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Quantum Hamiltonian complexity

Condensed Matter

Settings:
n-variables,
local constraints

Settings:
n quantum particles
local quantum constrains (Hamiltonians)

Main concepts:
Satisfying assignments,
Reductions,

Gap amplification,

PCP

Main concepts:
“Satisfying” quantum states (ground states)
Structure of entanglement

Hamiltonian Complexity
Main result: Quantum Cook-Levin (Kitaev '02)
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CSP in quantum language

MAX-3-SAT MAX-3-SAT — in quantum language
Settings: Settings:
@ nbits: z1,...z, @ Hilbert space of n qubits — 2™ basis
@ M constraints: states:
f(x1,...,zy) =CLA---ACuy [00---00),]00---01),...,[11---11)
@ C; — 3-local CNF clause @ Hamiltonian with M terms:

H=Q1+...+Qum
@ @, — 3-local “classical projections”

Goal: approximate the lowest eigenvalue

Goal: find the minimal possible # of of H:A(H) =0 or X(H)=>1
violations )
[010)
Example: o i
C.i = (l’k VxeV l’m) - Qz _low) 1 , 0 o1
Violating when (z, z¢, zm) = (0,1,0) 0o o

CSP is satisfiable < \(H) = OJ
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Moving to eigenvectors and eigenvalues

Local Hamiltonian: H = Q; + Q2 + . .. 2" x 2™ matrix )

Ci:(mkVa_?e\/mm) — 0 0
Violating when (z, z¢, ) = (0, 1,0) Qi 0 ®1

Eigenvectors: H |z1,...,z,) = (# violations) |x1, ..., zn)

Eigenvalue of |z1,...,z,): # of violations.

A(H) = Lowesteigenvalue = minimal # of violations.

The problem: Decide whether A\(H) =0 or X(H)>1 )
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Moving to the general quantum CSP

Quantum CSP (The Local Hamiltonian problem)

H = Zﬁ‘il Q; general local projections A(H) = lowest eigenvalue of H

ida- — 1
Decide: A\(H) =0 or A(H)> Soly(m)

Note:

Q; are no longer diagonal in the standard basis,
and the eigenvectors of H are superpositions:

2" terms

[¥) =a1]0---00) +a2]0---01) + ...

A different view on LH:
A(H) = rggn (Y| H [¥)
0< (| Qily) <1

= min (Y| Z Qs [9) " The energy of the constraint:
v i how much it is violated.

= min Z Y| Qi |v¥) (compare to 0 or 1 in the classical case)
P =
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Hamiltonian Complexity - The quantum analog of CSP

Quantum NP (QMA)

YES NO
Decision problems that can be solved with a quantum \ /
witness |¢) and a polynomial quantum verifier V.
z € L: Fg) st Pr[V(z, |vz)) =yes] > 2/3, 4
zg¢L: V|p),Pr[V(z,|¢)) =yes| <1/3.
x %)

Quantum Cook-Levin
The Local-Hamiltonian problem is QMA-complete (Kitaev, 98).

@ Inclusion is the easy direction

@ Hardness is similar to Cook-Levin — but with some quantum twists.
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Central results in Hamiltonian Complexity
Many results and techniques can be imported from CSP to Hamiltonian complexity:

Aharonov, van Dam, Kempe, Landau,

@ Reductions using Gadgets Lloyd, Regev '04
@ 2-Local (even planar) Hamiltonian is QMA Kempe, Kitaev, Regev '04
complete Oliveira, Terhal ‘05
Najag '07
@ Satisfaction Threshold Shondhi '09
Bravyi ‘09

@ Lovasz local lemma
Ambainis, Kempe, Sattath '09

But sometimes things are different:

@ Local Hamiltonian in 1d is QMA-complete (but ~ Aharonov, Gottesman, Irani, Kempe
1d CSP isin P). ‘07

What about Quantum PCP (QPCP) ?
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Quantum PCP

Two ways to formulate the QPCP conjecture:

QPCP conjecture | Quantum  QPCP conjecture I
VL € QMA there is a quantum re(gon Deciding whether

@ \NH)=0 or
@ NH)>c- M
is QMA-hard.

verifier that has access to only ¢

random qubits from the witness.

This is, however, a difficult problem

October 2, 2009 8/24
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Difficulties in proving QPCP

Main Problem: no cloning
There is no quantum transformation |¢) |0) — |v) |¢) for all |1))

@ No cloning was thought to prevent QECCs — but QECCs exist!

@ QPCP seems to require even more (QECCs are not locally decodable)
Possible implications of resolving this question:

QPCP proof no-go for QPCP

Profound Understanding
of entangelment.

