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$250 Question of P. Erdös 1970s
Fix 0 < δ < 1. Let n ∈ N, and d ∼ δn be an even integer.

U ⊆ {0,1}n,

no two element of U are different in exactly d coordinates,

How big can U be?

Theorem ([Frankl and Rodl, 1987])

U is exponentially small.

µ =
|U|
2n ≤ ξn ξ = ξ(δ) < 1

Siavosh Benabbas



An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

Introduction
Proof Ideas
Open Questions

“Density” Frankl-Rödl

$250 Question of P. Erdös 1970s

Siavosh Benabbas



An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

Introduction
Proof Ideas
Open Questions

“Density” Frankl-Rödl

$250 Question of P. Erdös 1970s
Fix 0 < δ < 1. Let n ∈ N, and d ∼ δn be an even integer.

U ⊆ {0,1}n,

no two element of U are different in exactly d coordinates,

How big can U be?

Theorem ([Frankl and Rodl, 1987])

U is exponentially small.

µ =
|U|
2n ≤ ξn ξ = ξ(δ) < 1

Siavosh Benabbas



An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

Introduction
Proof Ideas
Open Questions

“Density” Frankl-Rödl

“Density” Frankl-Rödl

Fix 0 < δ < 1. Let n ∈ N, and d ∼ δn be an even integer.

U ⊆ {0,1}n, |U| = µ2n

no two element of U are different in exactly d coordinates,

Theorem ([Frankl and Rodl, 1987])
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“Density” Frankl-Rödl

Fix 0 < δ < 1. Let n ∈ N, and d ∼ δn be an even integer.

U ⊆ {0,1}n, |U| = µ2n

How many pairs of elements of U are different in exactly d
coordinates?

Theorem ([Frankl and Rodl, 1987])
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“Density” Frankl-Rödl

Fix 0 < δ < 1. Let n ∈ N, and d ∼ δn be an even integer.

U ⊆ {0,1}n, |U| = µ2n

How many pairs of elements of U are different in exactly d
coordinates?

Theorem ([Frankl and Rodl, 1987])

Pr
x,y

[x ∈ U, y ∈ U]

x , y chosen randomly so that dH(x , y) = d.
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“Density” Frankl-Rödl

Fix 0 < δ < 1. Let n ∈ N, and d ∼ δn be an even integer.

U ⊆ {0,1}n, |U| = µ2n

How many pairs of elements of U are different in exactly d
coordinates?

Theorem (1)

By [Frankl and Rodl, 1987]:

Pr
x,y

[x ∈ U, y ∈ U] > 0,

x , y chosen randomly so that dH(x , y) = d.
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“Density” Frankl-Rödl

Fix 0 < δ < 1. Let n ∈ N, and d ∼ δn be an even integer.

U ⊆ {0,1}n, |U| = µ2n

How many pairs of elements of U are different in exactly d
coordinates?

Theorem (1)

We show:

Pr
x,y

[x ∈ U, y ∈ U] > ǫ,

x , y chosen randomly so that dH(x , y) = d.
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“Density” Frankl-Rödl

Fix 0 < δ < 1. Let n ∈ N, and d ∼ δn be an even integer.

U ⊆ {0,1}n, |U| = µ2n

How many pairs of elements of U are different in exactly d
coordinates?

Theorem (1)

We show:

Pr
x,y

[x ∈ U, y ∈ U] > ǫ, ǫ = 2(µ/2)
2

1−|1−2δ| − o(1)

x , y chosen randomly so that dH(x , y) = d.
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Theorem

∀δ ∈ (0,1), and large enough n, if U ⊆ {0,1}n, |U| = µ2n,

Pr
x,y

[x ∈ U, y ∈ U] > ǫ ǫ = 2(µ/2)
2

1−|1−2δ| − o(1)

x , y chosen randomly so that dH(x , y) ≃ δn is an even integer.
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Our results

Theorem

∀δ ∈ (0,1), and large enough n, if U ⊆ {0,1}n, |U| = µ2n,

Pr
x,y

[x ∈ U, y ∈ U] > ǫ ǫ = 2(µ/2)
2

1−|1−2δ| − o(1)

x , y chosen randomly so that dH(x , y) ≃ δn is an even integer.

