Rational Proofs

Central Question $x \in L$?

What problems have efficient proofs? (Rounds, Communication, Time)

Interactive Proofs $x \in L?$

IP AM [GMR 85, BM 85]

Interactive Proofs $x \in L$?

IP = PSPACE [LFKN 90, Shamir 90]

And they lived happily ever after...

Many Centuries Later...

 $x \in L?$

Centuries Later...

x ∈ L?

Centuries Later...

x ∈ L?

Centuries Later...

 $x \in L?$

How to pay a Math Expert?

How to pay a Math Expert?

x in L?

Fixed Price:

Correct Proof : \$1 Incorrect Proof: \$0

Can we do better?

Can we do better?

Can we prove more theorems? Can we prove them faster?

Can we do better?

Fewer Rounds?

Our Central Question x in L?

What's the largest class of problems for which we can guarantee correctness of solution using monetary incentives?

Rational MA

π output function (poly time) R reward function (poly time)

T output function (poly time) R reward function (poly time) x in L?

T output function (poly time) R reward function (poly time) x in L?

Transcript $T = (x; y_1, r_1, ..., y_k, r_k)$

Merlin chooses Transcript T^* that maximizes E[R(x,T)]

Merlin chooses Transcript T^* that maximizes E[R(x,T)]

Merlin chooses Transcript T^* that maximizes E[R(x,T)]

Our Central Question

PSPACE Σ_p^2 RMA² Where does RMA fit? NP CONP

Our Central Question

PSPACE RMA? Σ_p^2 Π_P^2 Where does RMA fit? NP CONP

Our Central Question

RMA? PSPACE Σ_p^2 Π_P^2 Where does RMA fit? NP CONP

Theorem I

Theorem I

 $\#P \subset RMA[1]$

Theorem I

 $\#P \subset RMA[1]$

Remark: #P is not in MA unless polynomial hierarchy collapses!

Theorem I

 $\neq P \subset RMA[1]$

Need to: I.Formally define RMA[I] 2. Recall definition of #P 3. Prove the Theorem

f(x)?

f(x)?

У

f(x)?

f(x)?

Y

f(x)?

- f:{0,1}* \rightarrow {0,1}* is in RMA[1] if there exist
- I. A polynomial p(n) > 0
- 2. A randomized polynomial time function R(x,y)such that, for every $x \in \{0,1\}^n$, there exists a unique $y^* \in \{0,1\}^{p(n)}$ maximizing E[R(x,y)]
- 3. A polynomial time function $\pi(x,y)$ such that $\pi(x,y^*) = f(x)$

Proof Sketch

 $\#P \subset RMA[1]$

$$\begin{array}{l} \mbox{Recall \#P}\\ \mbox{Input:} & M: \{0,1\}^n \times \{0,1\}^{poly(n)} \rightarrow \{0,1\} \,, M \in P\\ & x \in \{0,1\}^n \end{array}$$

Output : $\#\{y : M(x, y) = 1\}$

 $M \in P$

$\#\{y : M(x,y) = I\}$?

$\#\{y : M(x,y) = I\}$?

2³⁰¹ + 13

$\#\{y : M(x,y) = I\}?$ $2^{301} + I3$

$\#\{y : M(x,y) = 1\}?$ $2^{301} + 13$

$\#\{y : M(x,y) = I\}$?

2³⁰¹ + 13

 $M(x, y_1), M(x, y_2), \ldots$

$\#\{y : M(x,y) = I\}$?

2³⁰¹ + 13

 $M(x, y_1), M(x, y_2), \ldots$

No I-round proof so far

Economics To The Rescue!

Arthur

Arthur

Information

What is information?

Arthur

What is information?

How do we guarantee it is correct?

Information is output of a hard to compute function

Information is output of a hard to compute function

Correctness guaranteed by proof

Economics View

Principal

Information: distribution \mathcal{D} over Ω = states of the world

Principal Agent Information: distribution \mathcal{D} over Ω = states of the world

Correctness from incentives

Economics View

Economics View

A: Proper Scoring Rules!

