An Isoperimetric Inequality for the Hamming Cube ${ }^{1}$

and applications to Integrality Gaps in Bounded-degree Graphs

Siavosh Benabbas

Department of Computer Science
University of Toronto
${ }^{1}$ Based on joint work with H. Hatami and A. Magen

Outline

(9) An Isoperimetric Inequality for the Hamming Cube

- Introduction
- Proof Ideas
- Open Questions
(2) Integrality Gaps in Bounded-degree Graphs
- Vertex Cover and Independent Set
- Hierarchies of strong LP/SDP formulations
- IG for Vertex Cover in bounded degree graphs
- Open Questions

Outline

(9) An Isoperimetric Inequality for the Hamming Cube

- Introduction
- Proof Ideas
- Open Questions
(2)

Integrality Gaps in Bounded-degree Graphs

- Vertex Cover and Independent Set
- Hierarchies of strong LP/SDP formulations
- IG for VERTEX COVER in bounded degree graphs
- Open Questions

An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

The Frankl-Rödl Theorem

\$250 Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.

An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

The Frankl-Rödl Theorem

\$250 Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,

The Frankl-Rödl Theorem

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates,

The Frankl-Rödl Theorem

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates, How big can U be?

The Frankl-Rödl Theorem

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates, How big can U be?

Example

$$
000
$$

$$
\begin{equation*}
n=3 \tag{100}
\end{equation*}
$$

The Frankl-Rödl Theorem

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates, How big can U be?

Example

$$
n=3 \quad \delta=2 / 3 \quad d=2
$$

The Frankl-Rödl Theorem

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates, How big can U be?

Example

$$
n=3 \quad \delta=2 / 3 \quad d=2
$$

The Frankl-Rödl Theorem

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates, How big can U be?

Example

$$
n=3 \quad \delta=2 / 3 \quad d=2
$$

How many vertices can you select without selecting both end points of an edge?

The Frankl-Rödl Theorem

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates, How big can U be?

Example

$$
n=3 \quad \delta=2 / 3 \quad d=2
$$

How many vertices can you select without selecting both end points of an edge?

The Frankl-Rödl Theorem

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates, How big can U be?

Theorem ([Frankl and Rodl, 1987])

U is exponentially small.

$$
\mu=\frac{|U|}{2^{n}} \leq \xi^{n} \quad \xi=\xi(\delta)<1
$$

An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

"Density" Frankl-Rödl

\$250 Question of P. Erdös 1970s

An Isoperimetric Inequality for the Hamming Cube

"Density" Frankl-Rödl

$\$ 250$ Question of P. Erdös 1970s

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n}$,
- no two element of U are different in exactly d coordinates,

How big can U be?

Theorem ([Frankl and Rodl, 1987])

U is exponentially small.

$$
\mu=\frac{|U|}{2^{n}} \leq \xi^{n} \quad \xi=\xi(\delta)<1
$$

An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

"Density" Frankl-Rödl

"Density" Frankl-Rödl

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$
- no two element of U are different in exactly d coordinates,

Theorem ([Frankl and Rodl, 1987])

An Isoperimetric Inequality for the Hamming Cube

"Density" Frankl-Rödl

"Density" Frankl-Rödl

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$
- How many pairs of elements of U are different in exactly d coordinates?

Theorem ([Frankl and Rodl, 1987])

An Isoperimetric Inequality for the Hamming Cube

"Density" Frankl-Rödl

"Density" Frankl-Rödl

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$
- How many pairs of elements of U are different in exactly d coordinates?

Theorem ([Frankl and Rodl, 1987])

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]
$$

x, y chosen randomly so that $d_{H}(x, y)=d$.

An Isoperimetric Inequality for the Hamming Cube

"Density" Frankl-Rödl

"Density" Frankl-Rödl

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$
- How many pairs of elements of U are different in exactly d coordinates?

Theorem (1)

By [Frankl and Rodl, 1987]:

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]>0,
$$

x, y chosen randomly so that $d_{H}(x, y)=d$.

An Isoperimetric Inequality for the Hamming Cube

"Density" Frankl-Rödl

"Density" Frankl-Rödl

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$
- How many pairs of elements of U are different in exactly d coordinates?

Theorem (1)

We show:

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]>\epsilon,
$$

x, y chosen randomly so that $d_{H}(x, y)=d$.

An Isoperimetric Inequality for the Hamming Cube

"Density" Frankl-Rödl

"Density" Frankl-Rödl

- Fix $0<\delta<1$. Let $n \in \mathbb{N}$, and $d \sim \delta n$ be an even integer.
- $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$
- How many pairs of elements of U are different in exactly d coordinates?

Theorem (1)

We show:

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]>\epsilon, \quad \epsilon=2(\mu / 2)^{\frac{2}{1-|1-2 \delta|}}-o(1)
$$

x, y chosen randomly so that $d_{H}(x, y)=d$.

Our results

Theorem

$\forall \delta \in(0,1)$, and large enough n, if $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$,

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]>\epsilon \quad \epsilon=2(\mu / 2)^{\frac{2}{1-1-2 \delta \mid}}-o(1)
$$

x, y chosen randomly so that $d_{H}(x, y) \simeq \delta n$ is an even integer.

Our results

Theorem

$\forall \delta \in(0,1)$, and large enough n, if $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$,

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]>\epsilon \quad \epsilon=2(\mu / 2)^{\frac{2}{1-|1-2 \delta|}}-o(1)
$$

x, y chosen randomly so that $d_{H}(x, y) \simeq \delta n$ is an even integer.

Theorem (A new Isoperimetric Inequality)

$\forall \delta \in(0,1)$, and large enough n, if $U, W \subseteq\{0,1\}^{n}$, $|U|,|W| \geq \mu 2^{n}$,

$$
\operatorname{Pr}_{x, y}[x \in U, y \in W]>\epsilon \quad \epsilon=\mu^{\frac{2}{1-1-2 \sigma \mid}}-o(1)
$$

x, y chosen randomly so that $d_{H}(x, y)=d$ or $d+1, d=\lfloor\delta n\rfloor$.

