The NOF Communication Complexity of Multi-Party Pointer Jumping

Joshua Brody

DARTMOUTH COLLEGE HANOVER, NH USA

IAS Computer Science/Discrete Math Seminar December 7, 2009

Talk Outline

- Multi-Party Communication Games
- The Multi-Party Pointer Jumping Problem
- Upper Bounds
- Restricted Protocols
- Conclusions

Multi-Party Communication Games

Input $x = (x_1, \ldots, x_k)$ is split between k players.

Goal: minimize communication needed to compute f(x).

Our model of communication:

- Player *i* sees every input except x_i (NOF model).
- One-way communication: each player speaks once and in order.
- Blackboard communication: all players see every message sent.

Compute MPJ_k = bit reached by following pointers from start vertex.

- One-way: any order except $P1, P2, \ldots, Pk$: $O(\log n)$
- One way: in the order $P1, P2, \ldots, Pk$: O(n)

- One-way: any order except $P1, P2, \ldots, Pk$: $O(\log n)$
- One way: in the order $P1, P2, \ldots, Pk$: O(n)
 - Problem seems hard. Maybe $n^{\Omega(1)}$ lower bound?

Motivation

ACC⁰ complexity class: AC⁰ plus MOD_m gates.

- No function $f \notin ACC^0$ is known.
- If f: {0,1}ⁿ → {0,1} and f ∈ ACC⁰, then f has deterministic NOF protocol with poly(log n) communication, for k = poly(log n) players.
 [Yao'90], [Håstad-Goldmann'91], [Beigel-Tarui'94]

More Motivation

ACC⁰ complexity class: AC⁰ plus MOD_m gates.

- No function $f \notin ACC^0$ is known.
- If f: {0,1}ⁿ → {0,1} and f ∈ ACC⁰, then f has deterministic NOF protocol with poly(log n) communication, for k = poly(log n) players.
 [Yao'90], [Håstad-Goldmann'91], [Beigel-Tarui'94]

Recently pointer jumping has been used to prove lower bounds in:

- threshold circuits
- proof size
- matroid intersection queries
- randomly-ordered data streams

[Razborov-Wigderson'93]

[Beame-Pitassi-Segerlind'05]

[Harvey'08]

[Chakrabarti-Cormode-McGregor'08]

Far from proving $MPJ_{poly(\log n)} \notin ACC^0$

- $\Omega(\sqrt{n})$ for MPJ₃
- $\Omega(n^{1/(k-1)}/k^k)$ for MPJ_k
- lower bounds for restricted protocols

[Wigderson'97]

[Viola-Wigderson'07]

Far from proving $MPJ_{poly(\log n)} \notin ACC^0$

- $\Omega(\sqrt{n})$ for MPJ₃
- $\Omega(n^{1/(k-1)}/k^k)$ for MPJ_k
- lower bounds for restricted protocols
- $O\left(n\log^{(k-1)}n\right)$ for $\widehat{\mathrm{MPJ}}_k$

[Viola-Wigderson'07]

[Wigderson'97]

[Damm-Jukna-Sgall'96]

• $O\left(n\frac{\log\log n}{\log n}\right)$ for MPJ₃ when middle layer is a permutation.

[Pudlák-Rödl-Sgall '97]

Far from proving $MPJ_{poly(\log n)} \notin ACC^0$

- $\Omega(\sqrt{n})$ for MPJ₃
- $\Omega(n^{1/(k-1)}/k^k)$ for MPJ_k
- lower bounds for restricted protocols
- $O\left(n\log^{(k-1)}n\right)$ for $\widehat{\mathrm{MPJ}}_k$

[Viola-Wigderson'07]

[Wigderson'97]

[Damm-Jukna-Sgall'96]

• $O\left(n\frac{\log\log n}{\log n}\right)$ for MPJ₃ when middle layer is a permutation. [Pudlák-Rödl-Sgall '97]

Our Results

- $O\left(n\sqrt{\frac{\log\log n}{\log n}}\right)$ for MPJ₃
- bounds for restricted protocols

[B.-Chakrabarti'08]

[B.'09]

Far from proving $MPJ_{poly(\log n)} \notin ACC^{0}$

- $\Omega(\sqrt{n})$ for ${
 m MPJ}_3$
- $\Omega(n^{1/(k-1)}/k^k)$ for MPJ_k

[Viola-Wigderson'07]

