3-Coloring the discrete torus

or

Rigidity of zero temperature 3-states anti-ferromagnetic Potts model

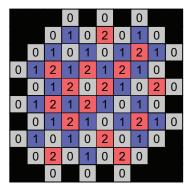
Ohad N. Feldheim

Joint work with Ron Peled

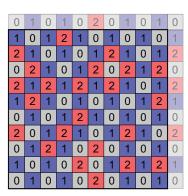
Department of Mathematics Tel Aviv University

October, 2011

3-Colorings of the Grid/Torus

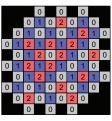


Zero boundary conditions



Periodic boundary conditions

Random 3-Colorings

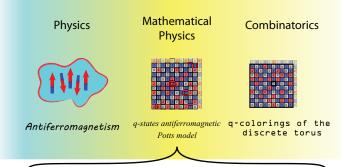


Zero boundary conditions

Periodic boundary conditions

- Uniformly chosen proper 3-coloring (Given boundary conditions)
- High dimension \mathbb{Z}^d , and \mathbb{T}_n^d .

Additional Motivation



- Generalizes the celebrated Ising model.
 - Each point takes one of q values.
- Neighbors dislike getting the same color.
- 3-coloring is the "zero temperature" version.

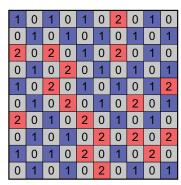
In a typical coloring:

• What is the typical relative frequency of the colors? Is it (1/3, 1/3, 1/3)?

- What is the typical relative frequency of the colors?
 Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?

- What is the typical relative frequency of the colors?
 Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?

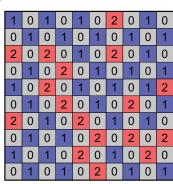
- What is the typical relative frequency of the colors?
 Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?
- Does it look roughly like this?



In a typical coloring:

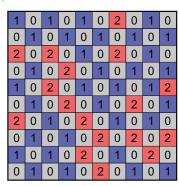
- What is the typical relative frequency of the colors?
 Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?
- Does it look roughly like this?

Conjecture:



- What is the typical relative frequency of the colors? Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?
- Does it look roughly like this?

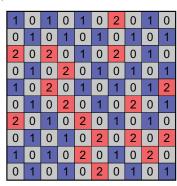
Conjecture:
$$d = 2$$
 No.



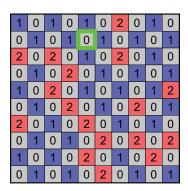
- What is the typical relative frequency of the colors? Is it (1/3, 1/3, 1/3)?
- Does a typical coloring follow some pattern?
- Is there long range correlation?
- Does it look roughly like this?

Conjecture:

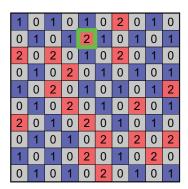
$$d = 2$$
 No.
 $d > 2$ Yes



Indication and application of rigidity



Indication and application of rigidity



Indication and application of rigidity

_									
1	0	1	0	1	0	2	0	1	0
0	1	0	1	2	1	0	1	0	1
2	0	2	0	1	0	2	0	1	0
0	1	0	2	0	1	0	1	0	1
1	0	2	0	1	0	1	0	1	2
0	1	0	2	0	1	0	2	0	1
2	0	1	0	2	0	1	0	1	0
0	1	0	1	0	2	0	2	0	2
1	0	1	0	2	0	1	0	2	0
0	1	0	1	0	2	0	1	0	1

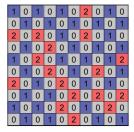
Indication and application of rigidity

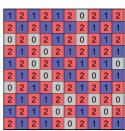
Indication and application of rigidity

- Glauber dynamics dynamics on 3-coloring changing one vertex at a time.
- Galvin & Randall (2007):
 Torpid mixing for local Markov chains (e.g. Glauber dynamics)

Indication and application of rigidity

- Glauber dynamics dynamics on 3-coloring changing one vertex at a time.
- Galvin & Randall (2007):
 Torpid mixing for local Markov chains (e.g. Glauber dynamics)
- Supports the conjecture that different "phases" exist.