High level of the proof of Frankl-Rödl Theorem

Theorem ([Frankl and Rodl, 1987])

$$
\begin{array}{rlr}
\forall U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}: & \left(\mu=\xi^{n}\right) \\
\underset{x, y}{\operatorname{Pr}^{n}}[x \in U, y \in U]>0 & d_{H}(x, y) & =\delta n
\end{array}
$$

High level of the proof of Frankl-Rödl Theorem

Theorem ([Frankl and Rodl, 1987])

$$
\begin{aligned}
\forall U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}: & (\mu & \left.=\xi^{n}\right) \\
\operatorname{Pr}_{x, y}[x \in U, y \in U]>0 & d_{H}(x, y) & =\delta n
\end{aligned}
$$

Reduces to,
Theorem ([Frankl and Rodl, 1987])

$$
\begin{array}{rr}
\forall U^{\prime} \subseteq\{0,1\}^{n},\left|U^{\prime}\right| \geq \mu 2^{n} / n: & \left(\mu=\xi^{n}\right) \\
\operatorname{Pr}_{x, y}\left[x \in U^{\prime}, y \in U^{\prime}\right]>0 & \sum_{i} x_{i} y_{i}=\delta^{\prime} n
\end{array}
$$

High level of the proof of Frankl-Rödl Theorem

Theorem ([Frankl and Rodl, 1987])

$$
\begin{aligned}
\forall U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}: & (\mu & \left.=\xi^{n}\right) \\
\operatorname{Pr}_{x, y}[x \in U, y \in U]>0 & d_{H}(x, y) & =\delta n
\end{aligned}
$$

Reduces to,
Theorem ([Frankl and Rodl, 1987])

$$
\begin{array}{rr}
\forall U^{\prime} \subseteq\{0,1\}^{n},\left|U^{\prime}\right| \geq \mu 2^{n} / n: & \left(\mu=\xi^{n}\right) \\
\operatorname{Pr}_{x, y}\left[x \in U^{\prime}, y \in U^{\prime}\right]>0 & \sum_{i} x_{i} y_{i}=\delta^{\prime} n
\end{array}
$$

This first step fails for us!

An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

High level of our proof

Theorem (1)

$$
\begin{aligned}
\forall U \subseteq & \{0,1\}^{n},|U| \geq \mu 2^{n}: \\
& \underset{x, y}{\operatorname{Pr}}[x \in U, y \in U]>\epsilon=\epsilon(\delta, \mu) \quad d_{H}(x, y)=\delta n
\end{aligned}
$$

High level of our proof

Theorem (1)

$$
\begin{aligned}
& \forall U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}: \\
& \quad \operatorname{Pr}_{x, y}[x \in U, y \in U]>\epsilon=\epsilon(\delta, \mu) \quad d_{H}(x, y)=\delta n
\end{aligned}
$$

We reduce it to,
Theorem ([Mossel et al., 2006])
$\forall U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}:$

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]>\epsilon=\epsilon(\delta, \mu) \quad y_{i}= \begin{cases}1-x_{i} & \text { w.p. } \delta \\ x_{i} & \text { w.p. } 1-\delta\end{cases}
$$

High level of our proof (cont.)

$\operatorname{Fix} U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}$,

$$
\begin{aligned}
& P_{1}:=\operatorname{Pr}_{x, y}[x \in U, y \in U] \\
& P_{2}:=\operatorname{Pr}_{x, y}[x \in U, y \in U]
\end{aligned}
$$

$$
\begin{aligned}
d_{H}(x, y) & =\delta n \\
\mathbb{E}\left[d_{H}(x, y)\right] & =\delta n
\end{aligned}
$$

High level of our proof (cont.)

$\operatorname{Fix} U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}$,

$$
\begin{aligned}
& P_{1}:=\operatorname{Pr}_{x, y}[x \in U, y \in U] \\
& P_{2}:=\operatorname{Pr}_{x, y}[x \in U, y \in U]
\end{aligned}
$$

$$
\begin{aligned}
d_{H}(x, y) & =\delta n \\
\mathbb{E}\left[d_{H}(x, y)\right] & =\delta n
\end{aligned}
$$

Show that:

$$
\left|P_{1}-P_{2}\right|=o(1) .
$$

High level of our proof (cont.)

Fix $U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}$, define $\mathbf{1}_{U}(x)= \begin{cases}1 & x \in U \\ 0 & \text { o.w }\end{cases}$

$$
\begin{array}{rr}
P_{1}:={\underset{x}{x, y}}_{\operatorname{Pr}_{y}}[x \in U, y \in U] & d_{H}(x, y)=\delta n \\
P_{2}:={\underset{x r}{r},}^{y}[x \in U, y \in U] & \mathbb{E}\left[d_{H}(x, y)\right]=\delta n
\end{array}
$$

Show that:

$$
\left|P_{1}-P_{2}\right|=o(1) .
$$

High level of our proof (cont.)

Fix $U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}$, define $\mathbf{1}_{U}(x)= \begin{cases}1 & x \in U \\ 0 & \text { o.w }\end{cases}$

$$
\begin{array}{lr}
P_{1}:=\operatorname{Pr}_{x, y}[x \in U, y \in U]=\underset{x, y}{\mathbb{E}}[\mathbf{1} U(x) \mathbf{1} U(y)] & d_{H}(x, y)=\delta n \\
P_{2}:=\operatorname{Pr}_{x, y}[x \in U, y \in U]=\underset{x, y}{\mathbb{E}}[\mathbf{1} U(x) \mathbf{1} U(y)] & \mathbb{E}\left[d_{H}(x, y)\right]=\delta n
\end{array}
$$

Show that:

$$
\left|P_{1}-P_{2}\right|=o(1) .
$$

High level of our proof (cont.)

Fix $U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}$, define $1_{U}(x)= \begin{cases}1 & x \in U \\ 0 & \text { o.w }\end{cases}$
$P_{1}=\underset{x, y}{\mathbb{E}}[\mathbf{1} u(x) \mathbf{1} u(y)]$

$$
\begin{aligned}
d_{H}(x, y) & =\delta n \\
\mathbb{E}\left[d_{H}(x, y)\right] & =\delta n
\end{aligned}
$$

Show that:

High level of our proof (cont.)

