Complexity of Circuit Satisfiability

Ramamohan Paturi

University of California, San Diego jointly with Pavel Pudlák, Czech Academy of Sciences

November 9, 2009

Overview

- Exact Algorithms
- Examples of Recent Progress
- Complexity Theory of Exact Algorithms
- Circuit Satisfiability Resource Trade-offs

• Exact solutions, worst-case complexity

- Exact solutions, worst-case complexity
- Exponential-time algorithms, an active field of research

- Exact solutions, worst-case complexity
- Exponential-time algorithms, an active field of research
- Improvements over exhaustive search

- Exact solutions, worst-case complexity
- Exponential-time algorithms, an active field of research
- Improvements over exhaustive search
- Goal: Limitations

 Two parameters with each instance: size of input and a complexity parameter

- Two parameters with each instance: size of input and a complexity parameter
- Natural and robust complexity parameters
 - lacktriangledown Satisfiability: n, the number of variables and m, input size
 - Hamiltonian path: n, the number of vertices and m, size of the graph

- Two parameters with each instance: size of input and a complexity parameter
- Natural and robust complexity parameters
 - Satisfiability: n, the number of variables and m, input size
 - 4 Hamiltonian path: n, the number of vertices and m, size of the graph
- NP:
 - $L \in \mathbb{NP}$ if $\exists p(.), \Phi(., .)$ such that $x \in L$ iff $\exists y, |y| \leq p(x), \Phi(x, y)$
 - where $\Phi(x, y)$ is a poly-time decidable relation. and p(x) is poly-time computable and polynomially bounded

- Two parameters with each instance: size of input and a complexity parameter
- Natural and robust complexity parameters
 - Satisfiability: n, the number of variables and m, input size
 - Hamiltonian path: n, the number of vertices and m, size of the graph
- NP:
 - $L \in \mathbf{NP}$ if $\exists p(.), \Phi(., .)$ such that $x \in L$ iff $\exists y, |y| \leq p(x), \Phi(x, y)$
 - where $\Phi(x, y)$ is a poly-time decidable relation. and p(x) is poly-time computable and polynomially bounded
- Canonical parameterization for **NP**: NP(n, m)
 - |x|, size of the input and p(x), the complexity parameter

Nontrivial Exact Algorithms

- **NP**(*n*, *m*)
- Trivial exact algorithms: worst-case time complexity $O(\text{poly}(m)2^n)$
- Nontrivial exact algorithms: worst-case time complexity $O(\text{poly}(m)2^{\mu n})$, $\mu < 1$ may depend on the class of instances.
- Also known as moderately exponential-time or improved exponential-time algorithms

- Example 1: TSP
 - Input G = (V, E, W), |V| = n, |E| = m, with $p(G) = \log n!$
 - Held-Karp dynamic programming algorithm with $O(n^22^n)$ is nontrivial.

- Example 1: TSP
 - Input G = (V, E, W), |V| = n, |E| = m, with $p(G) = \log n!$
 - Held-Karp dynamic programming algorithm with $O(n^22^n)$ is nontrivial.
- Open Problem: Find a nontrivial exact algorithm for TSP (or Hamiltonian path) under the complexity parameter, n, the number of vertices.

- Example 1: TSP
 - Input G = (V, E, W), |V| = n, |E| = m, with $p(G) = \log n!$
 - Held-Karp dynamic programming algorithm with $O(n^22^n)$ is nontrivial.
- Open Problem: Find a nontrivial exact algorithm for TSP (or Hamiltonian path) under the complexity parameter, n, the number of vertices.
- Example 2: k-SAT
 - Input CNF F where each clause has at most k literals. |F| = m, p(F) = n, the number of variables
 - Best-known algorithms with nontrivial upper bounds of the form $2^{n(1-c/k)}$ for c>1.

- Example 1: TSP
 - Input G = (V, E, W), |V| = n, |E| = m, with $p(G) = \log n!$
 - Held-Karp dynamic programming algorithm with $O(n^22^n)$ is nontrivial.
- Open Problem: Find a nontrivial exact algorithm for TSP (or Hamiltonian path) under the complexity parameter, n, the number of vertices.
- Example 2: k-SAT
 - Input CNF F where each clause has at most k literals. |F| = m, p(F) = n, the number of variables
 - Best-known algorithms with nontrivial upper bounds of the form $2^{n(1-c/k)}$ for c>1.
- **SUBEXP**: for every $\epsilon > 0$, \exists algorithm with time complexity $O(\text{poly}(|x|)2^{\epsilon p(x)})$
- Open Problem: Does there exist a SUBEXP algorithm for k-SAT?
- If not, what are the best possible exponents?