The conjecture has been established for 0-boundary conditions in high dimension.

0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the even vertices take the color 0.

The conjecture has been established for 0-boundary conditions in high dimension.

0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the even vertices take the color 0.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **0-BC**, has:

$$\frac{\mathbb{E}\left|\left\{v \in V^{\text{even}} \ : \ g(v) \neq 0\right\}\right|}{|V^{\text{even}}|} < \exp\left(-\frac{cd}{\log^2 d}\right).$$

The conjecture has been established for 0-boundary conditions in high dimension.

0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the even vertices take the color 0.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **0-BC**, has:

$$\frac{\mathbb{E}\left|\left\{v \in V^{\text{even}} : g(v) \neq 0\right\}\right|}{|V^{\text{even}}|} < \exp\left(-\frac{cd}{\log^2 d}\right).$$

• Does not work for periodic BC.

The conjecture has been established for 0-boundary conditions in high dimension.

0-boundary rigidity (Peled 2010)

In a typical 3-coloring with 0-boundary conditions nearly all the even vertices take the color 0.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **0-BC**, has:

$$\frac{\mathbb{E}\left|\left\{v \in V^{\text{even}} : g(v) \neq 0\right\}\right|}{|V^{\text{even}}|} < \exp\left(-\frac{cd}{\log^2 d}\right).$$

- Does not work for periodic BC.
- Open in low dimensions.

Past Results - Rigidity for the hypercube

The conjecture has also been supported on bounded tori.

Periodic boundary on the even hypercube (Glavin & Engbers 2011)

For every fixed n, for high enough dimension (depndeing on n), a typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

Past Results - Rigidity for the hypercube

The conjecture has also been supported on bounded tori.

Periodic boundary on the even hypercube (Glavin & Engbers 2011)

For every fixed n, for high enough dimension (depndeing on n), a typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

- Works also for q-colorings (and even more general!)
- Fixed *n* is less important for physicists.

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **periodic BC** has:

$$\mathbb{E}\left(\min_{\substack{z\in\{0,1,2\},\\s\in\{\text{even,odd}\}}}\frac{|\{v\in V^s\ :\ g(v)\neq z\}|}{|V^s|}\right)<\exp\left(-\frac{cd}{\log^2 d}\right).$$

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **periodic BC** has:

$$\mathbb{E}\left(\min_{\substack{z\in\{0,1,2\},\\s\in\{\text{even,odd}\}}}\frac{|\{v\in V^s\ :\ g(v)\neq z\}|}{|V^s|}\right)<\exp\left(-\frac{cd}{\log^2 d}\right).$$

n must be even.

We establish a parallel phenomenon for periodic BC.

Theorem (F., Peled)

A typical 3-coloring with periodic boundary conditions is nearly constant on either the even or the odd sublattice.

Formally: Let d be large enough, a uniformly chosen 3-coloring with **periodic BC** has:

$$\mathbb{E}\left(\min_{\substack{z\in\{0,1,2\},\\s\in\{\text{even,odd}\}}}\frac{|\{v\in V^s\ :\ g(v)\neq z\}|}{|V^s|}\right)<\exp\left(-\frac{cd}{\log^2 d}\right).$$

- n must be even.
- Introduces topological techniques to the problem.

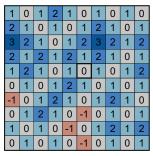
Proof Overview

Homomorphism Height Functions

$$h: G \to \mathbb{Z}$$
 satisfying $|h(v) - h(u)| = 1$ if $v \sim u$.