Fix $U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}$, define $1_{U}(x)= \begin{cases}1 & x \in U \\ 0 & \text { o.w }\end{cases}$
$P_{1}=\underset{x, y}{\mathbb{E}}\left[\mathbf{1}_{U}(x) \mathbf{1}_{U}(y)\right] \quad d_{H}(x, y)=\delta n$
$P_{2}=\underset{x, y}{\mathbb{E}}\left[\mathbf{1}_{U}(x) \mathbf{1} U(y)\right]=\underset{x}{\mathbb{E}}\left[\mathbf{1}_{U}(x)\left(\mathcal{T}_{1-2 \delta} \mathbf{1}_{U}\right)(x)\right] \quad \mathbb{E}\left[d_{H}(x, y)\right]=\delta n$
Show that:

$$
\left(\mathcal{T}_{1-2 \delta} f\right)(x)=\underset{y}{\mathbb{E}}[f(y)] \quad \mathbb{E}\left[d_{H}(x, y)\right]=\delta n
$$

High level of our proof (cont.)

Fix $U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}$, define $1_{U}(x)= \begin{cases}1 & x \in U \\ 0 & \text { o.w }\end{cases}$
$P_{1}=\underset{x, y}{\mathbb{E}}\left[\mathbf{1}_{U}(x) \mathbf{1}_{U}(y)\right]=\underset{x}{\mathbb{E}}\left[\mathbf{1}_{U}(x)\left(\mathcal{S}_{d} \mathbf{1}_{U}\right)(x)\right] \quad \quad d_{H}(x, y)=\delta n$
$P_{2}=\underset{x, y}{\mathbb{E}}\left[\mathbf{1}_{U}(x) \mathbf{1}_{U}(y)\right]=\underset{x}{\mathbb{E}}\left[\mathbf{1}_{U}(x)\left(\mathcal{T}_{1-2 \delta} \mathbf{1}_{u}\right)(x)\right] \quad \mathbb{E}\left[d_{H}(x, y)\right]=\delta n$
Show that:

$$
\begin{aligned}
\left(\mathcal{T}_{1-2 \delta} f\right)(x) & =\underset{y}{\mathbb{E}}[f(y)] & \mathbb{E}\left[d_{H}(x, y)\right] & =\delta n \\
\left(\mathcal{S}_{d} f\right)(x) & =\underset{y}{\mathbb{E}}[f(y)] & d_{H}(x, y) & =\delta n
\end{aligned}
$$

High level of our proof (cont.)

Fix $U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}$, define $1_{U}(x)= \begin{cases}1 & x \in U \\ 0 & \text { o.w }\end{cases}$
$P_{1}=\underset{x, y}{\mathbb{E}}\left[\mathbf{1}_{U}(x) \mathbf{1}_{U}(y)\right]=\underset{x}{\mathbb{E}}\left[\mathbf{1}_{U}(x)\left(\mathcal{S}_{d} \mathbf{1}_{U}\right)(x)\right] \quad \quad d_{H}(x, y)=\delta n$
$P_{2}=\underset{x, y}{\mathbb{E}}\left[\mathbf{1}_{U}(x) \mathbf{1}_{U}(y)\right]=\underset{x}{\mathbb{E}}\left[\mathbf{1}_{U}(x)\left(\mathcal{T}_{1-2 \delta} \mathbf{1}_{u}\right)(x)\right] \quad \mathbb{E}\left[d_{H}(x, y)\right]=\delta n$
Show that:

$$
\mathcal{T}_{1-2 \delta} \simeq \mathcal{S}_{d}
$$

$$
\begin{aligned}
\left(\mathcal{T}_{1-2 \delta} f\right)(x) & =\underset{y}{\mathbb{E}}[f(y)] & \mathbb{E}\left[d_{H}(x, y)\right] & =\delta n \\
\left(\mathcal{S}_{d} f\right)(x) & =\underset{y}{\mathbb{E}}[f(y)] & d_{H}(x, y) & =\delta n
\end{aligned}
$$

High level of our proof ($\mathcal{T}_{1-2 \delta} \simeq \mathcal{S}_{d}$)

- Both are linear operators,

High level of our proof ($\mathcal{T}_{1-2 \delta} \simeq \mathcal{S}_{d}$)

- Both are linear operators,
- Have the same Eigenvectors.

High level of our proof ($\mathcal{T}_{1-2 \delta} \simeq \mathcal{S}_{d}$)

- Both are linear operators,
- Have the same Eigenvectors. $\chi_{S}(x)=\prod_{i \in S}(-1)^{x_{i}}, S \subseteq[n]$

High level of our proof ($\mathcal{T}_{1}-2 \delta \simeq \mathcal{S}_{d}$)

- Both are linear operators,
- Have the same Eigenvectors. $\chi_{S}(x)=\prod_{i \in S}(-1)^{x_{i}}, S \subseteq[n]$
- Both have $n+1$ (repeated) eigenvalues.plotted below,

High level of our proof ($\mathcal{T}_{1}-2 \delta \simeq \mathcal{S}_{d}$)

- Both are linear operators,
- Have the same Eigenvectors. $\chi_{S}(x)=\prod_{i \in S}(-1)^{x_{i}}, S \subseteq[n]$
- Both have $n+1$ (repeated) eigenvalues.plotted below,

$$
n=25 \cdot d=6
$$

High level of our proof ($\mathcal{T}_{1-2 \delta} \simeq \mathcal{S}_{d}$)

- Both are linear operators,
- Have the same Eigenvectors. $\chi_{S}(x)=\prod_{i \in S}(-1)^{x_{i}}, S \subseteq[n]$
- Both have $n+1$ (repeated) eigenvalues.plotted below,

$$
n=25 \cdot d=6 \quad n=25 \cdot d=7
$$

High level of our proof $\left(\mathcal{T}_{1-2 \delta} \simeq\left(\mathcal{S}_{d}+\mathcal{S}_{d+1}\right) / 2\right)$

- Both are linear operators,
- Have the same Eigenvectors. $\chi_{S}(x)=\prod_{i \in S}(-1)^{x_{i}}, S \subseteq[n]$
- Both have $n+1$ (repeated) eigenvalues.plotted below,
- Compare to $\left(\mathcal{S}_{d}+\mathcal{S}_{d+1}\right) / 2$.

$$
n=25 . d=6 \quad n=25 . d=7
$$

An Isoperimetric Inequality for the Hamming Cube
Integrality Gaps in Bounded-degree Graphs

An Isoperimetric Inequality for the Hamming Cube: Open Questions

- Improve the error term.

An Isoperimetric Inequality for the Hamming Cube

An Isoperimetric Inequality for the Hamming Cube: Open Questions

- Improve the error term.

Theorem

$\forall \delta \in(0,1)$, and large enough n, if $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$,

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]>\epsilon \quad \epsilon=2(\mu / 2)^{\frac{2}{1-11-2 \delta \mid}}-o(1)
$$

x, y chosen randomly so that $d_{H}(x, y) \simeq \delta n$ is an even integer.