Deep Generalization of
physical manipulations on ground values, no cloning

quantum inapproximability,
quantum fault tolerance
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We focus on a central ingredient in Dinur’s PCP proof, which does not require cloning:
Gap Amplification
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What we want to amplify

In the Classical case

def Min # violations
UNSAT = —

Find an efficient transformation to a
new CSP s.t.,

UNSAT
L =1
@0\?1,1 c-t-p
gl
ol
) Fr==esscsssssssss >0

In the Quantum case

det A(H)
QUNSAT = =7

Find an efficient transformation to a
new L.H. s.t.,

QUNSAT

e c-t-p
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The probability of detecting a violation in a random constraint

Classically:

M constraints

pM
violations

p — Probability of picking a violated
constraint

__ # of violations
N M

Quantumly:

Quantum Measurement

LT P T

1)
e (1 -I)[$) Prob = ||(L — M2

In our case, when measuring Q;:

Pr(1] = [|Qi [¢) I” = (%] Q: |¥)

= constraint’s energy

The probability of measuring a violation for
a random i.

A(H)

> UNSAT J p= ﬁ > (lQilw) = TH > QUNSAT

We want to amplify the probability of measuring a violation
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Amplification by repitition

Classically

@ Pick ¢ random constraints M constraints
@ Probability of at least 1 violation:

Pr=1—-(1—-p)~t-p
pM

A . 13
@ New system size: M violations

Quantumly, this also works:
@ Choose ¢t random constraints
@ Measure them one after the other
@ After every measurement, the system collapses into a new state:
|th1) = |t2) — -+ — |¢br), but always:
S, (| Qi) A(H)
M - M
@ Probability of measuring at least one violation:

Pr>1—(1—=\H)/M)*~t-\XH)/M
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Amplification with expanders

Ajtai et al, Impagliazzo & Zuckerman — RP & BPP amp’

P Expander graphs
Taking a t-walk on a d-regular expander graph is
almost like picking ¢ random edges.

Advantage: The new system is much smaller: Md*
(instead of M?)

satisfied
edges

(:12 (:13 (:14 (:15
Cy

unsatisfied Co=CiNCy3ANCsANCyNCs
edges

14/24
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Quantum Conspiration?
Conspiration Theory

@ Classical correlations decay exponentially fast on an
expander, but is this also true for quantum correlations?

@ How do we know that the expander is “random enough”?
— Can the system trick us by collapsing adversely ?

Quantum World Classical World
@ Classically: well-defined partition.
@ Quantumly:
no assignment = no partition.
unsatisfied
Energy distribution edges

@ Is there a distribution of assignments? For two constraints A, B, Pr(A =1,B = 0)
is not well defined:

pe[(a=0) — B=0)| = (I = B)A[) |” # | A = B) [} II” = P+ [(8=0) ~ (a=1)]
A and B do not commute = no distribution over assignments

October 2, 2009 15/24
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Our Results

Quantum Gap Amplification

Consider a quantum CSP problem on a d-regular expander graph G = (V, E) with a

second largest eigvenvalue 0 < A < 1. The edges are projections and the vertices are
qudits of dimension W.

./42 A3 .A4 .A5
Ay

A=A NANAsN A NA;

Let G* be the hyper graph of t-walks derived from G, and for each such ¢-walk define a
projection into the intersection of all accepting subspaces along the walk.

Then:

QUNSAT(G") > ¢(\)K (g, d) min (t . QUNSAT(G), 1)
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Layers

layer 4
layer 3
layer 2
layer 1

@ Typically, constraints can be arranged in a finite number g of layers.

@ In a fixed layer, all projections commute and can be measured simultaneously —
there exists an underlying joint probability distribution.

@ With respect to one layer, we have a distribution of classical systems:

We can use the classical PCP result on each member.
@ There are only g layers = there must be a layer with a constant energy.

But there’s a problem . . .
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The problem (yet another conspiration)

@ ltis trivial to satisfy all constraints in one fixed layer.
@ But not simultaneously in all layers (because A(H) > 0).
@ What if the violation/satisfation distribution in every layer conspires to be:

Weight
1 —1/poly(n) No amplification:
o @ In the “no violations” part there is
1) = 0.99 no violations) no amplification because all
+ 0.01 |full violation) constraints are satisfied.
@ In the “full violations” part there is
1/poly(n) no amplification because we have
M reached the maximum. )
0% 100%

Violations

We must somehow rule out this possibility if we want to show amplification
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The detectability lemma

The detectability lemma (¢ = 0 case)

Settings:

= 19 is the projection into the satisfying subspace of the j'th layer
= Minimal energy is ¢ Lof AH) >0

= Projections are taken from a fixed set.