[Wigderson'97]

- lower bounds for restricted protocols (2nd half of talk)
- $O\left(n\log^{(k-1)}n\right)$ for $\widehat{\mathrm{MPJ}}_k$

[Damm-Jukna-Sgall'96]

• $O\left(n\frac{\log\log n}{\log n}\right)$ for MPJ₃ when middle layer is a permutation.

```
[Pudlák-Rödl-Sgall '97]
```

Our Results

• $O\left(n\sqrt{\frac{\log\log n}{\log n}}\right)$ for MPJ₃

[B.-Chakrabarti'08]

[B.'09]

• bounds for restricted protocols (2nd half of talk)

Talk Outline

- Multi-Party Communication Games
- The Multi-Party Pointer Jumping Problem
- Upper Bounds
- Restricted Protocols
- Conclusions

P1 sends $\log \log n$ bits of $f_2(i)$ for each i

P2 sends $f_3(j)$ for each possibile j

P1 sends $\log \log n$ bits of $f_2(i)$ for each i

P2 sends $f_3(j)$ for each possibile j

```
P3 outputs f_3(f_2(i)).
```


 $\begin{array}{ll} P1 \text{ sends } \log \log n \text{ bits of } f_2(i) \text{ for} \\ \text{each } i & \Rightarrow n \log \log n \text{ bits.} \\ P2 \text{ sends } f_3(j) \text{ for each possibile } j \\ & \Rightarrow \frac{n}{2^{\log \log n}} \log n = n \text{ bits.} \\ P3 \text{ outputs } f_3(f_2(i)). \end{array}$

 $\begin{array}{ll} P1 \text{ sends } \log \log n \text{ bits of } f_2(i) \text{ for} \\ \text{each } i & \Rightarrow n \log \log n \text{ bits.} \\ P2 \text{ sends } f_3(j) \text{ for each possibile } j \\ & \Rightarrow \frac{n}{2^{\log \log n}} \log n = n \text{ bits.} \\ P3 \text{ outputs } f_3(f_2(i)). \end{array}$

k players:

P1 sends $\log^{(k-1)} n$ bits for each pointer. P2 sends $\log^{(k-2)} n$ bits for each of $n / \log^{(k-2)} n$ possible pointers.

 $\begin{array}{ll}P1 \text{ sends } \log \log n \text{ bits of } f_2(i) \text{ for}\\ \text{each } i & \Rightarrow n \log \log n \text{ bits.}\\P2 \text{ sends } f_3(j) \text{ for each possibile } j\\ & \Rightarrow \frac{n}{2^{\log \log n}} \log n = n \text{ bits.}\\P3 \text{ outputs } f_3(f_2(i)).\end{array}$

k players:

P1 sends $\log^{(k-1)} n$ bits for each pointer. P2 sends $\log^{(k-2)} n$ bits for each of $n / \log^{(k-2)} n$ possible pointers.

Total communication: $O(n \log^{(k-1)} n)$ bits.

The Pudlák-Rödl-Sgall Protocol

<u>Step 0:</u> Generate random bipartite graph H<u>Step 1:</u> P1 sees π , knows H

- creates graph G_{π} on vertices in second layer
- $(a,b) \in E$ iff $(y_{\pi^{-1}(a)}, x_b)$ and $(y_{\pi^{-1}(b)}, x_a)$ in H

<u>Step 0:</u> Generate random bipartite graph H<u>Step 1:</u> P1 sees π , knows H

- creates graph G_{π} on vertices in second layer
- $(a,b) \in E$ iff $(y_{\pi^{-1}(a)}, x_b)$ and $(y_{\pi^{-1}(b)}, x_a)$ in H
- Let C_1, \ldots, C_r be a clique cover of G_π
- For each $1 \leq i \leq r$, P1 sends parity of bits in C_i

- <u>Step 2:</u> P2 sees *i*, knows *H*
 - sends x_j for each $(y_i, x_j) \in H$
- <u>Step 3</u>: P3 sees i, π , knows H
 - C :=clique containing $\pi(i)$