Proper Scoring Rules [Good 52, Brier 50]

Proper Scoring Rules

[Good 52, Brier 50]

Proper Scoring Rules

[Good 52, Brier 50]

 $\mathcal{D}(Boston) = 60\%$ $\mathcal{D}(NewYork) = 40\%$

 $60\% \cdot S(\mathcal{P}, Boston) + 40\% S(\mathcal{P}, NY)$

 $\max_{\mathcal{P}} [60\% \cdot S(\mathcal{P}, Boston) + 40\% S(\mathcal{P}, NY)]$

$$S(\mathcal{D}, \omega) = 2\mathcal{D}(\omega) - \sum_{x \in supp(\mathcal{D})} \mathcal{D}(x)^2 - 1$$

$$S(\mathcal{D}, \omega) = 2\mathcal{D}(\omega) - \sum_{x \in supp(\mathcal{D})} \mathcal{D}(x)^2 - 1$$

Truthful Bounded

$$S(\mathcal{D}, \omega) = 2\mathcal{D}(\omega) - \sum_{x \in supp(\mathcal{D})} \mathcal{D}(x)^2 - 1$$

I. D hard to encode2. S hard to compute3. Different settings

$$S(\mathcal{D}, \omega) = 2\mathcal{D}(\omega) - \sum_{x \in supp(\mathcal{D})} \mathcal{D}(x)^2 - 1$$

I. D hard to encode2. S hard to compute3. Different settings

2³⁰¹ + 13

 $\#\{y : M(x,y) = I\}$?

#P Problems Input: $M: \{0,1\}^n \times \{0,1\}^{n^c} \rightarrow \{0,1\}$ $x \in \{0,1\}^n$

$Pr_{y}[M(x,y) = 1]$?

Reduce the problem to question about probabilities

#P Problems Input: $M: \{0,1\}^n \times \{0,1\}^{n^c} \rightarrow \{0,1\}$ $x \in \{0,1\}^n$

$Pr_{y}[M(x,y) = 1]$?

Merlin knows $q = Pr_y[M(x,y) = I]$ Need to incentivize him to reveal q

How do scoring rules apply? $\Omega = \{0, 1\}, \mathcal{D} \in \Delta(\Omega)$

How do scoring rules apply?

$\Omega = \{0, 1\}, \mathcal{D} \in \Delta(\Omega)$ $\mathcal{D}(1) = Pr_y[M(x, y) = 1]$

How do scoring rules apply?

 $\Omega = \{0, 1\}, \mathcal{D} \in \Delta(\Omega)$ $\mathcal{D}(1) = Pr_y[M(x, y) = 1]$ $\omega = \{M(x, y) : y \leftarrow \{0, 1\}^{poly(n)}\}$

How do scoring rules apply?

$$\Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega)$$

$$\mathcal{D}(1) = Pr_y[M(x,y) = 1]$$

$$\omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\}$$

$$\mathcal{D}(1) = q$$

$$\mathcal{D}(0) = 1 - q$$

$$\begin{array}{l} Our \ Rational \ Proof \ for \ \#P \\ \Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega) \\ \hline \mathcal{D}(1) = Pr_y[M(x,y) = 1] \\ \omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\} \end{array} \qquad \begin{array}{c} \mathcal{D}(1) = q \\ \mathcal{D}(0) = 1 - q \end{array}$$

Б

A the

$$\begin{array}{c} Our \ Rational \ Proof \ for \ \#P \\ \Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega) \\ \mathcal{D}(1) = Pr_y[M(x,y) = 1] \\ \omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\} \end{array} \qquad \begin{array}{c} \mathcal{D}(1) = q \\ \mathcal{D}(0) = 1 - q \\ \mathcal{O}(0) = 1 - q \end{array}$$

$$\begin{array}{c} Our \ Rational \ Proof \ for \ \#P \\ \Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega) \\ \hline \mathcal{D}(1) = Pr_y[M(x,y) = 1] \\ \omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\} \end{array} \qquad \begin{array}{c} \mathcal{D}(1) = q \\ \mathcal{D}(0) = 1 - q \\ \hline \mathcal{D}(0) =$$

 $\mathcal{D} = argmax_{\mathcal{P}}\{q \cdot S(\mathcal{P}, 1) + (1 - q) \cdot S(\mathcal{P}, 0)\}$

Theorem I

 $\#P \subset RMA[1]$

Theorem I

$\#P \subset RMA[1]$

Zero-Knowledge Rational Proof!

Theorem I

 $\#P \subset RMA[1]$

Zero-Knowledge Rational Proof! Computationally Sound Rational Proof!

