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Theorem ([Frankl and Rodl, 1987])

U is exponentially small.
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How big can U be?
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Theorem ([Frankl and Rodl, 1987])
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@ FixO0<d <1 Letn e N,and d ~ dn be an even integer.

o UC{0,1}", |U|=p2"

@ How many pairs of elements of U are different in exactly d
coordinates?

o

Theorem (1)

By [Frankl and Rodl, 1987]:

)I:)g[er,yeU]>O,

X,y chosen randomly so that dy(x,y) =d.
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Vo € (0,1), and large enough n, if U C {0,1}", |U| = p2",
)I(D)g xeU,yeU]>e¢ €= 2(u/2)1—\12—26\ —0(1)

X,y chosen randomly so that dy(X,y) ~ dn is an even integer.

| A\

Theorem (A new Isoperimetric Inequality)

Vo € (0,1), and large enough n, if U,W C {0,1}",
U, W] > p2",

2
)I?§[xeu,y eEW]>e e = pI-1-21 —o(1)

X,y chosen randomly so that dy(x,y) =d ord +1,d = |dn].

o
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Theorem ([Frankl and Rodl, 1987])
YU C {0,1}",|U| > u2": (b =&
)I(Dyr[xeu,yeu]>0 dy(x,y) =dn

Reduces to,
Theorem ([Frankl and Rodl, 1987])
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This first step fails for us!
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VU C {071}n7‘u‘ Zuzn :
PrixeU,y eUl>c=c(6.n)  du(x,y)=dn

We reduce it to,
Theorem ([Mossel et al., 2006])

YU C {0,1}", U] > u2"

1-X wp.é
f§[X€U,y€U]>6:6(5,M) yi:{ ' P

Xi w.p. 1 —
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Fix U C {0,1}",|U| > 2", define 1y(x) = {O
o.w

Py:=Pr [x eU,y eU] = = [1u(x)1u(y)] du(X,y) =dn
Pz:=PrixeU,y eU] = E [1u(x)lu(y)] E[du(x,y)] = n

Show that: |P1 — P3| =0(1).
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1 U
Fix U C {0,1}",|U| > n2", define 1y(x) = { X<

0 ow
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Fix U C {0,1}",|U| > u2", define 1y(x) = {
0 ow

Pi=E [L1u(X)1u(y)] du(x,y) =dn
P2 = XI% [Lu(x)lu(y)] = B [Lu(X)(T1i—2s1u)(x)]  E[du(x,y)] = dn
Show that:

(Ta-257)(x) = E[f(y)] E [dn(X,y)] = on

Siavosh Benabbas



Introduction
Proof Ideas
Open Questions

An Isoperimetric Inequality for the Hamming Cube

High level of our proof (cont.)

1 xeUu

Fix U C {0,1}",|U| > u2", define 1y(x) = {
0 ow

P1 = XI% [Lu()Lu(y)] = E[1y(x)(Salu)(x)] du(x,y) =dn
P, = XI% [Lu()1u ()] =E[1u(x)(T1-2510)(X)]  E[du(x,y)] = dn

Show that:

(Ta-257)(x) = E[f(y)] E [dn(X,y)] = on
(Saf)(x) = E[f(y)] dy(x,y) =on

Siavosh Benabbas



Introduction
Proof Ideas
Open Questions

An Isoperimetric Inequality for the Hamming Cube

High level of our proof (cont.)

1 xeUu
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0 ow

P1 = XI% [Lu()Lu(y)] = E[1y(x)(Salu)(x)] du(x,y) =dn
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@ Both are linear operators,

@ Have the same Eigenvectors. xs(X) = [[ics(—1)%, S C [n]
@ Both have n + 1 (repeated) eigenvalues.plotted below,

@ Compare to (Sg + Sq+1)/2.

n=25d=2=6 n=25dx=7
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An Isoperimetric Inequality for the Hamming Cube:
Open Questions

@ Improve the error term.
Could result in a new proof of [Frankl and Rodl, 1987].

@ “Density” version of other Theorems of
[Frankl and Rodl, 1987].