The Pudlák-Rödl-Sgall Protocol

- Step 2: P2 sees *i*, knows *H*
 - sends x_j for each $(y_i, x_j) \in H$
- Step 3: P3 sees i, π , knows H
 - C :=clique containing $\pi(i)$
 - Note: $j \neq \pi(i) \in C \Rightarrow (j, \pi(i)) \in G_{\pi}$

The Pudlák-Rödl-Sgall Protocol

Step 2: P2 sees *i*, knows *H*

• sends x_j for each $(y_i, x_j) \in H$

Step 3: P3 sees i, π , knows H

- C :=clique containing $\pi(i)$
- Note: $j \neq \pi(i) \in C \Rightarrow (j, \pi(i)) \in G_{\pi}$
- $\therefore (y_i, x_j) \in H \Rightarrow P2 \text{ sent } x_j.$

The Pudlák-Rödl-Sgall Protocol

Step 2: P2 sees *i*, knows *H*

• sends x_j for each $(y_i, x_j) \in H$

Step 3: P3 sees i, π , knows H

- C :=clique containing $\pi(i)$
- Note: $j \neq \pi(i) \in C \Rightarrow (j, \pi(i)) \in G_{\pi}$
- $\therefore (y_i, x_j) \in H \Rightarrow P2 \text{ sent } x_j.$
- P3 takes clique bit, XORs out all $x_j \neq x_{\pi(i)}$, recovers $x_{\pi(i)}$.

- Idea: Run PRS several times in parallel.
 - Pick permutations $\pi_1, \pi_2, \dots, \pi_d$ such that $f(i) = \pi_j(i)$ for <u>some</u> permutation.

- Idea: Run PRS several times in parallel.
 - Pick permutations $\pi_1, \pi_2, \dots, \pi_d$ such that $f(i) = \pi_j(i)$ for <u>some</u> permutation.

- Idea: Run PRS several times in parallel.
 - Pick permutations $\pi_1, \pi_2, \dots, \pi_d$ such that $f(i) = \pi_j(i)$ for <u>some</u> permutation.

Joshua Brody

- Idea: Run PRS several times in parallel.
 - Pick permutations $\pi_1, \pi_2, \dots, \pi_d$ such that $f(i) = \pi_j(i)$ for <u>some</u> permutation.

Joshua Brody

- Idea: Run PRS several times in parallel.
 - Pick permutations $\pi_1, \pi_2, \dots, \pi_d$ such that $f(i) = \pi_j(i)$ for some permutation.
 - P3 determines which permutation matches f(i).

- Idea: Run PRS several times in parallel.
 - Pick permutations $\pi_1, \pi_2, \dots, \pi_d$ such that $f(i) = \pi_j(i)$ for some permutation.
 - P3 determines which permutation matches f(i).

It turns out we can't do this efficiently, but we can get close enough.

Technical Details

Definition: A set of permutations $A \subseteq S_n$ *d*-covers *f* if for all $i \in [n]$, one of the following conditions holds:

- There exists $\pi \in A$ such that $\pi(i) = f(i)$.
- f(i) has a large preimage: $|f^{-1}(f(i))| > d$.

Technical Details

Definiton: A set of permutations $A \subseteq S_n$ *d*-covers *f* if for all $i \in [n]$, one of the following conditions holds:

- There exists $\pi \in A$ such that $\pi(i) = f(i)$.
- f(i) has a large preimage: $|f^{-1}(f(i))| > d$.

Lemma: We can always find a set of d permutations that d-covers f.

Technical Details

Definition: A set of permutations $A \subseteq S_n$ *d*-covers *f* if for all $i \in [n]$, one of the following conditions holds:

- There exists $\pi \in A$ such that $\pi(i) = f(i)$.
- f(i) has a large preimage: $|f^{-1}(f(i))| > d$.

Lemma: We can always find a set of d permutations that d-covers f. **Note:** There can be at most n/d points with large preimages.

Players agree on d and a d-covering set $A_d(f)$ for each f.

- P1 sends $\{\alpha(\pi, x)\}_{\pi \in A_d(f)}$.
- P1 also sends x[j] for any j with a large preimage.

Players agree on d and a d-covering set $A_d(f)$ for each f.

- P1 sends $\{\alpha(\pi, x)\}_{\pi \in A_d(f)}$.
- P1 also sends x[j] for any j with a large preimage.
- P2 sends $\{\beta(i, x, \alpha)\}_{\alpha}$.