An Isoperimetric Inequality for the Hamming Cube

An Isoperimetric Inequality for the Hamming Cube: Open Questions

- Improve the error term.

Theorem
$\forall \delta \in(0,1)$, and large enough n, if $U \subseteq\{0,1\}^{n},|U|=\mu 2^{n}$,

$$
\operatorname{Pr}_{x, y}[x \in U, y \in U]>\epsilon \quad \epsilon=2(\mu / 2)^{\frac{2}{1-11-2 \delta \mid}}-o(1)
$$

x, y chosen randomly so that $d_{H}(x, y) \simeq \delta n$ is an even integer.
Could result in a new proof of [Frankl and Rodl, 1987].

An Isoperimetric Inequality for the Hamming Cube: Open Questions

- Improve the error term.

Could result in a new proof of [Frankl and Rodl, 1987].

- "Density" version of other Theorems of
[Frankl and Rodl, 1987].

An Isoperimetric Inequality for the Hamming Cube

An Isoperimetric Inequality for the Hamming Cube: Open Questions

- Improve the error term.

Could result in a new proof of [Frankl and Rodl, 1987].

- "Density" version of other Theorems of
[Frankl and Rodl, 1987].
Theorem ([Frankl and Rodl, 1987])

$$
\begin{array}{rr}
\forall U \subseteq\{0,1\}^{n},|U| \geq \mu 2^{n}: & \left(\mu=\xi^{n}\right) \\
\operatorname{Pr}_{x, y}[x \in U, y \in U]>0 & \sum_{i} x_{i} y_{i}=\delta n
\end{array}
$$

Outline

An Isoperimetric Inequality for the Hamming Cube

- Introduction
- Proof Ideas
- Open Questions
(2) Integrality Gaps in Bounded-degree Graphs
- Vertex Cover and Independent Set
- Hierarchies of strong LP/SDP formulations
- IG for Vertex Cover in bounded degree graphs
- Open Questions

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,

Example

Vertex Cover and Independent Set

Definition (Vertex Cover)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

Example

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edge,

Example

Vertex Cover and Independent Set

Definition (Vertex Cover)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edge,
- $|S|$ is minimized.

Example

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edge,
$-|S|$ is minimized.

Definition (INDEPENDENT SET)

Input: Graph $G=(V, E)$,
Goal: Finding subset $\bar{S} \subseteq V$:,

- no edge has both ends in \bar{S},
- $|\bar{S}|$ is maximized.

Example

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edge,
$-|S|$ is minimized.

Definition (INDEPENDENT SET)

Input: Graph $G=(V, E)$,
Goal: Finding subset $\bar{S} \subseteq V$:,

- no edge has both ends in \bar{S},
- $|\bar{S}|$ is maximized.

Example

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$, Goal: Finding subset $S \subseteq V$:

- it touches each edne What is known: General Graphs

Definition (INDEPENDENT SET)

Input: Graph $G=(V, E)$,
Goal: Finding subset $\bar{S} \subseteq V$:, - no edne has both ends in \bar{S}

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edoe What is known: General Graphs

Definition (INDEPENDENT SET)

Input: Graph $G=(V, E)$,
Goal: Finding subset $\bar{S} \subseteq V$:, - no edne has both ends in \bar{S}

	Vertex Cover	Independent Set
Best algorithm	$2-o(1)$	$O(n / \operatorname{polylog}(n))$

[Karakostas, 2005] [Feige, 2004]

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edoe What is known: General Graphs

Definition (INDEPENDENT SET)

Input: Graph $G=(V, E)$,
Goal: Finding subset $\bar{S} \subseteq V$:, - no edne has both ends in \bar{S}

	Vertex Cover	INDEPENDENT SET
Best algorithm	$2-o(1)$	$O(n /$ polylog $(n))$
NP-hardness	1.36	$\Omega\left(n^{1-\epsilon}\right)$

[Karakostas, 2005] [Feige, 2004] [Dinur and Safra, 2005] [Håstad, 1996]

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edoe

Definition (INDEPENDENT SET)

Input: Graph $G=(V, E)$,
Goal: Finding subset $\bar{S} \subseteq V$:, - no edne has both ends in \bar{S}

- What is known: General Graphs

	VERTEX Cover	Independent Set
Best algorithm	$2-o(1)$	$O(n /$ polylog $(n))$
NP-hardness	1.36	$\Omega\left(n^{1-\epsilon}\right)$
UGC-hardness	$2-\epsilon$	

[Karakostas, 2005] [Feige, 2004] [Dinur and Safra, 2005]
[Håstad, 1996] [Khot and Regev, 2008]

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edoe

What is known: General Graphs

$-$

	VERTEX COVER	INDEPENDENT SET
Best algorithm	$2-o(1)$	$O(n / \operatorname{polylog}(n))$
NP-hardness	1.36	$\Omega\left(n^{1-\epsilon}\right)$
UGC-hardness	$2-\epsilon$	
Hierarchy IGs	$2-\epsilon\left(\mathrm{LS}^{+}\right.$, SA $)$	$n / 2^{O(\sqrt{\log n \log \log n})}$
	1.36 (Lasserre)	(Lasserre)

[Karakostas, 2005] [Feige, 2004] [Dinur and Safra, 2005]
[Håstad, 1996] [Khot and Regev, 2008] [Tulsiani, 2009]
[Charikar et al., 2009].

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$, Goal: Finding subset $S \subseteq V$:

- it touches each edne What is known: Graphs of bounded degree (d)

	Vertex Cover	Independent Set

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edoe

What is known: Graphs of bounded degree (d)

	Vertex Cover	INDEPENDENT SET
Best algorithm	$2-\left(2-o_{d}(1)\right) \frac{\log \log d}{\log d}$	$O\left(\frac{d \log \log d}{\log d}\right)$

[Halperin, 2002]

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each_edne

What is known: Graphs of bounded degree (d)

	VERTEX COVER	INDEPENDENT SET
Best algorithm	$2-\left(2-o_{d}(1)\right) \frac{\log \log d}{\log d}$	$O\left(\frac{d \log \log d}{\log d}\right)$
NP-hardness		$\frac{d}{2^{O(\sqrt{\log d})}}$

[Halperin, 2002] [Samorodnitsky and Trevisan, 2000]

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edne

What is known: Graphs of bounded degree (d)