Why Exact Algorithms?

- Certain applications will benefit from exact solutions even for moderate size parameters.
- Approximation algorithms are not always satisfactory.
 Moreover, it is hard to approximate for some problems.
- Constant factor improvements in the exponent will lead to similar improvements in the size of computationally feasible inputs
- Designing improved exact algorithms is leading to new algorithmic techniques and analyses
- Refined understanding of the complexity relationships among NP-hard problems
- Much work has been on heuristic algorithms for 3-SAT and other problems which can solve fairly large instances.
 - Rigorous analysis of heuristics
 - What are the hard instances?

Maximum Independent Set

- Given G = (V, E), find a maximum size independent set with the number of vertices as the complexity parameter
- 2^{0.334n} algorithm in polynomial space Tarjan and Trojanowski 1977
- 2^{0.304n} algorithm in polynomial space T. Jian 1986
- 2^{0.296n} in polynomial space and 2^{0.276n} in exponential space
 Robson 1986
- 2^{0.25n} Robson 2001, relatively long, partially computer-generated proof in a technical report
- 2^{0.287n} in polynomial space using measure and conquer analysis technique — Fomin, Grandoni, and Kratsch 2006
- Better bounds are known for sparse graphs.

k-SAT

- Decide if given a k-CNF Φ is satisfiable. n, the number of variables is the complexity parameter
- Best known bounds for small values of k: 2^{n}

k	unique-k-SAT	k–SAT	k-SAT	k-SAT	k-SAT
3	0.386	0.521	0.415	0.409	0.404
4	0.554	0.562	0.584		0.559
5	0.650		0.678		
6	0.711		0.736		
	Paturi,Pudlák,Saks,Zane		Schöning	Rolf,	Iwama,Tamaki

• Best bound for $k \ge 5$: $2^{(1-\mu_k/(k-1))n}$ with $\mu_k \approx 1.6$ for large k.

Graph Coloring to Tutte Polynomial

- Dramatic progress on k-colorability, chromatic number, and
 Tuttle polynomial the power of inclusion-exclusion
- All can be solved in 2ⁿ time and in 2ⁿ space Björklund, Husfeldt, Kaski, Koivisto 2006-2008
- Tutte polynomial can also be solved in 3ⁿ time and polynomial space
- Chromatic number can be computed in $2^{1.167n}$ time in polynomial space
- 3-colorability: 2^{0.41n} in polynomial space Beigel and Eppstein, 2005
- 4-colorability: 2^{0.807n} in polynomial space Byskov, 2004

Other Problems and Techniques

- Minimum dominating set, treewidth, maximum cut, minimum feedback vertex set, . . .
- Pruning the search tree (Davis-Putnam, Branch and Reduce)
- Dynamic Programming
- Local search
- Measure and conquer
- Inclusion-exclusion, Fourier transform, Möbius inversion
- Color coding
- Group algebra
- Matrix multiplication
- Exponential-time divide-and-conquer
- Sieve algorithms

• Which problems have such improved algorithms? Is there a c^n algorithm for TSP with c < 2?

- Which problems have such improved algorithms? Is there a c^n algorithm for TSP with c < 2?
- Can these improvements extend to arbitrarily small exponents?
 Is 3-SAT in SUBEXP? How about 3-coloring?

- Which problems have such improved algorithms? Is there a c^n algorithm for TSP with c < 2?
- Can these improvements extend to arbitrarily small exponents?
 Is 3-SAT in SUBEXP? How about 3-coloring?
- Can we prove improvements beyond a certain point are not possible (at least under some complexity assumption)?
 Lower bounding the exponent for 3-SAT under suitable complexity assumptions?

- Which problems have such improved algorithms? Is there a c^n algorithm for TSP with c < 2?
- Can these improvements extend to arbitrarily small exponents?
 Is 3-SAT in SUBEXP? How about 3-coloring?
- Can we prove improvements beyond a certain point are not possible (at least under some complexity assumption)?
 Lower bounding the exponent for 3-SAT under suitable complexity assumptions?
- Is progress on different problems connected? If k-coloring has
 a cⁿ algorithm, can we prove k-SAT has a dⁿ algorithm? c
 and d are independent of k.