Players agree on d and a d-covering set $A_d(f)$ for each f.

- P1 sends $\{\alpha(\pi, x)\}_{\pi \in A_d(f)}$.
- P1 also sends x[j] for any j with a large preimage.
- P2 sends $\{\beta(i, x, \alpha)\}_{\alpha}$.
- P3 recovers x[f(i)] from PRS or from P1's extra bits.

Players agree on d and a d-covering set $A_d(f)$ for each f.

- P1 sends $\{\alpha(\pi, x)\}_{\pi \in A_d(f)}$.
- P1 also sends x[j] for any j with a large preimage.
- $P2 \text{ sends } \{\beta(i, x, \alpha)\}_{\alpha}.$
- P3 recovers x[f(i)] from PRS or from P1's extra bits.

With
$$d = \sqrt{\frac{\log n}{\log \log n}}$$
, the protocol costs $O\left(n\sqrt{\frac{\log \log n}{\log n}}\right)$

Joshua Brody

Talk Outline

- Multi-Party Communication Games
- The Multi-Party Pointer Jumping Problem
- Upper Bounds
- Restricted Protocols
- Conclusions

Partial progress: protocols with more restricted forms of information sharing

• Myopic protocols: Pj only sees layers $1, \ldots, (j-1)$ as well as layer (j+1) of graph. (i.e., limited visibility of layers ahead)

[Gronemeier'06]

Conservative protocols: Pj sees layers (j + 1),...,k of graph, plus composition of layers 1,..., (j - 1). Doesn't see individual layers 1,..., (j - 1) themselves. (i.e., limited visibility of layers behind)
 [Damm-Jukna-Sgall'96]

Partial progress: protocols with more restricted forms of information sharing

• Myopic protocols: Pj only sees layers $1, \ldots, (j-1)$ as well as layer (j+1) of graph. (i.e., limited visibility of layers ahead)

[Gronemeier'06]

Conservative protocols: Pj sees layers (j + 1),...,k of graph, plus composition of layers 1,..., (j - 1). Doesn't see individual layers 1,..., (j - 1) themselves. (i.e., limited visibility of layers behind)

Note: The DJS protocol for $\widehat{\text{MPJ}_k}$ is both myopic and conservative!

Partial progress: protocols with more restricted forms of information sharing

• Myopic protocols: Pj only sees layers $1, \ldots, (j-1)$ as well as layer (j+1) of graph. (i.e., limited visibility of layers ahead)

[Gronemeier'06]

Conservative protocols: Pj sees layers (j + 1),...,k of graph, plus composition of layers 1,..., (j - 1). Doesn't see individual layers 1,..., (j - 1) themselves. (i.e., limited visibility of layers behind)
 [Damm-Jukna-Sgall'96]

Note: The DJS protocol for $\widehat{\text{MPJ}}_k$ is both myopic and conservative! [Chakrabarti'07] gave randomized lower bounds for restricted protocols:

- myopic: $\Omega(n/k)$ bits.
- conservative: $\Omega(n/k^2)$ bits.

Partial progress: protocols with more restricted forms of information sharing

• Myopic protocols: Pj only sees layers $1, \ldots, (j-1)$ as well as layer (j+1) of graph. (i.e., limited visibility of layers ahead)

[Gronemeier'06]

Conservative protocols: Pj sees layers (j + 1),...,k of graph, plus composition of layers 1,..., (j - 1). Doesn't see individual layers 1,..., (j - 1) themselves. (i.e., limited visibility of layers behind)
 [Damm-Jukna-Sgall'96]

Note: The DJS protocol for $\widehat{\text{MPJ}}_k$ is both myopic and conservative! [Chakrabarti'07] gave randomized lower bounds for restricted protocols:

- myopic: $\Omega(n/k)$ bits.
- conservative: $\Omega(n/k^2)$ bits.

For the rest of this talk: all protocols are myopic.

Question: Can there be <u>any</u> nontrivial myopic protocol for MPJ_k ?

Our Results

Question: Can there be <u>any</u> nontrivial myopic protocol for MPJ_k ?

No, but in an interesting way...

Our Results

Question: Can there be <u>any</u> nontrivial myopic protocol for MPJ_k ?

No, but in an interesting way...

Theorem: In any myopic protocol for MPJ_k , some player must send at least n/2 bits.

