The NOF Communication Complexity of Multi-Party Pointer Jumping

Joshua Brody
Dartmouth College
Hanover, NH USA

IAS Computer Science/Discrete Math Seminar
December 7, 2009

Talk Outline

- Multi-Party Communication Games
- The Multi-Party Pointer Jumping Problem
- Upper Bounds
- Restricted Protocols
- Conclusions

Multi-Party Communication Games

Input $x=\left(x_{1}, \ldots, x_{k}\right)$ is split between k players.
Goal: minimize communication needed to compute $f(x)$.
Our model of communication:

- Player i sees every input except x_{i} (NOF model).
- One-way communication: each player speaks once and in order.
- Blackboard communication: all players see every message sent.

Vertices:

- $k-1$ layers, plus start vertex
- layers have n vertices

Vertices:

- $k-1$ layers, plus start vertex
- layers have n vertices

Input:

- $k-1$ layers of pointers
- n bit string

Vertices:

- $k-1$ layers, plus start vertex
- layers have n vertices

Input:

- $k-1$ layers of pointers
- n bit string

Compute $\mathrm{MPJ}_{k}=$ bit reached by following pointers from start vertex.

Pointer Jumping: non-Boolean version

Vertices:

- k layers, plus start vertex
- layers have n vertices

Input:

- k layers of pointers

Compute $\widehat{\mathrm{MPJ}}_{k}=\underline{\text { vertex }}$ reached by following pointers from start vertex.

Layers of Edges are Functions

Formal Definition:
Inputs:

- $i \in[n]$
- $f_{2}, \ldots, f_{k-1}:[n] \rightarrow[n]$
- $x \in\{0,1\}^{n}$

Output:

- $\operatorname{MPJ}_{k}:=x\left[f_{k-1} \circ \cdots \circ f_{2}(i)\right]$

Pointer Jumping: Trivial Bounds

- One-way: any order except $P 1, P 2, \ldots, P k: O(\log n)$
- One way: in the order $P 1, P 2, \ldots, P k: O(n)$

Pointer Jumping: Trivial Bounds

- One-way: any order except $P 1, P 2, \ldots, P k: O(\log n)$
- One way: in the order $P 1, P 2, \ldots, P k: O(n)$
- Problem seems hard. Maybe $n^{\Omega(1)}$ lower bound?

Motivation

ACC^{0} complexity class: AC^{0} plus MOD_{m} gates.

- No function $f \notin \mathrm{ACC}^{0}$ is known.
- If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $f \in \mathrm{ACC}^{0}$, then f has deterministic NOF protocol with poly $(\log n)$ communication, for $k=\operatorname{poly}(\log n)$ players.
[Yao'90], [Håstad-Goldmann'91], [Beigel-Tarui'94]

More Motivation

ACC^{0} complexity class: AC^{0} plus MOD_{m} gates.

- No function $f \notin \mathrm{ACC}^{0}$ is known.
- If $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and $f \in \mathrm{ACC}^{0}$, then f has deterministic NOF protocol with poly $(\log n)$ communication, for $k=\operatorname{poly}(\log n)$ players.
[Yao'90], [Håstad-Goldmann'91], [Beigel-Tarui'94]
Recently pointer jumping has been used to prove lower bounds in:
- threshold circuits
- proof size
- matroid intersection queries
- randomly-ordered data streams

Previous Result Highlights

Far from proving $\mathrm{MPJ}_{\text {poly }(\log n)} \notin \mathrm{ACC}^{0}$

- $\Omega(\sqrt{n})$ for MPJ_{3}
- $\Omega\left(n^{1 /(k-1)} / k^{k}\right)$ for MPJ_{k}
- lower bounds for restricted protocols

Previous Result Highlights

Far from proving MPJ $\mathrm{Joly}_{\text {pol }(\log n)} \notin \mathrm{ACC}^{0}$

- $\Omega(\sqrt{n})$ for MPJ_{3}
- $\Omega\left(n^{1 /(k-1)} / k^{k}\right)$ for MPJ_{k}
- lower bounds for restricted protocols
- $O\left(n \log ^{(k-1)} n\right)$ for $\widehat{\mathrm{MPJ}}_{k}$
- $O\left(n \frac{\log \log n}{\log n}\right)$ for MPJ3 when middle layer is a permutation.
[Pudlák-Rödl-Sgall '97]

