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Talk Outline

• Multi-Party Communication Games

• The Multi-Party Pointer Jumping Problem

• Upper Bounds

• Restricted Protocols

• Conclusions
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Multi-party Communication Games
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Multi-Party Communication Games

Input x = (x1, . . . , xk) is split between k players.

Goal: minimize communication needed to compute f(x).

Our model of communication:

• Player i sees every input except xi (NOF model).

• One-way communication: each player speaks once and in order.

• Blackboard communication: all players see every message sent.
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Pointer Jumping

Vertices:

• k − 1 layers, plus start vertex

• layers have n vertices

Input:

• k − 1 layers of pointers

• n bit string

Compute mpjk = bit reached by following pointers from start vertex.
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Pointer Jumping: non-Boolean version

P3 P4P1 P2
1

2

3

n

Vertices:

• k layers, plus start vertex

• layers have n vertices

Input:

• k layers of pointers

• n bit string

Compute m̂pjk = vertex reached by following pointers from start vertex.
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Layers of Edges are Functions

P3 P4P1 P2
1

2

3

n
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n

Formal Definition:

Inputs:

• i ∈ [n]

• f2, . . . , fk−1 : [n] → [n]

• x ∈ {0, 1}n

Output:

• mpjk := x[fk−1 ◦ · · · ◦ f2(i)]
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Pointer Jumping: Trivial Bounds

P3 P4P1 P2
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• One-way: any order except P1, P2, . . . , Pk: O(log n)

• One way: in the order P1, P2, . . . , Pk: O(n)
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Pointer Jumping: Trivial Bounds

P3 P4P1 P2
0

0
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1

• One-way: any order except P1, P2, . . . , Pk: O(log n)

• One way: in the order P1, P2, . . . , Pk: O(n)

– Problem seems hard. Maybe nΩ(1) lower bound?
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Motivation

ACC0 complexity class: AC0 plus modm gates.

• No function f /∈ ACC0 is known.

• If f : {0, 1}n → {0, 1} and f ∈ ACC0, then f has deterministic NOF

protocol with poly(log n) communication, for k = poly(log n) players.

[Yao’90], [Håstad-Goldmann’91], [Beigel-Tarui’94]

Recently pointer jumping has been used to prove lower bounds in:

• threshold circuits [Razborov-Wigderson’93]

• proof size [Beame-Pitassi-Segerlind’05]

• matroid intersection queries [Harvey’08]

• randomly-ordered data streams [Chakrabarti-Cormode-McGregor’08]
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Previous Result Highlights

Far from proving mpjpoly(log n) /∈ ACC0

• Ω(
√

n) for mpj3 [Wigderson’97]

• Ω(n1/(k−1)/kk) for mpjk [Viola-Wigderson’07]

• lower bounds for restricted protocols
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• O
(
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The Damm-Jukna-Sgall Protocol

3 players:

P1 sends log log n bits of f2(i) for

each i ⇒ n log log n bits.

P2 sends f3(j) for each possibile j

⇒ n
2log log n log n = n bits.

P3 outputs f3(f2(i)).

P1 P3P2

2

1

3

n

k players:

P1 sends log(k−1) n bits for each pointer.

P2 sends log(k−2) n bits for each of n/ log(k−2) n possible pointers.

. . .

Total communication: O(n log(k−1) n) bits.
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The Pudlák-Rödl-Sgall Protocol

P3P1 P2

0

0

1

0

1

0

1

1

0

Step 0: Generate random bipartite graph H

Step 1: P1 sees π, knows H

• creates graph Gπ on vertices in second layer

• (a, b) ∈ E iff (yπ−1(a), xb) and

(yπ−1(b), xa) in H

• Let C1, . . . , Cr be a clique cover of Gπ

• For each 1 ≤ i ≤ r, P1 sends Redparity of

bits in Ci
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The Pudlák-Rödl-Sgall Protocol

P3P1 P2
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Step 2: P2 sees i, knows H

• sends xj for each (yi, xj) ∈ H

Step 3: P3 sees i, π, knows H

• C := clique containing π(i)

• Note: j 6= π(i) ∈ C ⇒ (j, π(i)) ∈ Gπ

• ∴ (yi, xj) ∈ H ⇒ P2 sent xj .