	VERTEX COVER	INDEPENDENT SET
Best algorithm	$2-\left(2-o_{d}(1)\right) \frac{\log \log d}{\log d}$	$O\left(\frac{d \log \log d}{\log d}\right)$
NP-hardness		$\frac{d}{2^{0(\sqrt{\log d})}}$
UGC-hardness	$2-\left(2+o_{d}(1)\right) \frac{\log \log d}{\log d}$	$\Omega\left(\frac{d}{\log ^{2} d}\right)$

[Halperin, 2002] [Samorodnitsky and Trevisan, 2000]
[Austrin et al., 2009]

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edoe

What is known: Graphs of bounded degree (d)

	VERTEX COVER	INDEPENDENT SET
Best algorithm	$2-\left(2-o_{d}(1)\right) \frac{\log \log d}{\log d}$	$O\left(\frac{d \log \log d}{\log d}\right)$
NP-hardness		$\frac{(1)}{20(\sqrt{\log d})}$
UGC-hardness	$2-\left(2+o_{d}(1)\right) \frac{\log \log d}{\log d}$	$\Omega\left(\frac{d}{\log ^{2} d}\right)$

Hierarchy IGs

[Halperin, 2002] [Samorodnitsky and Trevisan, 2000]
[Austrin et al., 2009]

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edoe

What is known: Graphs of bounded degree (d)

	VERTEX COVER	INDEPENDENT SET
Best algorithm	$2-\left(2-o_{d}(1)\right) \frac{\log \log d}{\log d}$	$O\left(\frac{d \log \log d}{\log d}\right)$
NP-hardness		$\frac{d}{2^{O(\sqrt{\log d)}}}$
UGC-hardness	$2-\left(2+o_{d}(1)\right) \frac{\log \log d}{\log d}$	$\Omega\left(\frac{d}{\log d}\right)$
Hierarchy IGs	$2-O\left(\frac{\log \log d}{\log d}\right)$	$\Omega\left(\frac{d}{\log d}\right)$

[Halperin, 2002] [Samorodnitsky and Trevisan, 2000]
[Austrin et al., 2009]

Vertex Cover and Independent Set

Definition (VERTEX COVER)

Input: Graph $G=(V, E)$,
Goal: Finding subset $S \subseteq V$:

- it touches each edoe

What is known: Graphs of bounded degree (d)

	VERTEX COVER	INDEPENDENT SET
Best algorithm	$2-\left(2-o_{d}(1)\right) \frac{\log \log d}{\log d}$	$O\left(\frac{d \log \log d}{\log d}\right)$
NP-hardness		$\frac{d}{20(\sqrt{\log d)}}$
UGC-hardness	$2-\left(2+o_{d}(1)\right) \frac{\log \log d}{\log d}$	$\Omega\left(\frac{d}{\log d}\right)$
Hierarchy IGs	$2-O\left(\frac{\log \log d}{\log d}\right)\left(\right.$ LS $\left.^{+}\right)$	$\Omega\left(\frac{d}{\log d}\right)($ SA $)$

[Halperin, 2002] [Samorodnitsky and Trevisan, 2000]
[Austrin et al., 2009]

LP relaxation for Vertex Cover

IP Formulation

Minimize

$$
\begin{equation*}
\sum_{i} x_{i} \tag{1}
\end{equation*}
$$

Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$
Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

LP relaxation for VERTEX Cover

IP Formulation

Minimize $\sum_{i \in V(G)} x_{i}$
(1)

Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$ Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

LP relaxation

Minimize $\sum_{i \in V(G)} x_{i}$
(2)

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$
Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

LP relaxation for Vertex Cover

IP Formulation

Minimize $\sum_{i \in V(G)} x_{i}$
(1)

Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$ Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$
Exact, NP-hard to solve.

LP relaxation

$$
\begin{equation*}
\text { Minimize } \sum_{i \in V(G)} x_{i} \tag{2}
\end{equation*}
$$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$
Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$
Not Exact, easy to solve.

LP relaxation for VERTEX Cover

IP Formulation

Minimize $\sum_{i \in V(G)} x_{i}$
(1)

Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$ Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

LP relaxation

Minimize
 $$
\begin{equation*} \sum_{i \in V(G)} x_{i} \tag{2} \end{equation*}
$$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$
Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

Not Exact, easy to solve.

- Integrality gap: The ratio (1)/(2).

LP relaxation for VERTEX Cover

IP Formulation

Minimize $\sum_{i \in V(G)} x_{i}$
(1)

Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$ Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

LP relaxation

Minimize $\sum_{i \in V(G)} x_{i}$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$
Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

Not Exact, easy to solve.

Exact, NP-hard to solve.

- Integrality gap: The ratio (1)/(2). Standard for how good the relaxation is.

LP relaxation for VERTEX Cover

IP Formulation

Minimize $\sum_{i \in V(G)} x_{i}$
(1)

Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$ Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

LP relaxation

Minimize $\sum_{i \in V(G)} x_{i}$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$
Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

Not Exact, easy to solve.

Exact, NP-hard to solve.

- Integrality gap: The ratio (1)/(2). Standard for how good the relaxation is.
-

$$
\mathrm{IG} \leq 2
$$

LP relaxation for VERTEX Cover

IP Formulation

Minimize $\sum_{i \in V(G)} x_{i}$
(1)

Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$ Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

LP relaxation

Minimize $\sum_{i \in V(G)} x_{i}$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$
Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

Not Exact, easy to solve.

Exact, NP-hard to solve.

- Integrality gap: The ratio (1)/(2). Standard for how good the relaxation is.
- $2-o(1) \leq I G \leq 2$.

LP relaxation for VERTEX Cover

IP Formulation

Minimize $\sum_{i \in V(G)} x_{i}$
(1)

Variables: $x_{1}, \ldots, x_{n} \in\{0,1\}$
Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

LP relaxation

Minimize $\sum_{i \in V(G)} x_{i}$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$
Subject to:

$$
\forall i j \in E(G) x_{i}+x_{j} \geq 1
$$

Not Exact, easy to solve.

Exact, NP-hard to solve.

- Integrality gap: The ratio (1)/(2). Standard for how good the relaxation is.
- $2-o(1) \leq I G \leq 2$. factor 2 is inherent in (simple) LP based approaches.