			0		0		0		
		0	1	0	-1	0	1	0	
	0	1	0	1	0	1	2	1	0
0	1	2	1	2	1	2	1	0	
	0	1	2	3	2	1	0	-1	0
0	1	2	1	2	1	0	1	0	
	0	1	2	1	0	1	2	1	0
0	1	0	1	0	-1	0	1	0	
	0	-1	0	1	0	-1	0		
		0		0		0			

Zero boundary conditions

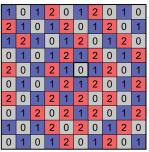


Periodic boundary conditions

• Discretized "topographical map".

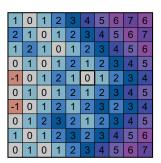
Relation to 3-Colorings

On \mathbb{Z}^d there is a natural bijection.



Pointed 3-Colorings

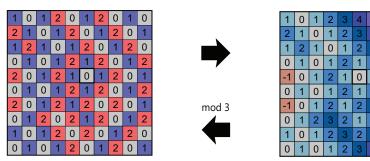
mod 3



Pointed HHFs

Relation to 3-Colorings

On \mathbb{Z}^d there is a natural bijection.



Pointed 3-Colorings

Pointed HHFs

This bijection does not extend to \mathbb{T}_n^d .

5

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on \mathbb{T}_n^d (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly constant on either the even or the odd sublattice.

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on \mathbb{T}_n^d (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly constant on either the even or the odd sublattice.

We wish to transfer this result to 3-colorings.

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on \mathbb{T}_n^d (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly constant on either the even or the odd sublattice.

We wish to transfer this result to 3-colorings.

Main obstruction: No bijection between HHFs and colorings on \mathbb{T}_n^d .

More is known about HHFs then about 3-colorings:

Rigidity of HHFs on \mathbb{T}_n^d (follows from Peled 2010)

A typical pointed HHF on a high dimensional torus is nearly constant on either the even or the odd sublattice.

We wish to transfer this result to 3-colorings.

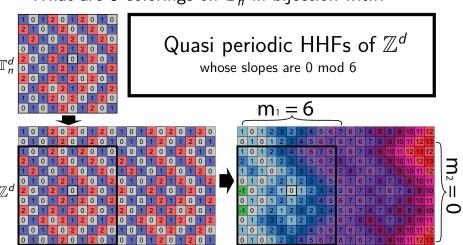
Main obstruction: No bijection between HHFs and colorings on \mathbb{T}_n^d . Here Topology enters.

Introducing Quasi-Periodic HHFs

What are 3-colorings on \mathbb{T}_n^d in bijection with?

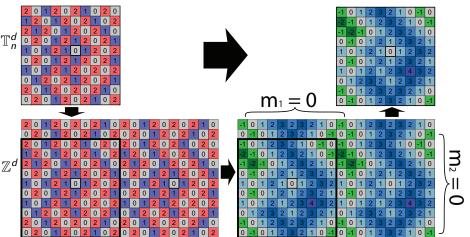
Introducing Quasi-Periodic HHFs

What are 3-colorings on \mathbb{T}_n^d in bijection with?



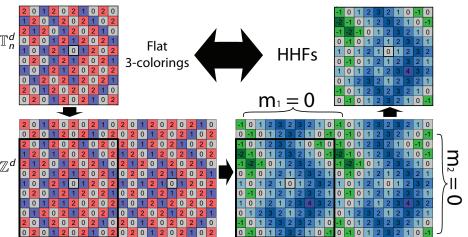
Flat Slope HHFs \leftrightarrow HHFs on \mathbb{T}_n^d

If all slopes are 0 ("flat" coloring) we get an HHF on \mathbb{T}_n^d .

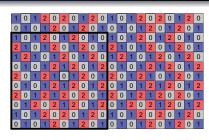


Flat Slope HHFs \leftrightarrow HHFs on \mathbb{T}_n^d

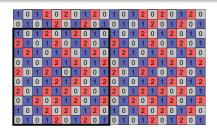
Iff all slopes are 0 ("flat" coloring) we get an HHF on \mathbb{T}_n^d .