Previous Result Highlights

Far from proving MPJ $\mathrm{Jpoly}^{(\log n)} \notin \mathrm{ACC}^{0}$

- $\Omega(\sqrt{n})$ for MPJ_{3}
- $\Omega\left(n^{1 /(k-1)} / k^{k}\right)$ for MPJ_{k}
- lower bounds for restricted protocols
- $O(n \log (k-1) n)$ for $\widehat{\mathrm{MPJ}}_{k}$
- $O\left(n \frac{\log \log n}{\log n}\right)$ for MPJ3 when middle layer is a permutation.
[Pudlák-Rödl-Sgall '97]

Our Results

- $O\left(n \sqrt{\frac{\log \log n}{\log n}}\right)$ for MPJ 3
- bounds for restricted protocols

Previous Result Highlights

Far from proving MPJ $\mathrm{Jpoly}^{(\log n)} \notin \mathrm{ACC}^{0}$

- $\Omega(\sqrt{n})$ for MPJ_{3}
[Wigderson'97]
- $\Omega\left(n^{1 /(k-1)} / k^{k}\right)$ for MPJ_{k}
- lower bounds for restricted protocols (2nd half of talk)
- $O\left(n \log ^{(k-1)} n\right)$ for $\widehat{\mathrm{MPJ}}_{k}$
- $O\left(n \frac{\log \log n}{\log n}\right)$ for MPJ3 when middle layer is a permutation.
[Pudlák-Rödl-Sgall '97]

Our Results

- $O\left(n \sqrt{\frac{\log \log n}{\log n}}\right)$ for MPJ 3
[B.-Chakrabarti'08]
- bounds for restricted protocols (2nd half of talk)

Talk Outline

- Multi-Party Communication Games
- The Multi-Party Pointer Jumping Problem
- Upper Bounds
- Restricted Protocols
- Conclusions

The Damm-Jukna-Sgall Protocol

3 players:

The Damm-Jukna-Sgall Protocol

3 players:
$P 1$ sends $\log \log n$ bits of $f_{2}(i)$ for each i

The Damm-Jukna-Sgall Protocol

3 players:
$P 1$ sends $\log \log n$ bits of $f_{2}(i)$ for each i
$P 2$ sends $f_{3}(j)$ for each possibile j

The Damm-Jukna-Sgall Protocol

3 players:
$P 1$ sends $\log \log n$ bits of $f_{2}(i)$ for each i
$P 2$ sends $f_{3}(j)$ for each possibile j
$P 3$ outputs $f_{3}\left(f_{2}(i)\right)$.

The Damm-Jukna-Sgall Protocol

3 players:
$P 1$ sends $\log \log n$ bits of $f_{2}(i)$ for each $i \quad \Rightarrow n \log \log n$ bits. $P 2$ sends $f_{3}(j)$ for each possibile j $\Rightarrow \frac{n}{2^{\log \log n}} \log n=n$ bits. $P 3$ outputs $f_{3}\left(f_{2}(i)\right)$.

The Damm-Jukna-Sgall Protocol

3 players:
$P 1$ sends $\log \log n$ bits of $f_{2}(i)$ for each $i \quad \Rightarrow n \log \log n$ bits.
$P 2$ sends $f_{3}(j)$ for each possibile j $\Rightarrow \frac{n}{2^{\log \log n}} \log n=n$ bits.
$P 3$ outputs $f_{3}\left(f_{2}(i)\right)$.

k players:
$P 1$ sends $\log ^{(k-1)} n$ bits for each pointer.
$P 2$ sends $\log ^{(k-2)} n$ bits for each of $n / \log ^{(k-2)} n$ possible pointers.

The Damm-Jukna-Sgall Protocol

3 players:
$P 1$ sends $\log \log n$ bits of $f_{2}(i)$ for each $i \quad \Rightarrow n \log \log n$ bits. $P 2$ sends $f_{3}(j)$ for each possibile j $\Rightarrow \frac{n}{2^{\log \log n}} \log n=n$ bits.
$P 3$ outputs $f_{3}\left(f_{2}(i)\right)$.

k players:
$P 1$ sends $\log ^{(k-1)} n$ bits for each pointer.
$P 2$ sends $\log ^{(k-2)} n$ bits for each of $n / \log ^{(k-2)} n$ possible pointers.