Theorem ([Frankl and Rodl, 1987])
VUQ{O,l}n,‘U‘ZMZn: (:U/:fn)

Prixeu,y €U]>0 zi:xiyizdn
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VERTEX COVER and INDEPENDENT SET

Definition (VERTEX COVER)
Input: Graph G = (V,E),
Goal: Finding subset S C V:
e it touches each edge,

e |S| is minimized.
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Input: Graph G = (V,E), Input: Graph G = (V,E),
Goal: Finding subset S C V: Goal: Finding subset S C Vi
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VERTEX COVER and INDEPENDENT SET

Definition (VERTEX COVER) Definition (INDEPENDENT SET)
Input: Graph G = (V,E), Input: Graph G = (V,E),
Goal: Finding subset S C V: Goal: Finding subset S C Vi
e it touches each edge, e No edge has both ends in S,
e |S| is minimized. e |S| is maximized.

[ ] [ ]

° S
(] [ ]

>
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What |s known General Graphs
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Definition (VERTEX COVER) Definition (INDEPENDENT SET)

Input: Graph G = (V,E), Input: Graph G = (V,E),
Goal' Finding subset S C V: Goal: Finding subset S C W5

What |s known General Graphs

| VERTEX COVER | INDEPENDENT SET
Best algorithm | 2-0(1) | O(n/polylog(n))

[Karakostas, 2005] [Feige, 2004]
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| VERTEX COVER | INDEPENDENT SET

Best algorithm 2-0(1) O (n/ polylog(n))
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VERTEX COVER and INDEPENDENT SET

Definition (VERTEX COVER) Definition (INDEPENDENT SET)

Input: Graph G = (V,E), Input: Graph G = (V,E),
Goal' Finding subset S C V: Goal: Finding subset S C W

What |s known General Graphs

VERTEX COVER | INDEPENDENT SET
Best algorithm 2-0(1) O (n/ polylog(n))
NP-hardness 1.36 Q(n1)
UGC-hardness 2—¢
Hierarchy IGs | 2 _° (LE™, SR | ety e et
1.36 (Lasserre) (Lasserre)

[Karakostas, 2005] [Feige, 2004] [Dinur and Safra, 2005]
[Hastad, 1996] [Khot and Regev, 2008] [Tulsiani, 2009]
Charikar et al., 2009
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Goal' Finding subset S C V:

Definition (INDEPENDENT SET)

Input: Graph G = (V,E),
Goal: Finding subset S C W

What |s known Graphs of bounded degree (d)

\ VERTEX COVER INDEPENDENT SET
Best algorithm ‘ 2—(2= Od(l))'°8,g’3d ‘ 0 (a |(I)0gg|?jgd)

[Halperin, 2002]
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o

' \ VERTEX COVER \ INDEPENDENT SET
Best algorithm | 2 — (2 — o4 (1))—"’%'5’3’0| 0 (d "l’(?g'((’jgd)

_ _d
NP-hardness So/e
loglogd d

UGC-hardness | 2 — (2 + 04(1))Feq4 Q (Iogzd

[Halperin, 2002] [Samorodnitsky and Trevisan, 2000]
[Austrin et al., 2009]
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Definition (VERTEX COVER)

Input: Graph G = (V,E),
Goal' Finding subset S C V:

Definition (INDEPENDENT SET)

Input: Graph G = (V,E),
Goal: Finding subset S C W

[ ] dCll 2o aAlaE=Ialal=malr=
. What |s known Graphs of bounded degree (d)
' VERTEX COVER INDEPENDENT SET
Best algorithm | 2 — (2 — od(l))% o (d "l’(?g'((’jgd)
d
NP-hardness o0/
UGC-hardness | 2 — (2 + 04 (1))'0%'5’3d g
Hierarchy IGs | 2 — O('oﬁ‘)g’gd) (LS™T) Q (Iogd (SA)
[Halperin, 2002] [Samorodnitsky and Trevisan, 2000]
[Austrin et al., 2009]
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LP relaxation for VERTEX COVER
IP Formulation