Approach

- Consider natural, though restricted, models of computations
- Limitations
- CircuitSat

• OPP: one-sided error probabilistic polynomial-time algorithms

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein
- OPP: space efficiency, parallelization, speed-up by quantum computation

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein
- OPP: space efficiency, parallelization, speed-up by quantum computation
- What is the best success probability achievable in OPP?

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein
- OPP: space efficiency, parallelization, speed-up by quantum computation
- What is the best success probability achievable in OPP?
- SAT problems can be solved with probability $2^{-n+O(\lg n)}$ in OPP.

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein
- OPP: space efficiency, parallelization, speed-up by quantum computation
- What is the best success probability achievable in OPP?
- SAT problems can be solved with probability $2^{-n+O(\lg n)}$ in OPP.
- Hamiltonian path problem can be solved with probability 1/n! in OPP, whereas it can be solved in n^22^n time using the inclusion-exclusion principle.

Time and Success Probability

- Consider $\lg t + \lg 1/p$ for time t and success probability p.
- For what problems, does this quantity decrease with time?
- If one can present evidence that Hamiltonian path cannot achieve c^{-n} success probability in OPP, then we provide evidence for the relative power of algorithmic paradigms for example, exponential-time may be strictly advantageous
- On the other hand, c^{-n} OPP algorithm for Hamiltonian path would be exciting.

Prior Work

Possibility of arbitrarily small exponents for various
 NP-complete problems is one and the same.

Prior Work

- Possibility of arbitrarily small exponents for various
 NP-complete problems is one and the same.
- SNP ⊆ SUBEXP if any SERF-complete problem for SNP is in SUBEXP — Impagliazzo, Paturi and Zane 1998

Prior Work

- Possibility of arbitrarily small exponents for various
 NP-complete problems is one and the same.
- SNP ⊆ SUBEXP if any SERF-complete problem for SNP is in SUBEXP — Impagliazzo, Paturi and Zane 1998
- Some **SERF**-complete languages for **SNP**: *k*-SAT , *k*-coloring

Prior Work

- Possibility of arbitrarily small exponents for various
 NP-complete problems is one and the same.
- SNP ⊆ SUBEXP if any SERF-complete problem for SNP is in SUBEXP — Impagliazzo, Paturi and Zane 1998
- Some SERF-complete languages for SNP: k-SAT, k-coloring
- All are equivalent as far as the existence of subexponential time algorithms is concerned.

Prior Work

- Possibility of arbitrarily small exponents for various
 NP-complete problems is one and the same.
- SNP ⊆ SUBEXP if any SERF-complete problem for SNP is in SUBEXP — Impagliazzo, Paturi and Zane 1998
- Some **SERF**-complete languages for **SNP**: k-SAT , k-coloring
- All are equivalent as far as the existence of subexponential time algorithms is concerned.
- Key tool: complexity parameter preserving reductions via Sparsification Lemma

- $s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT}\}$
- $s_{\infty} = \lim_{k \to \infty} s_k$

- $s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT}\}$
- $s_{\infty} = \lim_{k \to \infty} s_k$
- **ETH** Exponential Time Hypothesis: $s_3 > 0$

- $s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT}\}$
- $s_{\infty} = \lim_{k \to \infty} s_k$
- **ETH** Exponential Time Hypothesis: $s_3 > 0$
- **ETH** implies that s_k increases infinitely often Impagliazzo and Paturi, 1999
- In other words, $\forall k, \exists k' > k, s_{k'} > s_k$.

- $s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT}\}$
- $s_{\infty} = \lim_{k \to \infty} s_k$
- **ETH** Exponential Time Hypothesis: $s_3 > 0$
- **ETH** implies that s_k increases infinitely often Impagliazzo and Paturi, 1999
- In other words, $\forall k, \exists k' > k, s_{k'} > s_k$.
- **ETH** implies that (d,2)-CSP takes d^{cn} time where c is an absolute constant. Traxler 2008
- Other similar conditional lower bounds by Marx, Williams, Patrascu