• P3 takes clique bit, XORs out all

xj 6= xπ(i), recovers xπ(i).
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PRS Protocol Analysis

Lemma: [PRS’96], [Bollobás’88]

There exists a bipartite graph H such that for all i, π

1. Gπ has O
(
n log log n

log n

)
cliques

2. yi has outdegree O
(
n log log n

log n

)
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A General Protocol: 3 players

P3P1 P2
0

0

1

0

1

0

1

Idea: - Run prs several times

in parallel.

- Pick permutations

π1, π2, . . . , πd such

that f(i) = πj(i) for

some permutation.

- P3 determines which

permutation matches

f(i).

It turns out we can’t do this efficiently, but we can get close enough.
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Technical Details

Defintion: A set of permutations A ⊆ Sn d-covers f if for all i ∈ [n], one

of the following conditions holds:

• There exists π ∈ A such that π(i) = f(i).

• f(i) has a large preimage: |f−1(f(i))| > d.
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of the following conditions holds:

• There exists π ∈ A such that π(i) = f(i).

• f(i) has a large preimage: |f−1(f(i))| > d.

Lemma: We can always find a set of d permutations that d-covers f .

Note: There can be at most n/d points with large preimages.
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A General Protocol: 3 players

P3P1 P2
0

0

1

0

1

0

1

Players agree on d and a

d-covering set Ad(f) for each f .

With d =

√
log n

log log n
, the protocol costs O

(
n

√
log log n

log n

)
.
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Talk Outline

• Multi-Party Communication Games

• The Multi-Party Pointer Jumping Problem

• Upper Bounds

• Restricted Protocols

• Conclusions
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Restricted Protocols

Partial progress: protocols with more restricted forms of information sharing

• Myopic protocols: Pj only sees layers 1, . . . , (j − 1) as well as layer

(j + 1) of graph. (i.e., limited visibility of layers ahead)

[Gronemeier’06]

• Conservative protocols: Pj sees layers (j + 1), . . . , k of graph, plus

composition of layers 1, . . . , (j − 1). Doesn’t see individual layers

1, . . . , (j − 1) themselves. (i.e., limited visibility of layers behind)

[Damm-Jukna-Sgall’96]
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composition of layers 1, . . . , (j − 1). Doesn’t see individual layers

1, . . . , (j − 1) themselves. (i.e., limited visibility of layers behind)

[Damm-Jukna-Sgall’96]

Note: The DJS protocol for m̂pjk is both myopic and conservative!

[Chakrabarti’07] gave randomized lower bounds for restricted protocols:

• myopic: Ω(n/k) bits.

• conservative: Ω(n/k2) bits.

Joshua Brody 18-b



NOF Communication Complexity of Multi-Party Pointer Jumping December 7, 2009

Restricted Protocols

Partial progress: protocols with more restricted forms of information sharing

• Myopic protocols: Pj only sees layers 1, . . . , (j − 1) as well as layer

(j + 1) of graph. (i.e., limited visibility of layers ahead)

[Gronemeier’06]

• Conservative protocols: Pj sees layers (j + 1), . . . , k of graph, plus

composition of layers 1, . . . , (j − 1). Doesn’t see individual layers

1, . . . , (j − 1) themselves. (i.e., limited visibility of layers behind)

[Damm-Jukna-Sgall’96]

Note: The DJS protocol for m̂pjk is both myopic and conservative!

[Chakrabarti’07] gave randomized lower bounds for restricted protocols:

• myopic: Ω(n/k) bits.

• conservative: Ω(n/k2) bits.

For the rest of this talk: all protocols are myopic.
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Our Results

Question: Can there be any nontrivial myopic protocol for mpjk?
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Our Results

Question: Can there be any nontrivial myopic protocol for mpjk?

No, but in an interesting way...

Theorem: In any myopic protocol for mpjk, some player must send at

least n/2 bits.

Joshua Brody 19-b



NOF Communication Complexity of Multi-Party Pointer Jumping December 7, 2009

Our Results

Question: Can there be any nontrivial myopic protocol for mpjk?

No, but in an interesting way...

Theorem: In any myopic protocol for mpjk, some player must send at

least n/2 bits.

Definitions:

• cost(P) := cost of largest message of P.

• tcost(P) := total cost of P.

