suffices to compute $\mathrm{E}_{\mathrm{r}}\left[\mathrm{z}_{\mathrm{i}}\right]$. Let M_{i} be randomized polynomial time Turing Machine computing $z_{i}=g_{i}(x, r)$
- $\mathrm{E}_{\mathrm{r}}\left[\mathrm{z}_{\mathrm{i}}\right]$ is proportional to the number of accepting paths in M_{i}. Thus, it can be computed with a \#P query.

Results so far

$$
P^{\# P} \subset D R M A[1] \subset N P^{\# P}
$$

Results so far

$$
P^{\# P} \subset D R M A[1] \subset N P^{\# P}
$$

- Rational Merlin Arthur proofs much more powerful than classical Merlin Arthur
- Only one round used
- What if we have more rounds?

Rational MA

Merlin chooses Transcript T* that maximizes $\mathrm{E}[\mathrm{R}(\mathrm{x}, \mathrm{T})]$

Our Next Question

Where does RMA[2] fit?
What about RMA[3]?
RMA[64]?

The Counting Hierarchy

$C P_{1}=P P$

$$
M:\{0,1\}^{n} \times\{0,1\}^{\text {poly }(n)} \rightarrow\{0,1\}, M \in P
$$

Input:

$$
x \in\{0,1\}^{n}
$$

Output : $|y: M(x, y)=1|>|y: M(x, y)=0|$?

$$
C P_{2}=P P^{P P}
$$

$$
C P_{k}=P P^{C P_{k-1}}=P P^{P P \ldots{ }^{P P}}
$$

Theorem 3

Theorem 3

$$
C P_{k} \subset R M A[k] \subset C P_{k+1}
$$

Theorem 3

$$
C P_{k} \subset R M A[k] \subset C P_{k+1}
$$

$P^{P P} \subset R M A[1] \subset N P^{P P} \subset P P^{P P} \subset R M A[2] \subset P P^{P P^{P P}} \ldots$

Open Question

Does CH Collapse?

Old Analogy

Q: Does CH Collapse?

 A: Not if it behaves like PH$$
\begin{gathered}
N P^{N P^{\ldots N P}} \\
\ldots \\
N P^{N P} \\
N P
\end{gathered}
$$

$$
\begin{gathered}
P P^{P P^{\ldots P P}} \\
\cdots \\
P P^{P P} \\
P P
\end{gathered}
$$

New Analogy

Q: Does CH Collapse?
A:Yes if it behaves like AM

$$
\begin{gathered}
A M[k] \\
\ldots \\
A M[2] \\
A M[1]
\end{gathered}
$$

$$
\begin{gathered}
P P^{P P^{P P}} \\
\ldots \\
P P^{P P} \\
P P
\end{gathered}
$$

Summary of

 Contributions- New Complexity Class RMA
- Short Rational Proofs for \#P
- Constant-Round Rational Proofs $=\mathrm{CH}$

A tight connection

Proper
 Scoring Rules

Interactive Proofs

A tight connection

Proper

Interactive Proofs

THANK YOU!

Proof Sketch

Proof Sketch

$C P_{k} \subset R M A[k] \subset C P_{k+1}$

Our Rational Proof for PP

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{\text {poly }(n)}\right\}
$$

Need to compute M(x,y)
Easy when M is polynomial time

Reminder:

Generating ω for PP

Our Rational Proof for CP_{k}

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{\text {poly }(n)}\right\}
$$

Generating ω for CP_{k}

$C P_{k} \subset D R M A[k]$

Define an intermediate class k-DRMA such that

$$
C P_{k} \subset k-D R M A \subset D R M A[k]
$$

$C P_{k} \subset D R M A[k]$

Define an intermediate class k-DRMA such that

$$
C P_{k} \subset k-D R M A \subset D R M A[k]
$$

k-DRMA: Arthur interacts once with each of k Merlins

$C P_{k} \subset D R M A[k]$

Define an intermediate class k-DRMA such that

$$
C P_{k} \subset k-D R M A \subset D R M A[k]
$$

k-DRMA: Arthur interacts once with each of k Merlins

$C P_{k} \subset k-D R M A$

$C P_{k} \subset k-D R M A$

- By induction

$C P_{k} \subset k-D R M A$

- By induction
- Base case: $P P \subset 1-D R M A$

$C P_{k} \subset k-D R M A$

- By induction
- Base case: $P P \subset 1-D R M A$
- Assume $C P_{k-1} \subset(k-1)-D R M A$

$C P_{k} \subset k-D R M A$

- By induction
- Base case: $P P \subset 1-D R M A$
- Assume $C P_{k-1} \subset(k-1)-D R M A$
- Need to show $C P_{k}=P P^{C P_{k-1}} \subset k$-DRMA

Our Rational Proof for CP_{k}

$$
\Omega=\{0,1\}, \mathcal{D} \in \Delta(\Omega)
$$

$$
\mathcal{D}(1)=\operatorname{Pr}_{y}[M(x, y)=1]
$$

$$
\omega=\left\{M(x, y): y \leftarrow\{0,1\}^{\text {poly }(n)}\right\}
$$

Need to compute M(x,y) Hard when M is $C P_{k-1}$

Generating ω for CP_{k}

Generating ω for CP_{k}

Use k -I remaining queries to solve $\mathrm{CP}_{\mathrm{k}-\mathrm{I}}$ problem

Generating ω for CP_{k}

Why can't we ask k queries to I Merlin instead?

Generating ω for CP_{k}

Why can't we ask k queries to I Merlin instead?

From k Merlins to k rounds
 Recall
 $$
C P_{k} \subset k-D R M A \subset D R M A[k]
$$

Need to show

$$
k-D R M A \subset D R M A[k]
$$

Problem: Merlin may lie today to get better reward tomorrow

From k Merlins to k rounds
 Recall
 $$
C P_{k} \subset k-D R M A \subset D R M A[k]
$$

Need to show

$$
k-D R M A \subset D R M A[k]
$$

Solution Sketch: Make tomorrow's reward really small compared to today's

Theorem 3

$$
C P_{k} \subset R M A[k] \subset C P_{k+1}
$$

$P^{P P} \subset R M A[1] \subset N P^{P P} \subset P P^{P P} \subset R M A[2] \subset P P^{P P^{P P}} \ldots$

Open Question

Does CH Collapse?

Summary of

 Contributions- New Complexity Class RMA
- Short Rational Proofs for \#P
- Constant-Round Rational Proofs $=\mathrm{CH}$

A tight connection

Proper
 Scoring Rules

Interactive Proofs

A tight connection

Proper

Interactive Proofs

THANK YOU!