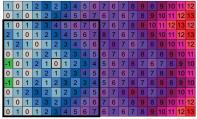


3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d



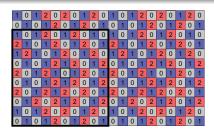
3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d \updownarrow Quasi-periodic HHFs on \mathbb{Z}^d





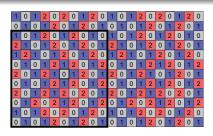
3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d \updownarrow Quasi-periodic HHFs on \mathbb{Z}^d

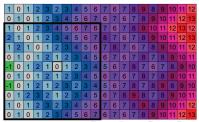
Periodic HHFs on \mathbb{Z}^d



3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d \updownarrow Quasi-periodic HHFs on \mathbb{Z}^d

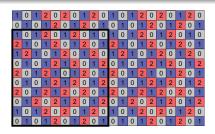
Periodic HHFs on \mathbb{Z}^d \updownarrow HHFs on \mathbb{T}_n^d

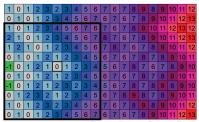




3-colorings of \mathbb{T}_n^d \updownarrow Periodic 3-colorings of \mathbb{Z}^d \updownarrow Quasi-periodic HHFs on \mathbb{Z}^d

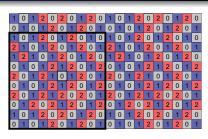
Periodic HHFs on \mathbb{Z}^d \uparrow HHFs on \mathbb{T}_n^d (which are known to be rigid)

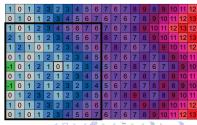




3-colorings of \mathbb{T}_n^d Periodic 3-colorings of \mathbb{Z}^d Quasi-periodic HHFs on \mathbb{Z}^d Periodic HHFs on \mathbb{Z}^d HHFs on \mathbb{T}_n^d (which are known to be rigid)

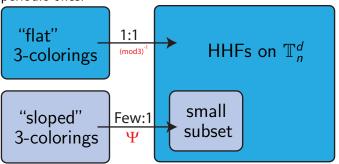
GOAL: Show that most quasi-periodic HHFs are periodic.





Proving Most Quasi-periodic are Periodic

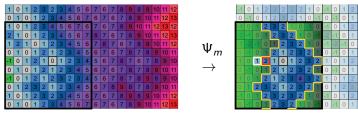
We construct a "flattening" map Ψ from quasi-periodic HHFs into periodic ones.



- Denote $QP_m := \{h \in QP : m \text{ is the slope of } h\}$
- We construct $\Psi_m: \operatorname{QP}_m \to \operatorname{QP}_0$, a one-to-one mapping.

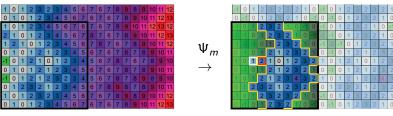


- Denote $QP_m := \{h \in QP : m \text{ is the slope of } h\}$
- We construct $\Psi_m : \operatorname{QP}_m \to \operatorname{QP}_0$, a one-to-one mapping.



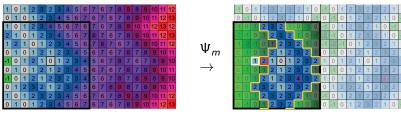
• Observe that the image contains a long level set.

- Denote $QP_m := \{h \in QP : m \text{ is the slope of } h\}$
- We construct $\Psi_m: \operatorname{QP}_m \to \operatorname{QP}_0$, a one-to-one mapping.



- Observe that the image contains a long level set.
- Peled 2010: Long level sets are extremely uncommon.

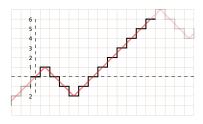
- Denote $QP_m := \{h \in QP : m \text{ is the slope of } h\}$
- We construct $\Psi_m : \mathsf{QP}_m \to \mathsf{QP}_0$, a one-to-one mapping.