- $s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT}\}$
- $s_{\infty} = \lim_{k \to \infty} s_k$
- **ETH** Exponential Time Hypothesis: $s_3 > 0$
- ETH implies that s_k increases infinitely often Impagliazzo and Paturi, 1999
- In other words, $\forall k, \exists k' > k, s_{k'} > s_k$.
- **ETH** implies that (d,2)-CSP takes d^{cn} time where c is an absolute constant. Traxler 2008
- Other similar conditional lower bounds by Marx, Williams, Patrascu
- Open Problems: Assuming ETH or other suitable assumption, prove
 - a specific lower bound on s₃
 - $s_{\infty}=1$
 - Assuming $s_{\infty} = 1$, can we prove a 2^n lower bound on k-coloring?

ullet C — the family of non-uniform probabilistic circuits

- ullet C the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n number of variables; complexity parameter, partitioned as input and random variables, size counts of gates

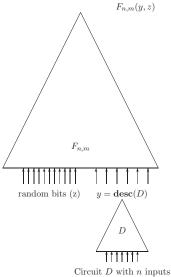
- ullet C the family of non-uniform probabilistic circuits
- For C ∈ C: n number of variables; complexity parameter, partitioned as input and random variables, size — counts of gates
- Pr[C(y,*) = b] probability C outputs b for the input y

- ullet C the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n number of variables; complexity parameter, partitioned as input and random variables, size counts of gates
- Pr[C(y,*) = b] probability C outputs b for the input y
- **CircuitSat** the *circuit satisfiability* problem: given an encoding of $D \in \mathcal{C}$, does there exist a $y \in \{0,1\}^{n(D)}$ such that D on variable setting y outputs 1.

- ullet C the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n number of variables; complexity parameter, partitioned as input and random variables, size counts of gates
- Pr[C(y,*) = b] probability C outputs b for the input y
- **CircuitSat** the *circuit satisfiability* problem: given an encoding of $D \in \mathcal{C}$, does there exist a $y \in \{0,1\}^{n(D)}$ such that D on variable setting y outputs 1.
- Family F of circuits for deciding CircuitSat —
 {F_{n,m}|n, m ≥ 1}, indexed by size of the input circuit and the
 number of its variables

- ullet ${\cal C}$ the family of non-uniform probabilistic circuits
- For C ∈ C: n number of variables; complexity parameter, partitioned as input and random variables, size — counts of gates
- Pr[C(y,*) = b] probability C outputs b for the input y
- **CircuitSat** the *circuit satisfiability* problem: given an encoding of $D \in \mathcal{C}$, does there exist a $y \in \{0,1\}^{n(D)}$ such that D on variable setting y outputs 1.
- Family F of circuits for deciding CircuitSat —
 {F_{n,m}|n, m ≥ 1}, indexed by size of the input circuit and the
 number of its variables
- A circuit family $\mathcal{F} = \{C_{n,m}\}$ decides **CircuitSat** with success probability p(n) for all input circuits D such that n(D) = n and $y = \mathbf{desc}(D)$
 - $\Pr[F_{n,m}(y,*)=1] \ge p(n)$ if D is satisfiable
 - $\Pr[F_{n,m}(y,*) = 0] = 1$ otherwise

- ullet C the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n number of variables; complexity parameter, partitioned as input and random variables, size counts of gates
- Pr[C(y,*) = b] probability C outputs b for the input y
- **CircuitSat** the *circuit satisfiability* problem: given an encoding of $D \in \mathcal{C}$, does there exist a $y \in \{0,1\}^{n(D)}$ such that D on variable setting y outputs 1.
- Family F of circuits for deciding CircuitSat —
 {F_{n,m}|n, m ≥ 1}, indexed by size of the input circuit and the
 number of its variables
- A circuit family $\mathcal{F} = \{C_{n,m}\}$ decides **CircuitSat** with success probability p(n) for all input circuits D such that n(D) = n and $y = \mathbf{desc}(D)$
 - $\Pr[F_{n,m}(y,*)=1] \ge p(n)$ if D is satisfiable
 - $\Pr[F_{n,m}(y,*) = 0] = 1$ otherwise
- Success probability of \mathcal{F} : $p(n) \ge \inf_{m,y} \Pr[F_{n,m}^y(z) = 1]$.