"Strengthening" the LP relaxation

LP relaxation

Minimize

$$
\sum_{i \in V(G)} x_{i}
$$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

Subject to:

$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

"Strengthening" the LP relaxation

LP relaxation

- A distribution μ of Vertex Covers,

Minimize $\sum_{i \in V(G)} x_{i}$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

"Strengthening" the LP relaxation

LP relaxation

- A distribution μ of Vertex Covers,
- $x_{i}=\operatorname{Pr}_{S \sim \mu}[i \in S]$,

Minimize $\sum_{i \in V(G)} x_{i}$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

"Strengthening" the LP relaxation

LP relaxation

- A distribution μ of Vertex Covers,
- $x_{i}=\operatorname{Pr}_{S \sim \mu}[i \in S]$,
- Add variable/constraints to encode more information about μ :

Minimize $\sum_{i \in V(G)} x_{i}$

Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

"Strengthening" the LP relaxation

"Strong" LP relaxation

- A distribution μ of Vertex Covers,
- $x_{i}=\operatorname{Pr}_{S \sim \mu}[i \in S]$,
- Add variable/constraints to encode more information about μ :

$$
x_{i j}=\operatorname{Pr}_{S \sim \mu}[i \in S ; j \in S]
$$

Minimize $\sum_{i \in V(G)} x_{i}$
Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

$$
x_{i j} \in[0,1]
$$

Subject to:
$\forall i j \in E(G) x_{i}+x_{j} \geq 1$

"Strengthening" the LP relaxation

"Strong" LP relaxation

- A distribution μ of Vertex Covers,
- $x_{i}=\operatorname{Pr}_{S \sim \mu}[i \in S]$,
- Add variable/constraints to encode more information about μ :

$$
x_{i j}=\operatorname{Pr}_{S \sim \mu}[i \in S ; j \in S]
$$

Minimize $\sum_{i \in V(G)} x_{i}$
Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

$$
x_{i j} \in[0,1]
$$

Subject to:

$$
\begin{aligned}
& \forall i j \in E(G) x_{i}+x_{j} \geq 1 \\
& \forall i j x_{i}+x_{j}-x_{i j} \geq 0
\end{aligned}
$$

"Strengthening" the LP relaxation

"Strong" LP relaxation

- A distribution μ of Vertex Covers,
- $x_{i}=\operatorname{Pr}_{S \sim \mu}[i \in S]$,
- Add variable/constraints to encode more information about μ :
$x_{i j}=\operatorname{Pr}_{S \sim \mu}[i \in S ; j \in S]$
(Equivalent to Sherali-Adams Hierarchy)

Minimize $\sum_{i \in V(G)} x_{i}$
Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

$$
x_{i j} \in[0,1]
$$

Subject to:

$$
\begin{aligned}
& \forall i j \in E(G) x_{i}+x_{j} \geq 1 \\
& \quad \forall i j x_{i}+x_{j}-x_{i j} \geq 0
\end{aligned}
$$

"Strengthening" the LP relaxation

"Strong" LP relaxation

- A distribution μ of Vertex Covers,
- $x_{i}=\operatorname{Pr}_{S \sim \mu}[i \in S]$,
- Add variable/constraints to encode more information about μ :

$$
\begin{aligned}
& x_{i j}=\operatorname{Pr}_{S \sim \mu}[i \in S ; j \in S] \\
& M=\left[x_{i j}\right]_{1 \leq i, j \leq n} \succeq 0
\end{aligned}
$$

Minimize $\sum_{i \in V(G)} x_{i}$
Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

$$
x_{i j} \in[0,1]
$$

Subject to:

$$
\begin{gathered}
\forall i j \in E(G) x_{i}+x_{j} \geq 1 \\
\forall i j x_{i}+x_{j}-x_{i j} \geq 0 \\
M \succeq 0
\end{gathered}
$$

"Strengthening" the LP relaxation

"Strong" LP relaxation

- A distribution μ of Vertex Covers,
- $x_{i}=\operatorname{Pr}_{S \sim \mu}[i \in S]$,
- Add variable/constraints to encode more information about μ :
$x_{i j}=\operatorname{Pr}_{S \sim \mu}[i \in S ; j \in S]$
$M=\left[x_{i j}\right]_{1 \leq i, j \leq n} \succeq 0$
(Equivalent to SDP relaxation of
Vertex Cover)
Minimize $\sum_{i \in V(G)} x_{i}$
Variables: $x_{1}, \ldots, x_{n} \in[0,1]$

$$
x_{i j} \in[0,1]
$$

Subject to:

$$
\begin{gathered}
\forall i j \in E(G) x_{i}+x_{j} \geq 1 \\
\forall i j x_{i}+x_{j}-x_{i j} \geq 0 \\
M \succeq 0
\end{gathered}
$$

Lift and Project methods

Lift-and-Project methods

- Axiomatic methods to strengthen a relaxation.

Lift and Project methods

Lift-and-Project methods

- Axiomatic methods to strengthen a relaxation.
- Often have a parameter "level" ℓ adjusting the strength.

Lift and Project methods

Lift-and-Project methods

- Axiomatic methods to strengthen a relaxation.
- Often have a parameter "level" ℓ adjusting the strength.
- $\ell=0$: original formulation, $\ell=O(1)$: tractable, $\ell=n$: exact formulation.

Lift and Project methods

Lift-and-Project methods

- Axiomatic methods to strengthen a relaxation.
- Often have a parameter "level" ℓ adjusting the strength.
- $\ell=0$: original formulation, $\ell=O(1)$: tractable, $\ell=n$: exact formulation.
- Relaxation used in many algorithms is weaker than $\ell=4$.

Lift and Project methods

Lift-and-Project methods

- Axiomatic methods to strengthen a relaxation.
- Often have a parameter "level" ℓ adjusting the strength.
- $\ell=0$: original formulation, $\ell=O(1)$: tractable, $\ell=n$: exact formulation.
- Relaxation used in many algorithms is weaker than $\ell=4$.
- Used in algorithms [Chlamtac, 2007], [Bateni et al., 2009], [Barak et al., 2011],...

Lift and Project methods

Lift-and-Project methods

- Axiomatic methods to strengthen a relaxation.
- Often have a parameter "level" ℓ adjusting the strength.
- $\ell=0$: original formulation, $\ell=O(1)$: tractable, $\ell=n$: exact formulation.
- Relaxation used in many algorithms is weaker than $\ell=4$.
- Used in algorithms [Chlamtac, 2007], [Bateni et al., 2009], [Barak et al., 2011],...
- Integrality Gap studied extensively [Arora et al., 2006], [Charikar, 2002], [de la Vega and Kenyon-Mathieu, 2007], [Georgiou et al., 2007], [Schoenebeck, 2008], [Raghavendra and Steurer, 2009], ...