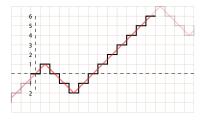
- Observe that the image contains a long level set.
- Peled 2010: Long level sets are extremely uncommon.
- We deduce the image of Ψ_m is small.

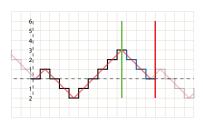
Ideas and Method

 One-dimensional intuition: reflection.

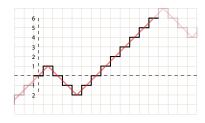


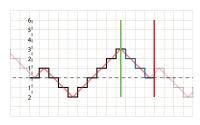
- One-dimensional intuition: reflection.
- Where to reflect?





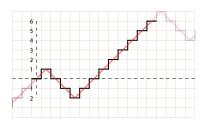
- One-dimensional intuition: reflection.
- Where to reflect?
- immediately after height $\frac{m_1}{2}$

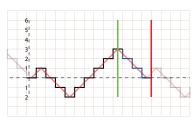




- One-dimensional intuition: reflection.
- Where to reflect?
- immediately after height $\frac{m_1}{2}$

Problem: several m_i -s. Can we fix them all at once?



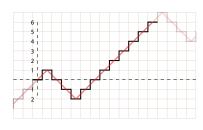


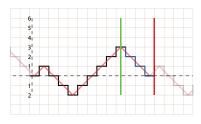
- One-dimensional intuition: reflection.
- Where to reflect?
- immediately after height $\frac{m_1}{2}$

Problem: several m_i -s. Can we fix them all at once?

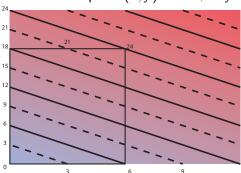
Answer:

Topology says - Yes.



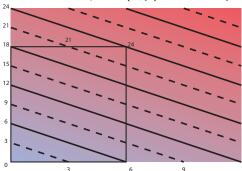


• Linear functions - an instructive example.



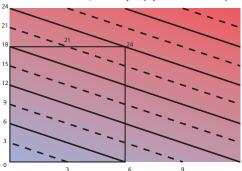
• Linear functions - an instructive example.

Take for example:
$$f(x, y) = 6x + 18y$$
.



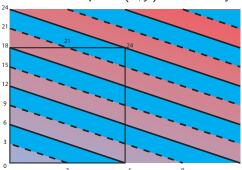
• We look at the function modulo 6.

Linear functions - an instructive example.



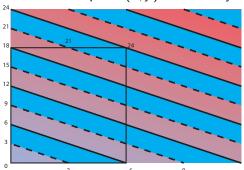
- We look at the function modulo 6.
- We divide it into 0-3 and 3-6 regions.

Linear functions - an instructive example.



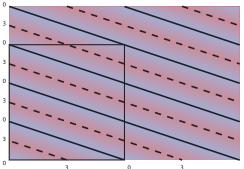
- We look at the function modulo 6.
- We divide it into 0-3 and 3-6 regions.

• Linear functions - an instructive example.



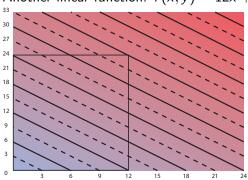
- We look at the function modulo 6.
- We divide it into 0-3 and 3-6 regions.
- We make a reflection around 3 in the 3-6 region.

Linear functions - an instructive example.

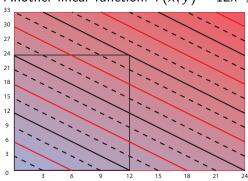


- We look at the function modulo 6.
- We divide it into 0-3 and 3-6 regions.
- We make a reflection around 3 in the 3-6 region.

Another linear function: f(x, y) = 12x + 24y.