Total communication: $O\left(n \log ^{(k-1)} n\right)$ bits.

The Pudlák-Rödl-Sgall Protocol

Step 0: Generate random bipartite graph H

The Pudlák-Rödl-Sgall Protocol

Step 0: Generate random bipartite graph H

The Pudlák-Rödl-Sgall Protocol

Step 0: Generate random bipartite graph H Step 1: $P 1$ sees π, knows H

- creates graph G_{π} on vertices in second layer
- $(a, b) \in E$ iff $\left(y_{\pi^{-1}(a)}, x_{b}\right)$ and $\left(y_{\pi^{-1}(b)}, x_{a}\right)$ in H

The Pudlák-Rödl-Sgall Protocol

Step 0: Generate random bipartite graph H Step 1: $P 1$ sees π, knows H

- creates graph G_{π} on vertices in second layer
- $(a, b) \in E$ iff $\left(y_{\pi^{-1}(a)}, x_{b}\right)$ and $\left(y_{\pi^{-1}(b)}, x_{a}\right)$ in H

The Pudlák-Rödl-Sgall Protocol

Step 0: Generate random bipartite graph H Step 1: $P 1$ sees π, knows H

- creates graph G_{π} on vertices in second layer
- $(a, b) \in E$ iff $\left(y_{\pi^{-1}(a)}, x_{b}\right)$ and $\left(y_{\pi^{-1}(b)}, x_{a}\right)$ in H
- Let C_{1}, \ldots, C_{r} be a clique cover of G_{π}
- For each $1 \leq i \leq r, P 1$ sends parity of bits in C_{i}

The Pudlák-Rödl-Sgall Protocol

Step 2: $P 2$ sees i, knows H

- sends x_{j} for each $\left(y_{i}, x_{j}\right) \in H$

The Pudlák-Rödl-Sgall Protocol

Step 2: $P 2$ sees i, knows H

- sends x_{j} for each $\left(y_{i}, x_{j}\right) \in H$

The Pudlák-Rödl-Sgall Protocol

Step 2: $P 2$ sees i, knows H

- sends x_{j} for each $\left(y_{i}, x_{j}\right) \in H$

Step 3: $P 3$ sees i, π, knows H

- $C:=$ clique containing $\pi(i)$

The Pudlák-Rödl-Sgall Protocol

Step 2: $P 2$ sees i, knows H

- sends x_{j} for each $\left(y_{i}, x_{j}\right) \in H$

Step 3: $P 3$ sees i, π, knows H

- $C:=$ clique containing $\pi(i)$
- Note: $j \neq \pi(i) \in C \Rightarrow(j, \pi(i)) \in G_{\pi}$

The Pudlák-Rödl-Sgall Protocol

Step 2: $P 2$ sees i, knows H

- sends x_{j} for each $\left(y_{i}, x_{j}\right) \in H$

Step 3: $P 3$ sees i, π, knows H

- $C:=$ clique containing $\pi(i)$
- Note: $j \neq \pi(i) \in C \Rightarrow(j, \pi(i)) \in G_{\pi}$
- $\therefore\left(y_{i}, x_{j}\right) \in H \Rightarrow P 2$ sent x_{j}.

The Pudlák-Rödl-Sgall Protocol

Step 2: $P 2$ sees i, knows H

- sends x_{j} for each $\left(y_{i}, x_{j}\right) \in H$

Step 3: $P 3$ sees i, π, knows H

- $C:=$ clique containing $\pi(i)$
- Note: $j \neq \pi(i) \in C \Rightarrow(j, \pi(i)) \in G_{\pi}$
- $\therefore\left(y_{i}, x_{j}\right) \in H \Rightarrow P 2$ sent x_{j}.
- P3 takes clique bit, XORs out all $x_{j} \neq x_{\pi(i)}$, recovers $x_{\pi(i)}$.

PRS Protocol Analysis

Lemma:

There exists a bipartite graph H such that for all i, π

1. G_{π} has $O\left(n \frac{\log \log n}{\log n}\right)$ cliques
2. y_{i} has outdegree $O\left(n \frac{\log \log n}{\log n}\right)$

A General Protocol: 3 players

A General Protocol: 3 players

Idea: - Run PRS several times in parallel.