• δn-bit protocol: cost(P) = δn.
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Detailed Results

Main Theorem: There exists a decreasing function φ : N → R with

limk→∞ φ(k) = 1
2 such that

1. Any deterministic protocol for mpjk costs at least φ(k)n bits.

Joshua Brody 20



NOF Communication Complexity of Multi-Party Pointer Jumping December 7, 2009

Detailed Results

Main Theorem: There exists a decreasing function φ : N → R with

limk→∞ φ(k) = 1
2 such that

1. Any deterministic protocol for mpjk costs at least φ(k)n bits.

2. There exists a protocol P for mpjk with cost(P) = φ(k)n + o(n).
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Detailed Results

Main Theorem: There exists a decreasing function φ : N → R with

limk→∞ φ(k) = 1
2 such that

1. Any deterministic protocol for mpjk costs at least φ(k)n bits.

2. There exists a protocol P for mpjk with cost(P) = φ(k)n + o(n).

Theorem: Any deterministic protocol for mpjk has total cost at least n.

Theorem: If P is a deterministic protocol for m̂pjk then

cost(P) ≥ n
(
log(k−1) n

)
(1 − o(1)).

Theorem: Any randomized protocol for mpjk has

cost(P) = Ω
(

n
k log n

)
.
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Generalized Pointer Jumping

mpjm,k: just like mpjk, except m ≤ n vertices in first layer.

0

0

1

0

1

1

1
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Round Elimination Lemma

Base Case Lemma: Any protocol P for mpjm,2 has cost(P) ≥ m (index)

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit protocol

P for mpjm,k, then there is a δn-bit protocol Q for mpjm′,k−1 with

m′ = n · 2−δn/m.
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Round Elimination Lemma

Base Case Lemma: Any protocol P for mpjm,2 has cost(P) ≥ m (index)

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit protocol

P for mpjm,k, then there is a δn-bit protocol Q for mpjm′,k−1 with

m′ = n · 2−δn/m.

Message Sets:

• P1’s input: f2 ∈ [n][m]

• M := Mm = {f2 : P1 sends m on input f2}.

• Fix m to maximize |M |; then |M | ≥ nm

2δn .
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Definition: For F ⊆ [n][m], Range(i,F) := {f2(i) : f2 ∈ F}
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Round Elimination Lemma

Base Case Lemma: Any protocol P for mpjm,2 has cost(P) ≥ m (index)

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit protocol

P for mpjm,k, then there is a δn-bit protocol Q for mpjm′,k−1 with

m′ = n · 2−δn/m.

Message Sets:

• P1’s input: f2 ∈ [n][m]

• M := Mm = {f2 : P1 sends m on input f2}.

• Fix m to maximize |M |; then |M | ≥ nm

2δn .

Definition: For F ⊆ [n][m], Range(i,F) := {f2(i) : f2 ∈ F}

Range Lemma: If |F| ≥ (m′)m, then ∃ i with |Range(i,F)| ≥ m′
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Proof of Round Elimination Lemma

Base Case Lemma: Any protocol P for mpjm,2 has cost(P) ≥ m (index)

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit protocol

P for mpjm,k, then there is a δn-bit protocol Q for mpjm′,k−1 with

m′ = n · 2−δn/m.

Proof:
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Proof of Round Elimination Lemma

Base Case Lemma: Any protocol P for mpjm,2 has cost(P) ≥ m (index)

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit protocol

P for mpjm,k, then there is a δn-bit protocol Q for mpjm′,k−1 with

m′ = n · 2−δn/m.

Proof:

• Fix M . Note: |M | ≥ nm

2δn = 2m log n−δn = (m′)m.

• By Range Lemma, ∃ i ∈ [m] s.t. |Range(i, M)| ≥ m′. Fix i.

• For each j ∈ [m′], fix gj ∈ M s.t. gj(i) = j.

• Protocol Q: on input (j, f3, . . . , fk−1, x), players simulate P on input

(i, gj , f3, . . . , fk−1, x).
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Analysis

Define

• a0 := 0, aℓ := δ2aℓ−1

• mℓ := n2−aℓ

a0 = 0

Definition: Let φ(k) := least δ such that ak−1 ≥ 1

Claim: limk→∞ φ(k) = 1/2 (Induction)

Round elimination (m = mℓ):

m′ = n2
−

δn
mℓ = n2−δn/n2−aℓ = n2−δ2aℓ = n2−aℓ+1 = mℓ+1
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Analysis
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Proof of Main Theorem

Theorem: Any myopic protocol P for mpjk = mpjn,k has

cost(P) ≥ nφ(k).

Proof:
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Proof of Main Theorem

Theorem: Any myopic protocol P for mpjk = mpjn,k has

cost(P) ≥ nφ(k).