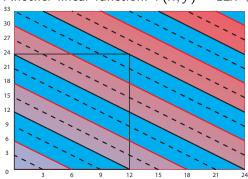


Another linear function: f(x, y) = 12x + 24y.



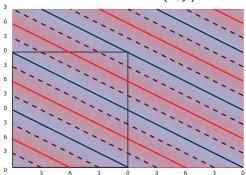
• Two different 0 mod 6 level contours.

Another linear function: f(x, y) = 12x + 24y.



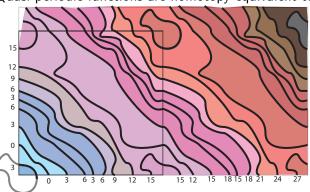
- Two different 0 mod 6 level contours.
- We take mod 12 instead.

Another linear function: f(x, y) = 12x + 24y.

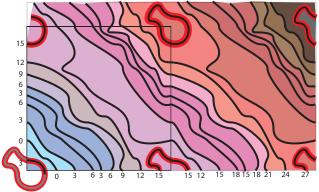


- Two different 0 mod 6 level contours.
- We take mod 12 instead.
- General principle: reflect around $\frac{\gcd(m_1,...,m_n)}{2}$.

Quasi-periodic functions are homotopy equivalent to linear ones.



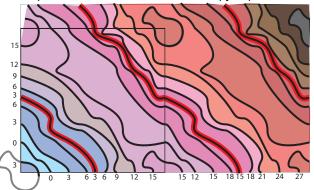
Quasi-periodic functions are homotopy equivalent to linear ones.



• Two types of level contours:

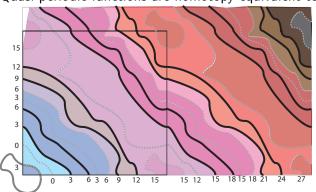
Trivial level contours.

Quasi-periodic functions are homotopy equivalent to linear ones.



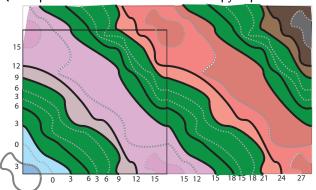
- Two types of level contours:
 Trivial level contours.
 - Non-Trivial level contours.

Quasi-periodic functions are homotopy equivalent to linear ones.



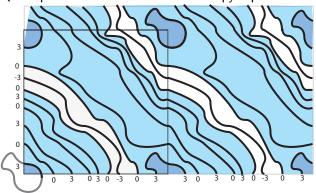
• We pick the first non-trivial level contour of every height.

Quasi-periodic functions are homotopy equivalent to linear ones.



- We pick the first non-trivial level contour of every height.
- We find the proper reflection "modulo".

Quasi-periodic functions are homotopy equivalent to linear ones.



- We pick the first non-trivial level contour of every height.
- We find the proper reflection "modulo".
- We make the reflection.

How to discretize?

Challenges of the discrete setting:

- Define level sets properly.
- Establish their structure.
- Identify trivial level sets.
- Prove the invertability of the reflection.

How to discretize?

Challenges of the discrete setting:

- Define level sets properly.
- Establish their structure.
- Identify trivial level sets.
- Prove the invertability of the reflection.

We will focus on these in this presentation.

Towards level sets

Level component of v at height k

 $LC_h^k(v)$ is the connected component of v in $G \setminus \{u \in G \mid h(u) = k\}$

The fundament of level sets

Level component from v to u at height k

 $LC_h^k(v, u)$ is the complement of the connected component of u in $G \setminus LC_h^k(v)$

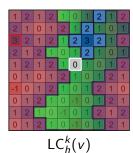
$$LC_h^k(v)$$

$$LC_h^k(v,u)$$

The fundament of level sets

Level component from v to u at height k

 $LC_h^k(v, u)$ is the complement of the connected component of u in $G \setminus LC_h^k(v)$

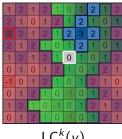


$$LC_h^k(v, u)$$

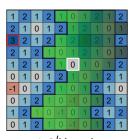
The fundament of level sets

Level component from v to u at height k

 $LC_h^k(v, u)$ is the complement of the connected component of u in $G \setminus LC_h^k(v)$



$$LC_h^k(v)$$



 $LC_h^k(v,u)$

The edge boundary of a level component is called a level set.