General Strategy

- Start with IG for Vertex Cover (unbounded degree)

General Strategy

- Start with IG for Vertex Cover (unbounded degree): $G=(V, E)$ such that,
- If $S \subset V(G)$ is "small", there is an edge with both ends outside S.

General Strategy

- Start with IG for Vertex Cover (unbounded degree): $G=(V, E)$ such that,
- If $S \subset V(G)$ is "small", there is an edge with both ends outside S.
- The value of the Vertex Cover relaxation for G is small.

General Strategy

- Start with IG for Vertex Cover (unbounded degree): $G=(V, E)$ such that,
- If $S \subset V(G)$ is "small", there is an edge with both ends outside S.
- The value of the Vertex Cover relaxation for G is small.
- Sample $|V(G)| d / 4$ edges of G at random, call the result \tilde{G}

General Strategy

- Start with IG for Vertex Cover (unbounded degree): $G=(V, E)$ such that,
- If $S \subset V(G)$ is "small", there is an edge with both ends outside S.
- The value of the Vertex Cover relaxation for G is small.
- Sample $|V(G)| d / 4$ edges of G at random, call the result \tilde{G}
- \tilde{G} has average degree $d / 2$, maximum degree $\leq d$.

General Strategy

- Start with IG for Vertex Cover (unbounded degree): $G=(V, E)$ such that,
- If $S \subset V(G)$ is "small", there is an edge with both ends outside S.
- The value of the Vertex Cover relaxation for G is small.
- Sample $|V(G)| d / 4$ edges of G at random, call the result \tilde{G}
- \tilde{G} has average degree $d / 2$, maximum degree $\leq d$.
- Is \tilde{G} an IG instance?

General Strategy

- Start with IG for Vertex Cover (unbounded degree): $G=(V, E)$ such that,
- If $S \subset V(G)$ is "small", there is an edge with both ends outside S.
- The value of the Vertex Cover relaxation for G is small.
- Sample $|V(G)| d / 4$ edges of G at random, call the result \tilde{G}
- \tilde{G} has average degree $d / 2$, maximum degree $\leq d$.
- Is \tilde{G} an IG instance?
- The value of the VERTEX COVER relaxation for \tilde{G} is small.

General Strategy

- Start with IG for Vertex Cover (unbounded degree): $G=(V, E)$ such that,
- If $S \subset V(G)$ is "small", there is an edge with both ends outside S.
- The value of the Vertex Cover relaxation for G is small.
- Sample $|V(G)| d / 4$ edges of G at random, call the result \tilde{G}
- \tilde{G} has average degree $d / 2$, maximum degree $\leq d$.
- Is \tilde{G} an IG instance?
- If $S \subset V(\tilde{G})$ is "small", is there an edge with both ends outside S ?
- The value of the Vertex Cover relaxation for \tilde{G} is small.

General Strategy

- Start with IG for Vertex Cover (unbounded degree): $G=(V, E)$ such that,
- If $S \subset V(G)$ is "small", there is an edge with both ends outside S.
- The value of the Vertex Cover relaxation for G is small.
- Sample $|V(G)| d / 4$ edges of G at random, call the result \tilde{G}
- \tilde{G} has average degree $d / 2$, maximum degree $\leq d$.
- Is \tilde{G} an IG instance?
- If $S \subset V(\tilde{G})$ is "small", is there an edge with both ends outside S ?
- The value of the Vertex Cover relaxation for \tilde{G} is small.
- We have to show \bar{S} is dense in G !

Frankl-Rödl Graphs[Frankl and Rodl, 1987]

- $G_{\lambda}^{(n)}=\left(\{0,1\}^{n}, E\right)$.

Frankl-Rödl Graphs[Frankl and Rodl, 1987]

- $G_{\lambda}^{(n)}=\left(\{0,1\}^{n}, E\right)$.
- $(x, y) \in E(G) \Longleftrightarrow d_{H}(x, y)=(1-\lambda) n$.

Frankl-Rödl Graphs[Frankl and Rodl, 1987]

- $G_{\lambda}^{(n)}=\left(\{0,1\}^{n}, E\right)$.
- $(x, y) \in E(G) \Longleftrightarrow d_{H}(x, y)=(1-\lambda) n$.

Theorem ([Frankl and Rodl, 1987])

If $U \subseteq\{0,1\}^{n}$ and $|U|>\xi^{n} 2^{n}$ implies U is not independent.

Frankl-Rödl Graphs[Frankl and Rodl, 1987]

- $G_{\lambda}^{(n)}=\left(\{0,1\}^{n}, E\right)$.
- $(x, y) \in E(G) \Longleftrightarrow d_{H}(x, y)=(1-\lambda) n$.

Theorem ([Frankl and Rodl, 1987])

If $U \subseteq\{0,1\}^{n}$ and $|U|>\xi^{n} 2^{n}$ implies U is not independent.
We need to show such U is also dense!

Frankl-Rödl Graphs[Frankl and Rodl, 1987]

- $G_{\lambda}^{(n)}=\left(\{0,1\}^{n}, E\right)$.
- $(x, y) \in E(G) \Longleftrightarrow d_{H}(x, y)=(1-\lambda) n$.

Theorem ([Frankl and Rodl, 1987])

If $U \subseteq\{0,1\}^{n}$ and $|U|>\xi^{n} 2^{n}$ implies U is not independent.
We need to show such U is also dense!
Theorem

$$
\begin{aligned}
\forall U \subseteq\{0,1\}^{n},|U| \geq & \mu 2^{n}: \operatorname{Pr}_{x, y: d_{H}(x, y)=(1-\lambda) n}[x, y \in U]>\epsilon=\epsilon(\mu, \lambda) .
\end{aligned}
$$

An Isoperimetric Inequality for the Hamming Cube

Integrality Gap results

Theorem

For any constant ℓ, the Integrality Gap for level- ℓ
Lovasz-Schrijver SDP relaxation (L^{+}) for VERTEX COVER in graphs of maximum degree d is $2-O\left(\frac{\log \log d}{\log d}\right)$.

Integrality Gap results

Theorem

For any constant ℓ, the Integrality Gap for level- ℓ
Lovasz-Schrijver SDP relaxation (L^{+}) for VERTEX COVER in graphs of maximum degree d is $2-O\left(\frac{\log \log d}{\log d}\right)$.