Theorem (A new Isoperimetric Inequality)

∀δ ∈ (0,1), and large enough n, if U,W ⊆ {0,1}n,
|U|, |W | ≥ µ2n,

Pr
x,y

[x ∈ U, y ∈ W ] > ǫ ǫ = µ
2

1−|1−2δ| − o(1)

x , y chosen randomly so that dH(x , y) = d or d + 1, d = ⌊δn⌋.
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Theorem ([Frankl and Rodl, 1987])

∀U ⊆ {0,1}n, |U| ≥ µ2n : (µ = ξn)

Pr
x,y

[x ∈ U, y ∈ U] > 0 dH(x , y) = δn
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High level of the proof of Frankl-Rödl Theorem

Theorem ([Frankl and Rodl, 1987])

∀U ⊆ {0,1}n, |U| ≥ µ2n : (µ = ξn)

Pr
x,y

[x ∈ U, y ∈ U] > 0 dH(x , y) = δn

Reduces to,

Theorem ([Frankl and Rodl, 1987])

∀U ′ ⊆ {0,1}n, |U ′| ≥ µ2n/n : (µ = ξn)

Pr
x,y

[

x ∈ U ′, y ∈ U ′] > 0
∑

i

xiyi = δ′n
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High level of the proof of Frankl-Rödl Theorem

Theorem ([Frankl and Rodl, 1987])

∀U ⊆ {0,1}n, |U| ≥ µ2n : (µ = ξn)

Pr
x,y

[x ∈ U, y ∈ U] > 0 dH(x , y) = δn

Reduces to,

Theorem ([Frankl and Rodl, 1987])

∀U ′ ⊆ {0,1}n, |U ′| ≥ µ2n/n : (µ = ξn)

Pr
x,y

[

x ∈ U ′, y ∈ U ′] > 0
∑

i

xiyi = δ′n

This first step fails for us!
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Theorem (1)

∀U ⊆ {0,1}n, |U| ≥ µ2n :

Pr
x,y

[x ∈ U, y ∈ U] > ǫ = ǫ(δ, µ) dH(x , y) = δn
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High level of our proof

Theorem (1)

∀U ⊆ {0,1}n, |U| ≥ µ2n :

Pr
x,y

[x ∈ U, y ∈ U] > ǫ = ǫ(δ, µ) dH(x , y) = δn

We reduce it to,

Theorem ([Mossel et al., 2006])

∀U ⊆ {0,1}n, |U| ≥ µ2n :

Pr
x,y

[x ∈ U, y ∈ U] > ǫ = ǫ(δ, µ) yi =

{

1 − xi w.p. δ

xi w.p. 1 − δ
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Fix U ⊆ {0,1}n, |U| ≥ µ2n,

P1 := Pr
x,y

[x ∈ U, y ∈ U] dH(x , y) = δn

P2 := Pr
x,y

[x ∈ U, y ∈ U] E [dH(x , y)] = δn
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Fix U ⊆ {0,1}n, |U| ≥ µ2n,

P1 := Pr
x,y

[x ∈ U, y ∈ U] dH(x , y) = δn

P2 := Pr
x,y

[x ∈ U, y ∈ U] E [dH(x , y)] = δn

Show that: |P1 − P2| = o(1).
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Fix U ⊆ {0,1}n, |U| ≥ µ2n, define 1U(x) =

{

1 x ∈ U

0 o.w

P1 := Pr
x,y

[x ∈ U, y ∈ U] dH(x , y) = δn

P2 := Pr
x,y

[x ∈ U, y ∈ U] E [dH(x , y)] = δn

Show that: |P1 − P2| = o(1).
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High level of our proof (cont.)

Fix U ⊆ {0,1}n, |U| ≥ µ2n, define 1U(x) =

{

1 x ∈ U

0 o.w

P1 := Pr
x,y

[x ∈ U, y ∈ U] = E
x,y

[1U(x)1U(y)] dH(x , y) = δn

P2 := Pr
x,y

[x ∈ U, y ∈ U] = E
x,y

[1U(x)1U(y)] E [dH(x , y)] = δn

Show that: |P1 − P2| = o(1).
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High level of our proof (cont.)

Fix U ⊆ {0,1}n, |U| ≥ µ2n, define 1U(x) =

{

1 x ∈ U

0 o.w

P1 = E
x,y

[1U(x)1U(y)] dH(x , y) = δn

P2 = E
x,y

[1U(x)1U(y)] E [dH(x , y)] = δn

Show that:
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High level of our proof (cont.)

Fix U ⊆ {0,1}n, |U| ≥ µ2n, define 1U(x) =

{

1 x ∈ U

0 o.w

P1 = E
x,y

[1U(x)1U(y)] dH(x , y) = δn

P2 = E
x,y

[1U(x)1U(y)] = E
x
[1U(x)(T1−2δ1U)(x)] E [dH(x , y)] = δn

Show that:

(T1−2δf )(x) = E
y
[f (y)] E [dH(x , y)] = δn
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High level of our proof (cont.)

Fix U ⊆ {0,1}n, |U| ≥ µ2n, define 1U(x) =

{

1 x ∈ U

0 o.w

P1 = E
x,y

[1U(x)1U(y)] = E
x
[1U(x)(Sd 1U)(x)] dH(x , y) = δn

P2 = E
x,y

[1U(x)1U(y)] = E
x
[1U(x)(T1−2δ1U)(x)] E [dH(x , y)] = δn

Show that:

(T1−2δf )(x) = E
y
[f (y)] E [dH(x , y)] = δn

(Sd f )(x) = E
y
[f (y)] dH(x , y) = δn
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High level of our proof (cont.)