Complexity of Circuit Satisfiability

• Complexity of \mathcal{F} for deciding **CircuitSat** for circuits with n inputs — $\lg(1/p(n))/n$

Complexity of Circuit Satisfiability

- Complexity of \mathcal{F} for deciding **CircuitSat** for circuits with n inputs $\lg(1/p(n))/n$
- The complexity of \mathcal{F} for deciding **CircuitSat** $E_{\text{CircuitSat}}(\mathcal{F}) = \limsup \lg(1/p(n))/n$

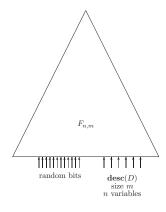
Complexity of Circuit Satisfiability

- Complexity of \mathcal{F} for deciding **CircuitSat** for circuits with n inputs $\lg(1/p(n))/n$
- The complexity of \mathcal{F} for deciding **CircuitSat** $E_{\text{CircuitSat}}(\mathcal{F}) = \limsup \lg(1/p(n))/n$
- The complexity of deciding **CircuitSat** by f(n, m)-bounded probabilistic circuit families inf $\{\varepsilon | \exists \text{ a } f\text{-bounded } \mathcal{F} \text{ such that } E_{\text{CircuitSat}}(\mathcal{F}) \leq \varepsilon \}.$

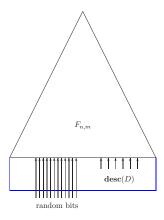
Exponential Amplification Lemma

Lemma

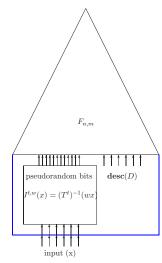
Exponential Amplification Lemma: Let \mathcal{F} be an f-bounded family for some $f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ such that the success probability is $2^{-\delta n}$ for $0 < \delta < 1$. Then there exists a g-bounded circuit family \mathcal{G} such that $E_{\mathsf{CircuitSat}}(\mathcal{G}) < \delta^2$ where $g(n,m) = O(f(\lceil \delta n \rceil + 5, \tilde{O}(f(n,m))))$.



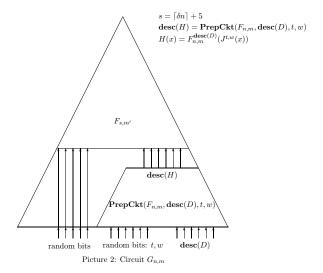
Picture 1: Probabilistic Circuit $F_{n,m}$



Picture 2: Specialization of $F_{n,m}$



Picture 3: $H(x) = F_{n,m}^{\mathbf{desc}(D)}(J^{t,w}(x))$



Results: Polynomial Size Circuits

Theorem

If **CircuitSat** can be decided with probabilistic circuits of size m^k for some k with success probability $2^{-\delta n}$ for $\delta < 1$, then there exists a $\mu < 1$ depending on k and δ such that **CircuitSat**(n, m) (and consequently $\mathbf{NP}(n, m)$) can be decided by deterministic circuits of size $2^{O(n^{\mu} | \mathbf{g}^{1-\mu} m)}$.

Results: Polynomial Size Circuits

Theorem

If CircuitSat can be decided with probabilistic circuits of size m^k for some k with success probability $2^{-\delta n}$ for $\delta < 1$, then there exists a $\mu < 1$ depending on k and δ such that CircuitSat(n, m) (and consequently $\mathbf{NP}(n, m)$) can be decided by deterministic circuits of size $2^{O(n^{\mu} | \mathbf{g}^{1-\mu} | m)}$.

• The consequence amounts to $2^{n^{\mu}}$ size deterministic circuits for **CircuitSat** for polynomial size circuits.

Results: Polynomial Size Circuits

Theorem

If CircuitSat can be decided with probabilistic circuits of size m^k for some k with success probability $2^{-\delta n}$ for $\delta < 1$, then there exists a $\mu < 1$ depending on k and δ such that CircuitSat(n, m) (and consequently NP(n, m)) can be decided by deterministic circuits of size $2^{O(n^{\mu} \lg^{1-\mu} m)}$.

- The consequence amounts to $2^{n^{\mu}}$ size deterministic circuits for **CircuitSat** for polynomial size circuits.
- If $m = 2^{o(n)}$, **CircuitSat** can be decided by deterministic circuits of size $2^{o(n)}$ considered implausible contradicts **ETH**.
- Also implies that W[P] is fixed parameter tractable.

Results: Quasilinear Size Circuits

Theorem

If CircuitSat can be decided with probabilistic circuits of size $\tilde{O}(m)$ with success probability $2^{-\delta n}$ for $\delta < 1$, then CircuitSat(n,m) (and consequently NP(n,m)) can be decided by deterministic circuits of size $O(\operatorname{poly}(m)n^{O(\lg\lg m)})$.

ullet The consequence is very close to the statement $\mathbf{NP} \subseteq \mathbf{P/poly}$.