3 Types of Level Components A trichotomy

For $t \in n\mathbb{Z}^d$, and a set $U \subset \mathbb{Z}^d$ we call U + t a translate of U.

3 Types of Level Components A trichotomy

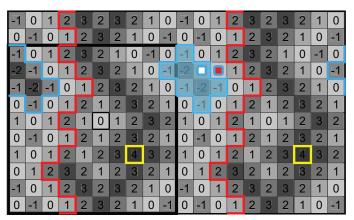
For $t \in n\mathbb{Z}^d$, and a set $U \subset \mathbb{Z}^d$ we call U + t a translate of U.

3 types of level components

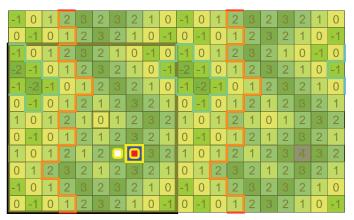
Let $U = LC_h^k(u, v)$ be a level component with non-empty boundary. One of the following holds:

- (Trivial) All of U's translates are disjoint.
- (Trivial) All of U^c 's translates are disjoint.
- (Non-trivial) The translates of U are totally ordered by inclusion.

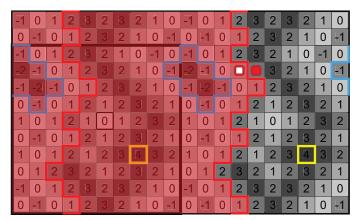
1	Λ	1	2	3	2	3	2	1	Λ	1	Λ	1	2	3	2	3	2	1	Λ
	U	-		b		S			U		U	1		b		3			U
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1
-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1	0
-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0	<u>-1</u>
-1	-2	-1	0	1	2	3	2	1	0	-1	F2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	0	1	2	3	2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2	3	2	1	2	3	2	1	0	1	2	3	2	1	2	В	2	1
-1	0	1	2	В	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1



Trivial (Disjoint translates)



Trivial (Disjoint complement translates)



Non-Trivial (Ordered)

-1	0	1	2	В	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1
-1	0	1	2	В	2	1	0	-1	0	-1	0	1	2	В	2	1	0	-1	0
-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0	-1
-1	-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	0	1	2	3	2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	В	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2	3	2	1	2	3	2	1	0	1	2	3	2	1	2	В	2	1
-1	0	1	2	В	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1

Trivial level components do not create slope.

Formula for heights

Denote
$$\mathcal{L} = \{A : \exists u_1, u_2 \in \mathbb{Z}^d : A = LC_h^{h(u_2)}(u_1, u_2)\}$$

Formula for h(u) - h(v)

$$\textit{h(u)} - \textit{h(v)} = |\{\textit{A} \in \mathcal{L} : \textit{v} \in \textit{A}, \textit{u} \notin \textit{A}\}| - |\{\textit{A} \in \mathcal{L} : \textit{v} \notin \textit{A}, \textit{u} \in \textit{A}\}|$$

Formula for heights

Denote
$$\mathcal{L} = \{A : \exists u_1, u_2 \in \mathbb{Z}^d : A = LC_h^{h(u_2)}(u_1, u_2)\}$$

Formula for
$$h(u) - h(v)$$

$$h(u)-h(v)=|\{A\in\mathcal{L}:v\in A,u\notin A\}|-|\{A\in\mathcal{L}:v\notin A,u\in A\}|$$

Specializing to v = u + t for $t \in n\mathbb{Z}^d$ we write:

Formula for
$$h(u) - h(v)$$

$$h(u)-h(v) = |\{A \in \mathcal{L}' : v \in A, u \notin A\}|-|\{A \in \mathcal{L}' : v \notin A, u \in A\}|$$

where \mathcal{L}' is the set of non-trivial level components in \mathcal{L} .