Theorem 2

$P^{\#P} \subset RMA[1] \subset NP^{\#P}$

Theorem 2

$P^{\#P} \subset RMA[1] \subset NP^{\#P}$

There are things money can't buy

Theorem 2

$P^{\#P} \subset RMA[1] \subset NP^{\#P}$

Economics View: Computational Limit on Contracts

Proof Sketch

RMA[1]

A Language L is in RMA[1] if there exist

- I. A polynomial p(n)
- 2. A randomized polynomial time function R(x,y)such that, for every $x \in \{0,1\}^n$, there exists a unique $y^* \in \{0,1\}^{p(n)}$ maximizing E[R(x,y)]
- 3. A polynomial time predicate $\pi(x,y)$ such that $\pi(x,y^*) = L(x)$

RMA[1]

A Language L is in RMA[1] if there exist

- I. A polynomial p(n)
- 2. A randomized polynomial time function R(x,y)such that, for every $x \in \{0,1\}^n$, there exists a unique $y^* \in \{0,1\}^{p(n)}$ maximizing E[R(x,y)]
- 3. A polynomial time predicate $\pi(x,y)$ such that $\pi(x,y^*) = L(x)$

Need to show any such L is in NP^{#P}

f(y) = E[R(x, y)] only takes 2^{poly(n)} possible values

- f(y) = E[R(x, y)] only takes 2^{poly(n)} possible values
- f(y) can be computed in $P^{\#P}$ for a given y

- f(y) = E[R(x, y)] only takes 2^{poly(n)} possible values
- f(y) can be computed in $P^{\#P}$ for a given y
- Can non-deterministically choose y* maximizing f(y)

- f(y) = E[R(x, y)] only takes 2^{poly(n)} possible values
- f(y) can be computed in $P^{\#P}$ for a given y
- Can non-deterministically choose y* maximizing f(y)
- Given y^* , can compute $\pi(x,y^*)$ in polynomial time to determine whether $x \in L$ or $x \notin L$

 More generally, let g(x) be a randomized polynomial time function

- More generally, let g(x) be a randomized polynomial time function
- Will show that $E_r[g(x,r)]$ can be computed in $P^{\#P}$

- More generally, let g(x) be a randomized polynomial time function
- Will show that $E_r[g(x,r)]$ can be computed in $P^{\#P}$
- Let z = g(x,r). Let z_i be its i^{th} bit.

- More generally, let g(x) be a randomized polynomial time function
- Will show that $E_r[g(x,r)]$ can be computed in $P^{\#P}$
- Let z = g(x,r). Let z_i be its i^{th} bit.
- It suffices to compute E_r[z_i]. Let M_i be randomized polynomial time Turing Machine computing z_i = g_i(x,r)

- More generally, let g(x) be a randomized polynomial time function
- Will show that $E_r[g(x,r)]$ can be computed in $P^{\#P}$
- Let z = g(x,r). Let z_i be its i^{th} bit.
- It suffices to compute E_r[z_i]. Let M_i be randomized polynomial time Turing Machine computing z_i = g_i(x,r)
- E_r[z_i] is proportional to the number of accepting paths in M_i. Thus, it can be computed with a #P query.

Results so far

 $P^{\#P} \subset DRMA[1] \subset NP^{\#P}$

Results so far

$$P^{\#P} \subset DRMA[1] \subset NP^{\#P}$$

- Rational Merlin Arthur proofs much more powerful than classical Merlin Arthur
- Only one round used
- What if we have more rounds?

Rational MA

π output function R reward function $π(x,T^*) = L(x)$

 $R(x,T^*) =$

Merlin chooses Transcript T^* that maximizes E[R(x,T)]

Our Next Question

Where does RMA[2] fit?

What about RMA[3]?

RMA[64]?

The Counting Hierarchy

 $CP_1 = PP$

 $M: \{0,1\}^n \times \{0,1\}^{poly(n)} \to \{0,1\}, M \in P$ Input: $x \in \{0,1\}^n$

 $M \in P$

Output: |y: M(x, y) = 1| > |y: M(x, y) = 0|? X

Theorem 3

Theorem 3

$CP_k \subset RMA[k] \subset CP_{k+1}$

Theorem 3

$CP_k \subset RMA[k] \subset CP_{k+1}$

 $P^{PP} \subset RMA[1] \subset NP^{PP} \subset PP^{PP} \subset RMA[2] \subset PP^{PP^{PP}}.$

Open Question

Does CH Collapse?