Fix U ⊆ {0,1}n, |U| ≥ µ2n, define 1U(x) =

{

1 x ∈ U

0 o.w

P1 = E
x,y

[1U(x)1U(y)] = E
x
[1U(x)(Sd 1U)(x)] dH(x , y) = δn

P2 = E
x,y

[1U(x)1U(y)] = E
x
[1U(x)(T1−2δ1U)(x)] E [dH(x , y)] = δn

Show that: T1−2δ ≃ Sd

(T1−2δf )(x) = E
y
[f (y)] E [dH(x , y)] = δn

(Sd f )(x) = E
y
[f (y)] dH(x , y) = δn
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Both are linear operators,
Have the same Eigenvectors. χS(x) =

∏

i∈S(−1)xi , S ⊆ [n]
Both have n + 1 (repeated) eigenvalues.plotted below,

-1

-0.5

0

0.5

1

0 5 10 15 20 25

n = 25,d = 6
Siavosh Benabbas



An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

Introduction
Proof Ideas
Open Questions

High level of our proof (T1−2δ ≃ Sd)

Both are linear operators,
Have the same Eigenvectors. χS(x) =

∏

i∈S(−1)xi , S ⊆ [n]
Both have n + 1 (repeated) eigenvalues.plotted below,

-1

-0.5

0

0.5

1

0 5 10 15 20 25

n = 25,d = 6

-1

-0.5

0

0.5

1

0 5 10 15 20 25

n = 25,d = 7
Siavosh Benabbas



An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

Introduction
Proof Ideas
Open Questions

High level of our proof (T1−2δ ≃ (Sd + Sd+1)/2)

Both are linear operators,
Have the same Eigenvectors. χS(x) =

∏

i∈S(−1)xi , S ⊆ [n]
Both have n + 1 (repeated) eigenvalues.plotted below,
Compare to (Sd + Sd+1)/2.
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An Isoperimetric Inequality for the Hamming Cube:
Open Questions

Improve the error term.

Theorem

∀δ ∈ (0,1), and large enough n, if U ⊆ {0,1}n, |U| = µ2n,

Pr
x,y

[x ∈ U, y ∈ U] > ǫ ǫ = 2(µ/2)
2

1−|1−2δ| − o(1)

x , y chosen randomly so that dH(x , y) ≃ δn is an even integer.
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An Isoperimetric Inequality for the Hamming Cube:
Open Questions

Improve the error term.

Theorem

∀δ ∈ (0,1), and large enough n, if U ⊆ {0,1}n, |U| = µ2n,

Pr
x,y

[x ∈ U, y ∈ U] > ǫ ǫ = 2(µ/2)
2

1−|1−2δ| − o(1)

x , y chosen randomly so that dH(x , y) ≃ δn is an even integer.

Could result in a new proof of [Frankl and Rodl, 1987].
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Could result in a new proof of [Frankl and Rodl, 1987].

“Density” version of other Theorems of
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An Isoperimetric Inequality for the Hamming Cube:
Open Questions

Improve the error term.
Could result in a new proof of [Frankl and Rodl, 1987].

“Density” version of other Theorems of
[Frankl and Rodl, 1987].

Theorem ([Frankl and Rodl, 1987])
∀U ⊆ {0,1}n, |U| ≥ µ2n : (µ = ξn)

Pr
x,y

[x ∈ U, y ∈ U] > 0
∑

i

xiyi = δn
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1 An Isoperimetric Inequality for the Hamming Cube

Introduction
Proof Ideas
Open Questions

2 Integrality Gaps in Bounded-degree Graphs
VERTEX COVER and INDEPENDENT SET

Hierarchies of strong LP/SDP formulations
IG for VERTEX COVER in bounded degree graphs
Open Questions
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Sample |V (G)|d/4 edges of G at random, call the result G̃
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λ = ({0,1}n,E).

(x , y) ∈ E(G) ⇐⇒ dH(x , y) = (1 − λ)n.

Theorem ([Frankl and Rodl, 1987])

If U ⊆ {0,1}n and |U| > ξn2n implies U is not independent.

We need to show such U is also dense!

Theorem

∀U ⊆ {0,1}n, |U| ≥ µ2n :

Pr
x,y :dH(x,y)=(1−λ)n

[x , y ∈ U] > ǫ = ǫ(µ, λ).
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Theorem

For any constant ℓ, the Integrality Gap for level-ℓ Sherali-Adams
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Integrality Gaps in Bounded-degree Graphs: Open
Questions

Improve the UGC-hardness of INDEPENDENT SET in
degree-bounded graphs,

Extend our results to other hierarchies.

Thank you!
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