Our Results

Question: Can there be <u>any</u> nontrivial myopic protocol for MPJ_k ?

No, but in an interesting way...

Theorem: In any myopic protocol for MPJ_k , some player must send at least n/2 bits.

Definitions:

- $cost(\mathcal{P}) := cost \text{ of largest message of } \mathcal{P}.$
- $\operatorname{tcost}(\mathcal{P}) := \operatorname{total} \operatorname{cost} \operatorname{of} \mathcal{P}$.
- δn -bit protocol: $\cot(\mathcal{P}) = \delta n$.

Detailed Results

Main Theorem: There exists a decreasing function $\phi : \mathbb{N} \to \mathbb{R}$ with $\lim_{k\to\infty} \phi(k) = \frac{1}{2}$ such that

1. Any deterministic protocol for MPJ_k costs at least $\phi(k)n$ bits.

Detailed Results

Main Theorem: There exists a decreasing function $\phi : \mathbb{N} \to \mathbb{R}$ with $\lim_{k\to\infty} \phi(k) = \frac{1}{2}$ such that

- 1. Any deterministic protocol for MPJ_k costs at least $\phi(k)n$ bits.
- 2. There exists a protocol \mathcal{P} for MPJ_k with $cost(\mathcal{P}) = \phi(k)n + o(n)$.

Detailed Results

Main Theorem: There exists a decreasing function $\phi : \mathbb{N} \to \mathbb{R}$ with $\lim_{k\to\infty} \phi(k) = \frac{1}{2}$ such that

- 1. Any deterministic protocol for MPJ_k costs at least $\phi(k)n$ bits.
- 2. There exists a protocol \mathcal{P} for MPJ_k with $cost(\mathcal{P}) = \phi(k)n + o(n)$.

Theorem: Any deterministic protocol for MPJ_k has total cost at least n. **Theorem:** If \mathcal{P} is a deterministic protocol for \widehat{MPJ}_k then

$$\operatorname{cost}(\mathcal{P}) \ge n \left(\log^{(k-1)} n \right) (1 - o(1)).$$

Theorem: Any randomized protocol for MPJ_k has

$$cost(\mathcal{P}) = \Omega\left(\frac{n}{k\log n}\right).$$

Joshua Brody

Base Case Lemma: Any protocol \mathcal{P} for $MPJ_{m,2}$ has $cost(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \ge 3$. If there is a δn -bit protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-\delta n/m}$.

Base Case Lemma: Any protocol \mathcal{P} for $MPJ_{m,2}$ has $cost(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \ge 3$. If there is a δn -bit protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-\delta n/m}$.

Message Sets:

- P1's input: $f_2 \in [n]^{[m]}$
- $M := M_{m} = \{f_2 : P1 \text{ sends } m \text{ on input } f_2\}.$
- Fix **m** to maximize |M|; then $|M| \ge \frac{n^m}{2^{\delta n}}$.

Base Case Lemma: Any protocol \mathcal{P} for $MPJ_{m,2}$ has $cost(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \ge 3$. If there is a δn -bit protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-\delta n/m}$.

Message Sets:

- P1's input: $f_2 \in [n]^{[m]}$
- $M := M_{\mathsf{m}} = \{f_2 : \mathsf{P1} \text{ sends } \mathsf{m} \text{ on input } f_2\}.$
- Fix **m** to maximize |M|; then $|M| \ge \frac{n^m}{2^{\delta n}}$.

Definition: For $\mathcal{F} \subseteq [n]^{[m]}$, $\operatorname{Range}(i, \mathcal{F}) := \{f_2(i) : f_2 \in \mathcal{F}\}$

Base Case Lemma: Any protocol \mathcal{P} for $MPJ_{m,2}$ has $cost(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \ge 3$. If there is a δn -bit protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-\delta n/m}$.

Message Sets:

- P1's input: $f_2 \in [n]^{[m]}$
- $M := M_{\mathsf{m}} = \{f_2 : \mathsf{P1} \text{ sends } \mathsf{m} \text{ on input } f_2\}.$
- Fix **m** to maximize |M|; then $|M| \ge \frac{n^m}{2^{\delta n}}$.