Old Analogy Q: Does CH Collapse? A: Not if it behaves like PH

$$NP^{NP\cdots^{NP}}$$

$$MP^{NP}$$

$$NP^{NP}$$

$$NP$$

$$PP^{PP}$$

$$PP^{PP}$$

$$PP$$

New Analogy

Q: Does CH Collapse? A:Yes if it behaves like AM

 $PP^{PP\cdots^{PP}}$ AM[k]AM[2]AM[1]PP

Summary of Contributions

- New Complexity Class RMA
- Short Rational Proofs for #P
- Constant-Round Rational Proofs = CH

A tight connection

A tight connection

Proper ----- Interactive Scoring Rules ----- Proofs

THANK YOU!

Proof Sketch

Proof Sketch

 $CP_k \subset RMA[k] \subset CP_{k+1}$

$$\begin{array}{c} Our Rational Proof for PP\\ \Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega)\\ \mathcal{D}(1) = Pr_y[M(x,y) = 1]\\ \omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\} \end{array}$$

$$\begin{array}{c} \mathcal{D}(1) = q\\ \mathcal{D}(0) = 1 - q \end{array}$$

Need to compute M(x,y) Easy when M is polynomial time

Our Rational Proof for CP_k

$$\Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega)$$

$$\mathcal{D}(1) = Pr_y[M(x,y) = 1]$$

$$\omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\}$$

$$\mathcal{D}(1) = q$$

$$\mathcal{D}(0) = 1 - q$$

$$\mathcal{D}(0) = 1 - q$$

$$\mathcal{P}$$

$CP_k \subset DRMA[k]$

Define an intermediate class k-DRMA such that

$CP_k \subset k \text{-} DRMA \subset DRMA[k]$

DRMA[k]

$CP_k \subset DRMA[k]$

Define an intermediate class k-DRMA such that

$CP_k \subset k \text{-} DRMA \subset DRMA[k]$

k-DRMA: Arthur interacts once with each of k Merlins

$CP_k \subset DRMA[k]$

Define an intermediate class k-DRMA such that

$CP_k \subset k \text{-} DRMA \subset DRMA[k]$

k-DRMA: Arthur interacts once with each of k Merlins

• By induction

• **Base case:** $PP \subset 1$ -DRMA

- By induction
- **Base case:** $PP \subset 1\text{-}DRMA$

• Assume $CP_{k-1} \subset (k-1) - DRMA$

$CP_k \subset k$ -DRMA

- By induction
- **Base case:** $PP \subset 1\text{-}DRMA$
- Assume $CP_{k-1} \subset (k-1) DRMA$
- Need to show $CP_k = PP^{CP_{k-1}} \subset k\text{-}DRMA$

Our Rational Proof for CP_k

$$\Omega = \{0,1\}, \mathcal{D} \in \Delta(\Omega)$$

$$\mathcal{D}(1) = Pr_y[M(x,y) = 1]$$

$$\omega = \{M(x,y) : y \leftarrow \{0,1\}^{poly(n)}\}$$

$$\mathcal{D}(1) = q$$

$$\mathcal{D}(0) = 1 - q$$

$$\mathcal$$

Use k-I remaining queries to solve CP_{k-1} problem

Monday, June 11, 2012

From k Merlins to k rounds

Recall

$CP_k \subset k \text{-} DRMA \subset DRMA[k]$

Need to show

$k - DRMA \subset DRMA[k]$

Problem: Merlin may lie today to get better reward tomorrow

From k Merlins to k rounds

Recall

$CP_k \subset k \text{-} DRMA \subset DRMA[k]$

Need to show

$k - DRMA \subset DRMA[k]$

Solution Sketch: Make tomorrow's reward really small compared to today's

Theorem 3

$CP_k \subset RMA[k] \subset CP_{k+1}$

 $P^{PP} \subset RMA[1] \subset NP^{PP} \subset PP^{PP} \subset RMA[2] \subset PP^{PP^{PP}}.$

Open Question

Does CH Collapse?

Summary of Contributions

- New Complexity Class RMA
- Short Rational Proofs for #P
- Constant-Round Rational Proofs = CH

A tight connection

A tight connection

Proper ----- Interactive Scoring Rules ----- Proofs

THANK YOU!