Then:

1
. @ ) |1* <

— ~1 -
~ e/c+1 o/

where c is constant independent of .

In a sequential measurent of all layers, the probability of not detecting any violations is

bounded away from 1 by a constant.

Corollary

There must be at least one layer j with a constant projection on the violating subspace

I —=TD) ) )| = ¢

v
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General outline of the proof
@ Define
@) = 1 )

We wish to show [|Q]|? <
@ Note:

— eo/c+1

Q%0 < (@I H [22)
@ We prove:

(QIH Q) <c(1 -9l

1
Q
el e/c+1
@ In the commuting case, (Q| H |Q2) = 0 (trivial)

@ In the general case, we show that energy contribution due to non-commuteness is
exponentially decreasing.

@ We must find a way to quantify non-commuteness.

!

120*e0 < e(1 —[|92]*)
\
<
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The XY decomposition | — Pyramids

Pyramids

@ For every projection @, we define . .
a set of projections Pyr[Q)]

@ H,,, - The supporting Hilbert
space.

The XY decomposition
Observations:
Hypr=X®Y @ Px, Py commute with all Q" € Pyr[Q)]

X = common eigenvectors [Py (ITgrepyrq @) Prii <o <1
Y = The rest @ If the projections are drawn from a

i i |
Px, Py = Projections to X, Y fixed set, 0 < 1 is constant!

21/24
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The XY decomposition Il — Ponzis
A Ponzi is a set of constraints from a fixed layer, whose pyramids don'’t intersect

Hyr Hyr Hyr

@ A constant number of Ponzi’s is needed to cover all constraints
@ Epon. — The energy operator of a Ponzi.
@ The entire Hilbert space is decomposed in terms of XY sectors v:

An XY sector: v = (X, X, Y, X,Y,...)
Projection onto v: P, = Px @ Px ® Py ® Px - -~
|v| = No. of Y spaces

Q) =" P 0) = D)

@ Epon. commutes with the decomp’:

(Q Eponz 1) =Y (Qu| Epons )

v
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The energy of Ponzi

‘ | ; ‘ ' . v=(X,X,Y,X,Y,...)
- Sl ey _aaraas |v| = No. of Y spaces
C D T X > > X > > > o def
CT G AT o T o oo 1) =30, 1)
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The energy of Ponzi

Hiph M M

Gl S i S s G Gl S v=(X,X,Y,X,Y,...)
> o S > |v| = No. of Y spaces

T = = M¥nm
D

n®..m =p.R Q) =D-R[) = Do)
) = P,D|g) = P,DP,|¢) = (P.DP,) |6.)

Exponential decay: ||P, DP, | < 6!

@ Only the Y pyramids contribute to (€2, | Eyon- [€0.), but their norm decays
exponentially!

(Qw| Bpon 1) < [v]6™ 160 )”

@ We obtain an upper bound: (Q| Epon- ) < 052 s6°.
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Open questions
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Open questions

@ The quantum amplification lemma is trivial to prove when all the projections
commute (one does not need the detectability lemma). Still it is not clear:
» if the quantum PCP can be proved for commuting Hamiltonians
» what is the complexity of this special class? is it NP? QMA ?
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@ The quantum amplification lemma is trivial to prove when all the projections
commute (one does not need the detectability lemma). Still it is not clear:

» if the quantum PCP can be proved for commuting Hamiltonians
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@ Can we prove a quantum PCP with exponential witness ?
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Open questions

@ The quantum amplification lemma is trivial to prove when all the projections
commute (one does not need the detectability lemma). Still it is not clear:

» if the quantum PCP can be proved for commuting Hamiltonians
» what is the complexity of this special class? is it NP? QMA ?

@ Can the XY decomposition or the detectability lemma be used elsewhere to
handle the non-commuteness of the LH problem ?

@ Are there any interesting implications of the detectability lemma and the XY
decomposition to solid-state physics?

@ Currently, the detectability lemma allows us an RP type of amplification (one-sided
errors). Can it be generalized to prove a BPP type of amplification (two-sided
errors) ?

@ What is the right definition of quantum PCP? (one-sided errors/two sided errors?)
@ Can we prove a quantum PCP with exponential witness ?

@ If there is no quantum PCP theorem, then what is the complexity of approximating
QUNSAT(H) up to a constant? It must be NP-hard - but is it inside NP?
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