Proof: Apply the above construction to [Georgiou et al., 2007].

An Isoperimetric Inequality for the Hamming Cube

Integrality Gap results

Theorem

For any constant ℓ, the Integrality Gap for level- ℓ
Lovasz-Schrijver SDP relaxation (L^{+}) for VERTEX COVER in graphs of maximum degree d is $2-O\left(\frac{\log \log d}{\log d}\right)$.

Proof: Apply the above construction to [Georgiou et al., 2007].

Theorem

For any constant ℓ, the Integrality Gap for level- ℓ Sherali-Adams LP relaxation for INDEPENDENT SET in graphs of maximum degree d is $\Omega\left(\frac{d}{\log d}\right)$.

An Isoperimetric Inequality for the Hamming Cube

Integrality Gap results

Theorem

For any constant ℓ, the Integrality Gap for level- ℓ
Lovasz-Schrijver SDP relaxation ($L S^{+}$) for VERTEX COVER in graphs of maximum degree d is $2-O\left(\frac{\log \log d}{\log d}\right)$.

Proof: Apply the above construction to [Georgiou et al., 2007].

Theorem

For any constant ℓ, the Integrality Gap for level- ℓ Sherali-Adams LP relaxation for INDEPENDENT SET in graphs of maximum degree d is $\Omega\left(\frac{d}{\log d}\right)$.

Proof: Apply the above construction to [Benabbas et al., 2011].

Integrality Gaps in Bounded-degree Graphs: Open Questions

- Improve the UGC-hardness of Independent Set in degree-bounded graphs,

Integrality Gaps in Bounded-degree Graphs: Open Questions

- Improve the UGC-hardness of InDEPENDENT SET in degree-bounded graphs,
- Extend our results to other hierarchies.

Integrality Gaps in Bounded-degree Graphs: Open Questions

- Improve the UGC-hardness of Independent Set in degree-bounded graphs,
- Extend our results to other hierarchies.

Thank you!

围 Arora, S., Bollobás, B., Lovász, L., and Tourlakis, I. (2006). Proving integrality gaps without knowing the linear program.
Theory of Computing, 2(2):19-51.
击 Austrin, P., Khot, S., and Safra, M. (2009). Inapproximability of Vertex Cover and Independent Set in bounded degree graphs.
Annual IEEE Conference on Computational Complexity,
pages 74-80.
R Barak, B., Raghavendra, P., and Steurer, D. (2011).
Rounding semidefinite programming hierarchies via global correlation.
In FOCS'11.
To appear.
(1) Bateni, M. H., Charikar, M., and Guruswami, V. (2009). MaxMin allocation via degree lower-bounded arborescences. In STOC'09, pages 543-552. ACM Press.
(ivenabbas, S., Chan, S. O., Georgiou, K., and Magen, A. (2011).

Tight integrality gap for Sherali-Adams SDPs for Vertex Cover.
to appear in FSTTCS.
囦 Charikar, M. (2002).
On semidefinite programming relaxations for graph coloring and Vertex Cover.
In SODA'02: Proceedings of the 13th annual ACM-SIAM symposium on Discrete algorithms, pages 616-620,
Philadelphia, PA, USA. ACM Press.

目 Charikar，M．，Makarychev，K．，and Makarychev，Y．（2009）． Integrality gaps for Sherali－Adams relaxations．
In STOC＇09：Proceedings of the 41st annual ACM
symposium on Theory of computing，pages 283－292，New York，NY，USA．ACM Press．
目 Chlamtac，E．（2007）．
Approximation Algorithms Using Hierarchies of Semidefinite Programming Relaxations．
In IEEE Symposium on Foundations of Computer Science （FOCS），pages 691－701．

E de la Vega，W．F．and Kenyon－Mathieu，C．（2007）．
Linear programming relaxations of Max Cut．
In SODA＇07，pages 53－61．ACM Press．
囦 Dinur，I．and Safra，S．（2005）．

On the Hardness of Approximating Minimum Vertex Cover. Annals of Mathematics, 162(1):439-485.

R Feige, U. (2004).
Approximating Maximum Clique by Removing Subgraphs.
SIAM J. Discrete Math., 18(2):219-225.
R Frankl, P. and Rodl, V. (1987).
Forbidden intersections.
Transactions of the American Mathematical Society, 300(1):259-286.

圁 Georgiou, K., Magen, A., Pitassi, T., and Tourlakis, I. (2007).

Integrality Gaps of $2-o(1)$ for Vertex Cover SDPs in the Lovász-Schrijver Hierarchy.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages 702-712.

國 Halperin，E．（2002）．
Improved Approximation Algorithms for the Vertex Cover
Problem in Graphs and Hypergraphs．
SIAM J．Comput．，31（5）：1608－1623．
圁 Håstad，J．（1996）．
Clique is hard to approximate within $n^{1-\epsilon}$ ．
In IEEE Symposium on Foundations of Computer Science
（FOCS），pages 627－636．
圊 Karakostas，G．（2005）．
A Better Approximation Ratio for the Vertex Cover Problem．
In International Colloquium on Automata，Languages and
Programming（ICALP），pages 1043－1050．
E Khot，S．and Regev，O．（2008）．
Vertex Cover Might be Hard to Approximate to Within $2-\epsilon$ ．

Journal of Computer and System Sciences, 74(3):335-349.
(i) Mossel, E., O'Donnell, R., Regev, O., Steif, J. E., and Sudakov, B. (2006).
Non-interactive correlation distillation, inhomogeneous Markov chains, and the reverse Bonami-Beckner inequality.

Israel Journal of Mathematics, 154:299-336.
固 Raghavendra, P. and Steurer, D. (2009).
Integrality gaps for strong SDP relaxations of Unique
Games.
In FOCS'09, pages 575-585. IEEE Computer Society.
圊 Samorodnitsky, A. and Trevisan, L. (2000).
A PCP characterization of NP with optimal amortized query complexity.

In ACM Symposium on Theory of Computing (STOC), pages 191-199.
it Schoenebeck, G. (2008).
Linear Level Lasserre Lower Bounds for Certain k-CSPs.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages 593-602.

围 Tulsiani, M. (2009).
CSP gaps and reductions in the Lasserre hierarchy.
In STOC'09: Proceedings of the 41th annual ACM
symposium on Theory of computing, pages 303-312, New York, NY, USA. ACM Press.