Definition: For $\mathcal{F} \subseteq [n]^{[m]}$, $\operatorname{Range}(i, \mathcal{F}) := \{f_2(i) : f_2 \in \mathcal{F}\}$

Range Lemma: If $|\mathcal{F}| \ge (m')^m$, then $\exists i \text{ with } |\text{Range}(i, \mathcal{F})| \ge m'$

Joshua Brody

Proof of Round Elimination Lemma

Base Case Lemma: Any protocol \mathcal{P} for $MPJ_{m,2}$ has $cost(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \ge 3$. If there is a δn -bit protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-\delta n/m}$.

Proof:

Proof of Round Elimination Lemma

Base Case Lemma: Any protocol \mathcal{P} for $MPJ_{m,2}$ has $cost(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \geq 3$. If there is a δn -bit protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-\delta n/m}$.

- Fix *M*. Note: $|M| \ge \frac{n^m}{2^{\delta n}} = 2^{m \log n \delta n} = (m')^m$.
- By Range Lemma, $\exists i \in [m]$ s.t. $|\text{Range}(i, M)| \ge m'$. Fix i.
- For each $j \in [m']$, fix $g_j \in M$ s.t. $g_j(i) = j$.
- Protocol Q: on input (j, f₃,..., f_{k-1}, x), players simulate P on input (i, g_j, f₃,..., f_{k-1}, x).

Define

•
$$a_0 := 0, a_\ell := \delta 2^{a_{\ell-1}}$$
 $a_0 = 0$

• $m_\ell := n 2^{-a_\ell}$

 $a_1 = \delta$

Define

•
$$a_0 := 0, a_\ell := \delta 2^{a_{\ell-1}}$$

• $m_\ell := n 2^{-a_\ell}$

 $a_2 = \delta 2^{\delta}$

Define

•
$$a_0 := 0, a_\ell := \delta 2^{a_{\ell-1}}$$

• $m_\ell := n2^{-a_\ell}$

 $a_3 = \delta 2^{\delta 2^{\delta}}$

Define

•
$$a_0 := 0, a_\ell := \delta 2^{a_{\ell-1}}$$

• $m_\ell := n 2^{-a_\ell}$

 $a_4 = \delta 2^{\delta 2^{\delta 2^{\delta}}}$

Define

•
$$a_0 := 0, a_\ell := \delta 2^{a_{\ell-1}}$$

• $m_\ell := n 2^{-a_\ell}$

Define

•
$$a_0 := 0, a_\ell := \delta 2^{a_{\ell-1}}$$

• $m_\ell := n 2^{-a_\ell}$

Define

•
$$a_0 := 0, a_\ell := \delta 2^{a_{\ell-1}}$$

• $m_\ell := n 2^{-a_\ell}$

Definition: Let $\phi(k) := \text{least } \delta$ such that $a_{k-1} \ge 1$

Claim: $\lim_{k\to\infty} \phi(k) = 1/2$

(Induction)

 $a_{\ell} = \delta 2^{\delta 2^{\delta 2^{\delta 2^{\delta 2^{\cdot 1}}}}}$

Round elimination $(m = m_{\ell})$:

 $m' = n2^{-\frac{\delta n}{m_{\ell}}} = n2^{-\delta n/n2^{-a_{\ell}}} = n2^{-\delta 2^{a_{\ell}}} = n2^{-a_{\ell+1}} = m_{\ell+1}$

Proof of Main Theorem

Theorem: Any myopic protocol \mathcal{P} for $MPJ_k = MPJ_{n,k}$ has

 $\cot(\mathcal{P}) \ge n\phi(k).$

Proof of Main Theorem

Theorem: Any myopic protocol \mathcal{P} for $MPJ_k = MPJ_{n,k}$ has

 $\cot(\mathcal{P}) \ge n\phi(k).$

Proof:

$$\begin{split} &\delta n \text{-bit protocol for } \operatorname{MPJ}_{m_0,k} \Rightarrow \\ &\dots k-2 \text{ round eliminations } \dots \Rightarrow \\ &\delta n \text{-bit protocol for } \operatorname{MPJ}_{m_{k-2,2}} \Rightarrow \\ &\delta n \ge n2^{-a_{k-2}} = m_{k-2} \qquad (\text{Base Case Lemma}) \Rightarrow \\ &a_{k-1} = \delta 2^{a_{k-2}} \ge 1 \Rightarrow \\ &\delta \ge \phi(k) \qquad (\text{by def. of } \phi(k)) \end{split}$$

• Players 2,..., k run MPJ_{m',k-1} protocol on $(f_2(i), f_3, ..., x)$.