Formula for heights

Denote
$$\mathcal{L} = \{A : \exists u_1, u_2 \in \mathbb{Z}^d : A = LC_h^{h(u_2)}(u_1, u_2)\}$$

Formula for
$$h(u) - h(v)$$

$$h(u)-h(v)=|\{A\in\mathcal{L}:v\in A,u\notin A\}|-|\{A\in\mathcal{L}:v\notin A,u\in A\}|$$

Specializing to v = u + t for $t \in n\mathbb{Z}^d$ we write:

Formula for h(u) - h(v)

$$h(u)-h(v) = |\{A \in \mathcal{L}' : v \in A, u \notin A\}|-|\{A \in \mathcal{L}' : v \notin A, u \in A\}|$$

where \mathcal{L}' is the set of non-trivial level components in \mathcal{L} .

 Used, for example, to show the existence of non-trivial level components for sloped function.

The Discrete Picture

1	0	1	2	3	2	3	4	5	6	7	6	7	8	9	8	9	10	11	12
0	1	0	1	2	3	4	5	6	7	6	7	6	7	8	9	10	11	12	13
1	0	1	2	3	4	5	6	7	6	7	6	7	8	9	10	11	12	13	12
2	1	0	1	2	3	4	5	6	7	8	7	6	7	8	9	10	11	12	13
1	2	1	0	1	2	3	4	5	6	7	8	7	6	7	8	9	10	11	12
0	1	0	1	2	1	2	3	4	5	6	7	6	7	8	7	8	9	10	11
-1	0	1	2	1	0	1	2	3	4	5	6	7	8	7	6	7	8	9	10
0	1	0	1	2	1	2	3	4	5	6	7	6	7	8	7	8	9	10	11
-1	0	1	2	1	2	3	2	3	4	5	6	7	8	7	8	9	8	9	10
0	1	2	3	2	1	2	3	4	5	6	7	8	9	8	7	8	9	10	11
1	0	1	2	3	2	3	4	5	6	7	6	7	8	9	8	9	10	11	12
0	1	0	1	2	3	4	5	6	7	6	7	6	7	8	9	10	11	12	13

The Discrete Picture

-1	0	1	2	3	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1
-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1	0
-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0	-1
-1	-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	3	2	1
1	0	1	2	1	0	1	2	3	2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	3	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2	3	2	1	2	3	2	1	0	1	2	3	2	1	2	3	2	1
-1	0	1	2	3	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1

The Discrete Picture

-1	0	1	2	3	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1
-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1	0
-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0	-1
-1	-2	-1	0	1	2	3	2	1	0	-1	-2	-1	0	1	2	3	2	1	0
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	3	2	1
1	0	1	2	1	0	1	2	3	2	1	0	1	2	1	0	1	2	3	2
0	-1	0	1	2	1	2	3	2	1	0	-1	0	1	2	1	2	3	2	1
1	0	1	2	1	2	3	4	3	2	1	0	1	2	1	2	3	4	3	2
0	1	2	3	2	1	2	3	2	1	0	1	2	3	2	1	2	3	2	1
-1	0	1	2	3	2	3	2	1	0	-1	0	1	2	3	2	3	2	1	0
0	-1	0	1	2	3	2	1	0	-1	0	-1	0	1	2	3	2	1	0	-1

Open Problems

Ordered by estimated difficulty

Odd Tori.

Open Problems

Ordered by estimated difficulty

- Odd Tori.
- 4-colors and more.

Open Problems

Ordered by estimated difficulty

- Odd Tori.
- 4-colors and more.
- Non-zero temperature.

Open Problems Ordered by estimated difficulty

- Odd Tori.
- 4-colors and more.
- Non-zero temperature.
- Low dimension.

Thank you