Minimize > x 1)
i€V (G)
Variables: x,...,x, € {0,1}
Subiject to:

Vii cE(G) X +x>1
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IG for VERTEX COVER in bounded degree graphs
Open Questions

LP relaxation for VERTEX COVER

IP Formulation LP relaxation

Minimize > x 1)
ieV(G)
Variables: x3,...,x, € {0,1}
Subiject to:
Vii cE(G) X +x>1

Minimize > X (2)
ieVv(G)
Variables: x3,...,x, € [0,1]
Subject to:

Vii cE(G) X +x>1
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Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

LP relaxation for VERTEX COVER

IP Formulation LP relaxation

Minimize > x 1) Minimize > X (2)
ieV(G) ieV(G)
Variables: x1,...,X, € {0,1} Variables: x3,...,x, € [0,1]
Subiject to: Subject to:
Vii cE(G) X +x>1 Vii cE(G) X +x>1
Exact, NP-hard to solve. Not Exact, easy to solve.

@ Integrality gap: The ratio (1)/(2).
Standard for how good the relaxation is.

e2-o(l)<IG<L2.
factor 2 is inherent in (simple) LP based approaches.
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LP relaxation
Minimize Z Xi
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|
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Open Questions

“Strengthening” the LP relaxation

“Strong” LP relaxation

@ Add variable/constraints to encode Variables: X1, ..., X, € [0,1]
more information about w:

. : xij € [0,1]
Xj =Prs.,[i€S;jeS _
! s Jes] Subject to:
(Equivalent to Sherali-Adams ViieE(G)Xxi+x =1
Hierarchy) Vij Xj +Xj — Xj >0
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Open Questions

“Strengthening” the LP relaxation

“Strong” LP relaxation

@ A distribution i of VERTEX COVERS, Minimize Z X
|
@ xj =Prg., [i €8], icV(G)
@ Add variable/constraints to encode Variables: x;, Xn € [0,1]
more mformgtlon a_lboutu: xij € [0,1]
M — [Xij]1<- -0 Subject to:
<i,j<n Viie E(G)xi +x >1
VI] Xi + Xj — Xjj >0
M>0
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Open Questions

“Strengthening” the LP relaxation

“Strong” LP relaxation

@ Add variable/constraints to encode Variables: X1, ..., X, € [0,1]
more information about w:

Xj =Prs., [i € S;j € S] . .x., € [0,1]

M = [Xij]1<ij<n =0 S'l'JbJect to:

(Equivalent to SDP relaxation of Vij € E(G) xi +x > 1

VERTEX COVER) Vi X 4% — X >0
M >0
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exact formulation.

@ Relaxation used in many algorithms is weaker than ¢ = 4.
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Lift and Project methods

Lift-and-Project methods

@ Axiomatic methods to strengthen a relaxation.

@ Often have a parameter “level” ¢ adjusting the strength.

@ ¢ = 0: original formulation, ¢ = O(1): tractable, ¢ = n:
exact formulation.

@ Relaxation used in many algorithms is weaker than ¢ = 4.

@ Used in algorithms [Chlamtac, 2007], [Bateni et al., 2009],
[Barak et al., 2011],. ..

@ Integrality Gap studied extensively [Arora et al., 2006],
[Charikar, 2002], [de la Vega and Kenyon-Mathieu, 2007],
[Georgiou et al., 2007], [Schoenebeck, 2008],
[Raghavendra and Steurer, 2009], ...

o

Siavosh Benabbas



VERTEX COVER and INDEPENDENT SET
Hierarchies of strong LP/SDP formulations

Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree)




: and INDEPENDENT SET
strong LP/SDP formulations
Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree):
G = (V, E) such that,

e IfS C V(G)is “small’, there is an edge with both ends
outside S.

Siavosh Benabbas



: and INDEPENDENT SET
strong LP/SDP formulations
Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree):
G = (V, E) such that,

e IfS C V(G)is “small’, there is an edge with both ends
outside S.
@ The value of the VERTEX COVER relaxation for G is small.