Proof:

δn-bit protocol for mpjm0,k ⇒
. . . k − 2 round eliminations . . . ⇒
δn-bit protocol for mpjmk−2,2

⇒
δn ≥ n2−ak−2 = mk−2 (Base Case Lemma) ⇒
ak−1 = δ2ak−2 ≥ 1 ⇒
δ ≥ φ(k) (by def. of φ(k))
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A Sketch of Matching Upper Bound

Idea: Cover [n][m] with sets S1, . . . , St ⊆ [n][m] s.t.

|Range(i, S)| = m′ for all i, S.

Packing lower bound: t ≥ 2δn.

Claim: t ≤ 2δn+o(n). (Prob. Method)

Protocol:

• P1 sends S ∋ f2. (cost = δn + o(n))

• Players 2,. . . ,k see i, set [m′] := Range(i, S).

• Players 2,. . . ,k run mpjm′,k−1 protocol on (f2(i), f3, . . . , x).
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Randomizing the Lower Bound

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit, ε-error

distributional protocol P for mpjm,k, then there is a δn-bit, ε′-error

protocol Q for mpjm′,k−1 with m′ = n · 2−2δn/m and ε′ = 2nε.

Proof:
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Randomizing the Lower Bound

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit, ε-error

distributional protocol P for mpjm,k, then there is a δn-bit, ε′-error

protocol Q for mpjm′,k−1 with m′ = n · 2−2δn/m and ε′ = 2nε.

Proof:

• z := (f3, . . . , fk−1, x)

• Call (i, f2) bad if Prz[error |(i, f2)] > 2nε

• Call f2 bad if Pri[(i, f2) bad |f2] ≥ 1/n
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Randomizing the Lower Bound

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit, ε-error

distributional protocol P for mpjm,k, then there is a δn-bit, ε′-error

protocol Q for mpjm′,k−1 with m′ = n · 2−2δn/m and ε′ = 2nε.

Proof:

• z := (f3, . . . , fk−1, x)

• Call (i, f2) bad if Prz[error |(i, f2)] > 2nε

⇒ Pr[(i, f2) bad] < 1/2n (Markov)

• Call f2 bad if Pri[(i, f2) bad |f2] ≥ 1/n

⇒ Pr[f2 bad] < 1/2 (Markov)
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Randomizing the Lower Bound

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit, ε-error

distributional protocol P for mpjm,k, then there is a δn-bit, ε′-error

protocol Q for mpjm′,k−1 with m′ = n · 2−2δn/m and ε′ = 2nε.

Proof:

• z := (f3, . . . , fk−1, x)

• Call (i, f2) bad if Prz[error |(i, f2)] > 2nε

⇒ Pr[(i, f2) bad] < 1/2n (Markov)

• Call f2 bad if Pri[(i, f2) bad |f2] ≥ 1/n

⇒ Pr[f2 bad] < 1/2 (Markov)

Note: f2 good ⇒ (i, f2) good for all i.
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Randomizing the Lower Bound

Round Elimination Lemma: Let k ≥ 3. If there is a δn-bit, ε-error

distributional protocol P for mpjm,k, then there is a δn-bit, ε′-error

protocol Q for mpjm′,k−1 with m′ = n · 2−2δn/m and ε′ = 2nε.

Proof:

• z := (f3, . . . , fk−1, x)

• Call (i, f2) bad if Prz[error |(i, f2)] > 2nε

⇒ Pr[(i, f2) bad] < 1/2n (Markov)

• Call f2 bad if Pri[(i, f2) bad |f2] ≥ 1/n

⇒ Pr[f2 bad] < 1/2 (Markov)

Note: f2 good ⇒ (i, f2) good for all i.

• Follow deterministic proof

M := Mm = {good f2 : P1 sends m on input f2} . . .
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Conclusions/Open Problems

Conclusions

• Still far from proving mpjk 6∈ ACC0

• Provided the first o(n) protocol for mpjk

• Characterized maximum communication complexity of myopic protocols

up to 1 + o(1) factors.

• Lower bound technique applies to mpjk and m̂pjk and does randomize;

seems promising for other problems.

Open Problems

1. Settle D(mpjk)

2. Possible first step: improve bound on mpj3

3. Relax protocol restrictions: 2-myopic, . . .
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Thank you!

Questions?

Contact jbrody@cs.dartmouth.edu
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