Round Elimination Lemma: Let $k \geq 3$. If there is a δn -bit, ε -error distributional protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit, ε' -error protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-2\delta n/m}$ and $\varepsilon' = 2n\varepsilon$.

Round Elimination Lemma: Let $k \geq 3$. If there is a δn -bit, ε -error distributional protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit, ε' -error protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-2\delta n/m}$ and $\varepsilon' = 2n\varepsilon$.

- $z := (f_3, \dots, f_{k-1}, x)$
- Call (i, f_2) bad if $\Pr_z[\text{error } |(i, f_2)] > 2n\varepsilon$
- Call f_2 bad if $\Pr_i[(i, f_2) \text{ bad } | f_2] \ge 1/n$

Round Elimination Lemma: Let $k \geq 3$. If there is a δn -bit, ε -error distributional protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit, ε' -error protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-2\delta n/m}$ and $\varepsilon' = 2n\varepsilon$.

Proof:

- $z := (f_3, \dots, f_{k-1}, x)$
- Call (i, f_2) bad if $\Pr_z[\text{error } |(i, f_2)] > 2n\varepsilon$ $\Rightarrow \Pr[(i, f_2) \text{ bad}] < 1/2n$

(Markov)

• Call f_2 bad if $\Pr_i[(i, f_2) \text{ bad } | f_2] \ge 1/n$ $\Rightarrow \Pr[f_2 \text{ bad}] < 1/2$

(Markov)

Round Elimination Lemma: Let $k \geq 3$. If there is a δn -bit, ε -error distributional protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit, ε' -error protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-2\delta n/m}$ and $\varepsilon' = 2n\varepsilon$.

Proof:

- $z := (f_3, \dots, f_{k-1}, x)$
- Call (i, f_2) bad if $\Pr_z[\text{error } |(i, f_2)] > 2n\varepsilon$ $\Rightarrow \Pr[(i, f_2) \text{ bad}] < 1/2n$

(Markov)

(Markov)

• Call f_2 bad if $\Pr_i[(i, f_2) \text{ bad } | f_2] \ge 1/n$ $\Rightarrow \Pr[f_2 \text{ bad}] < 1/2$ Note: $f_2 \text{ good } \Rightarrow (i, f_2) \text{ good for all } i$.

(Markov)

(Markov)

Randomizing the Lower Bound

Round Elimination Lemma: Let $k \geq 3$. If there is a δn -bit, ε -error distributional protocol \mathcal{P} for MPJ_{m,k}, then there is a δn -bit, ε' -error protocol \mathcal{Q} for MPJ_{m',k-1} with $m' = n \cdot 2^{-2\delta n/m}$ and $\varepsilon' = 2n\varepsilon$.

Proof:

•
$$z := (f_3, \dots, f_{k-1}, x)$$

- Call (i, f_2) bad if $\Pr_z[\text{error } |(i, f_2)] > 2n\varepsilon$ $\Rightarrow \Pr[(i, f_2) \text{ bad}] < 1/2n$
- Call f_2 bad if $\Pr_i[(i, f_2) \text{ bad } | f_2] \ge 1/n$ $\Rightarrow \Pr[f_2 \text{ bad}] < 1/2$ Note: $f_2 \text{ good } \Rightarrow (i, f_2) \text{ good for all } i$.
- Follow deterministic proof

 $M := M_{\mathsf{m}} = \{ \text{good } f_2 : \mathsf{P1} \text{ sends } \mathsf{m} \text{ on input } f_2 \} \dots$

Conclusions/Open Problems

Conclusions

- Still far from proving $MPJ_k \not\in ACC^0$
- Provided the first o(n) protocol for MPJ_k
- Characterized maximum communication complexity of myopic protocols up to 1 + o(1) factors.
- Lower bound technique applies to MPJ_k and \widehat{MPJ}_k and does randomize; seems promising for other problems.

Open Problems

- 1. Settle $D(MPJ_k)$
- 2. Possible first step: improve bound on MPJ_3
- 3. Relax protocol restrictions: 2-myopic, ...

Questions? Contact jbrody@cs.dartmouth.edu