Siavosh Benabbas



VERTEX COVER and INDEPENDENT SET
Hierarchies of strong LP/SDP formulations

Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree):
G = (V, E) such that,

e IfS C V(G)is “small’, there is an edge with both ends
outside S.
@ The value of the VERTEX COVER relaxation for G is small.

@ Sample |V (G)|d /4 edges of G at random, call the result G

Siavosh Benabbas



VERTEX COVER and INDEPENDENT SET
Hierarchies of strong LP/SDP formulations

Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree):
G = (V, E) such that,

e IfS C V(G)is “small’, there is an edge with both ends
outside S.
@ The value of the VERTEX COVER relaxation for G is small.

@ Sample |V (G)|d /4 edges of G at random, call the result G
o G has average degree d /2, maximum degree < d.

Siavosh Benabbas



VERTEX COVER and INDEPENDENT SET
Hierarchies of strong LP/SDP formulations

Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree):
G = (V, E) such that,

e IfS C V(G)is “small’, there is an edge with both ends
outside S.
@ The value of the VERTEX COVER relaxation for G is small.

@ Sample |V (G)|d /4 edges of G at random, call the result G
o G has average degree d /2, maximum degree < d.
@ Is G an IG instance?

Siavosh Benabbas



VERTEX COVER and INDEPENDENT SET
Hierarchies of strong LP/SDP formulations

Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree):
G = (V, E) such that,

e IfS C V(G)is “small’, there is an edge with both ends
outside S.
@ The value of the VERTEX COVER relaxation for G is small.

@ Sample |V (G)|d /4 edges of G at random, call the result G
o G has average degree d /2, maximum degree < d.
@ Is G an IG instance?

@ The value of the VERTEX COVER relaxation for G is small.

Siavosh Benabbas



VERTEX COVER and INDEPENDENT SET
Hierarchies of strong LP/SDP formulations

Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree):
G = (V, E) such that,
e IfS C V(G)is “small’, there is an edge with both ends

outside S.
@ The value of the VERTEX COVER relaxation for G is small.

@ Sample |V (G)|d /4 edges of G at random, call the result G
o G has average degree d /2, maximum degree < d.
@ Is G an IG instance?

e IfS C V(G)is “small’, is there an edge with both ends
outside S? B
@ The value of the VERTEX COVER relaxation for G is small.

Siavosh Benabbas



VERTEX COVER and INDEPENDENT SET
Hierarchies of strong LP/SDP formulations

Integrality Gaps in Bounded-degree Graphs IG for VERTEX COVER in bounded degree graphs
Open Questions

General Strategy

@ Start with IG for VERTEX COVER (unbounded degree):
G = (V, E) such that,
e IfS C V(G)is “small’, there is an edge with both ends

outside S.
@ The value of the VERTEX COVER relaxation for G is small.

@ Sample |V (G)|d /4 edges of G at random, call the result G
o G has average degree d /2, maximum degree < d.
@ Is G an IG instance?

e IfS C V(G)is “small’, is there an edge with both ends
outside S? B
@ The value of the VERTEX COVER relaxation for G is small.

@ We have to show S is dense in G!
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Open Questions

Frankl-Rodl Graphs[Frankl and Rodl, 1987]

o G\ = ({0,1}",E).
@ (X,y) €E(G) <= du(x,y)=(1—-)n.

Theorem ([Frankl and Rodl, 1987])

IfU C {0,1}" and |U| > £"2" implies U is not independent.

We need to show such U is also dense!

VU € {0,1}", |U| > u2" :

Pr X,y € U] >e=¢€(u, A
va:dH(va) (l >‘ [ y ] ('u )
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Proof: Apply the above construction to [Georgiou et al., 2007].

For any constant ¢, the Integrality Gap for level-¢ Sherali-Adams
LP relaxation for INDEPENDENT SET in graphs of maximum

degree d is Q (ﬁ)

Proof: Apply the above construction to [Benabbas et al., 2011].
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Integrality Gaps in Bounded-degree Graphs: Open
Questions

@ Improve the UGC-hardness of INDEPENDENT SET in
degree-bounded graphs,

@ Extend our results to other hierarchies.

Thank you!
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