Results: Subexponential Size Circuits

Theorem

If CircuitSat can be decided with probabilistic circuits of size $2^{o(n)}\tilde{O}(m)$ with success probability $2^{-\delta n}$ for $\delta < 1$, then CircuitSat(n,m) (and consequently NP(n,m)) can be decided by deterministic circuits of size $2^{o(n)}\operatorname{poly}(m)$.

Results: Subexponential Size Circuits

Theorem

If CircuitSat can be decided with probabilistic circuits of size $2^{o(n)}\tilde{O}(m)$ with success probability $2^{-\delta n}$ for $\delta < 1$, then CircuitSat(n,m) (and consequently NP(n,m)) can be decided by deterministic circuits of size $2^{o(n)}\operatorname{poly}(m)$.

• Apply the Exponential Amplification Lemma a number of times that grows with *n*.

Results: Subexponential Size Circuits

Theorem

If CircuitSat can be decided with probabilistic circuits of size $2^{o(n)}\tilde{O}(m)$ with success probability $2^{-\delta n}$ for $\delta < 1$, then CircuitSat(n,m) (and consequently NP(n,m)) can be decided by deterministic circuits of size $2^{o(n)}\operatorname{poly}(m)$.

- Apply the Exponential Amplification Lemma a number of times that grows with n.
- The consequence of the theorem implies that **CircuitSat** can be solved in $2^{o(n)} \operatorname{poly}(m)$ size deterministic circuits for polynomial size circuits (m is polynomial in n), which contradicts **ETH**.

Results: Small Exponential Size Circuits

Theorem

For every $\alpha, \varepsilon > 0$, either $E_{\text{CircuitSat}}(\text{explinear}) \geq 1 - \alpha - \varepsilon$ or CircuitSat(n, m) (and consequently NP(n, m)) can be decided by circuits of size $2^{n/(1+\varepsilon/\alpha)} \operatorname{poly}(m)$.

Results: Small Exponential Size Circuits

Theorem

For every $\alpha, \varepsilon > 0$, either $E_{\mathsf{CircuitSat}}(\mathsf{explinear}) \geq 1 - \alpha - \varepsilon$ or $\mathsf{CircuitSat}(n, m)$ (and consequently $\mathsf{NP}(n, m)$) can be decided by circuits of size $2^{n/(1+\varepsilon/\alpha)}\mathrm{poly}(m)$.

- If success probability for **CircuitSat** is better than $2^{-(1-\alpha)n+o(n)}$, then **CircuitSat** can be decided by circuits of size $2^{cn}\mathrm{poly}(m)$ with $c=1/(1+\frac{\varepsilon}{\alpha})<1$.
- Standard correctness probability boosting would give circuits of size $2^{(1-\varepsilon)n} \operatorname{poly}(m)$ size.

Results: Small Exponential Size Circuits

Theorem

For every $\alpha, \varepsilon > 0$, either $E_{\mathsf{CircuitSat}}(\mathsf{explinear}) \geq 1 - \alpha - \varepsilon$ or $\mathsf{CircuitSat}(n, m)$ (and consequently $\mathsf{NP}(n, m)$) can be decided by circuits of size $2^{n/(1+\varepsilon/\alpha)}\mathrm{poly}(m)$.

- If success probability for **CircuitSat** is better than $2^{-(1-\alpha)n+o(n)}$, then **CircuitSat** can be decided by circuits of size $2^{cn}\mathrm{poly}(m)$ with $c=1/(1+\frac{\varepsilon}{\alpha})<1$.
- Standard correctness probability boosting would give circuits of size $2^{(1-\varepsilon)n} \operatorname{poly}(m)$ size.

Open Problems

 Weaken the hypotheses for CircuitSat resource trade-off bounds to NP ⊈ P/poly.

Open Problems

- Weaken the hypotheses for CircuitSat resource trade-off bounds to NP ⊈ P/poly.
- Does graph coloring or the Hamiltonian path problem have probabilistic polynomial time algorithms with success probability c^{-n} ?

Open Problems

- Weaken the hypotheses for CircuitSat resource trade-off bounds to NP ⊈ P/poly.
- Does graph coloring or the Hamiltonian path problem have probabilistic polynomial time algorithms with success probability c^{-n} ?
- Prove resource trade-off bounds for linear-size CircuitSat in polynomial size models under suitable complexity assumptions.

Thank You