- Pick permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{d}$ such that $f(i)=\pi_{j}(i)$ for some permutation.

A General Protocol: 3 players

Idea: - Run PRS several times in parallel.

- Pick permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{d}$ such that $f(i)=\pi_{j}(i)$ for some permutation.

A General Protocol: 3 players

Idea: - Run PRS several times in parallel.

- Pick permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{d}$ such that $f(i)=\pi_{j}(i)$ for some permutation.

A General Protocol: 3 players

in parallel.

- Pick permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{d}$ such that $f(i)=\pi_{j}(i)$ for some permutation.

Idea: - Run PRS several times

A General Protocol: 3 players

Idea: - Run PRS several times in parallel.

- Pick permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{d}$ such that $f(i)=\pi_{j}(i)$ for some permutation.
- P3 determines which permutation matches $f(i)$.

A General Protocol: 3 players

Idea: - Run PRS several times in parallel.

- Pick permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{d}$ such that $f(i)=\pi_{j}(i)$ for some permutation.
- P3 determines which permutation matches $f(i)$.

It turns out we can't do this efficiently, but we can get close enough.

Technical Details

Defintion: A set of permutations $A \subseteq S_{n} d$-covers f if for all $i \in[n]$, one of the following conditions holds:

- There exists $\pi \in A$ such that $\pi(i)=f(i)$.
- $f(i)$ has a large preimage: $\left|f^{-1}(f(i))\right|>d$.

Technical Details

Defintion: A set of permutations $A \subseteq S_{n} d$-covers f if for all $i \in[n]$, one of the following conditions holds:

- There exists $\pi \in A$ such that $\pi(i)=f(i)$.
- $f(i)$ has a large preimage: $\left|f^{-1}(f(i))\right|>d$.

Lemma: We can always find a set of d permutations that d-covers f.

Technical Details

Defintion: A set of permutations $A \subseteq S_{n} d$-covers f if for all $i \in[n]$, one of the following conditions holds:

- There exists $\pi \in A$ such that $\pi(i)=f(i)$.
- $f(i)$ has a large preimage: $\left|f^{-1}(f(i))\right|>d$.

Lemma: We can always find a set of d permutations that d-covers f.
Note: There can be at most n / d points with large preimages.

A General Protocol: 3 players

Players agree on d and a d-covering set $A_{d}(f)$ for each f.

A General Protocol: 3 players

Players agree on d and a d-covering set $A_{d}(f)$ for each f.

- $P 1$ sends $\{\alpha(\pi, x)\}_{\pi \in A_{d}(f)}$.
- $P 1$ also sends $x[j]$ for any j with a large preimage.

A General Protocol: 3 players

Players agree on d and a d-covering set $A_{d}(f)$ for each f.

- $P 1$ sends $\{\alpha(\pi, x)\}_{\pi \in A_{d}(f)}$.
- $P 1$ also sends $x[j]$ for any j with a large preimage.
- $P 2$ sends $\{\beta(i, x, \alpha)\}_{\alpha}$.

A General Protocol: 3 players

Players agree on d and a d-covering set $A_{d}(f)$ for each f.

- $P 1$ sends $\{\alpha(\pi, x)\}_{\pi \in A_{d}(f)}$.
- $P 1$ also sends $x[j]$ for any j with a large preimage.
- $P 2$ sends $\{\beta(i, x, \alpha)\}_{\alpha}$.
- P3 recovers $x[f(i)]$ from PRS or from P1's extra bits.

A General Protocol: 3 players

Players agree on d and a d-covering set $A_{d}(f)$ for each f.

- $P 1$ sends $\{\alpha(\pi, x)\}_{\pi \in A_{d}(f)}$.
- $P 1$ also sends $x[j]$ for any j with a large preimage.
- $P 2$ sends $\{\beta(i, x, \alpha)\}_{\alpha}$.
- P3 recovers $x[f(i)]$ from PRS or from P1's extra bits.

With $d=\sqrt{\frac{\log n}{\log \log n}}$, the protocol costs $O\left(n \sqrt{\frac{\log \log n}{\log n}}\right)$.

Talk Outline

- Multi-Party Communication Games
- The Multi-Party Pointer Jumping Problem
- Upper Bounds
- Restricted Protocols
- Conclusions

Restricted Protocols

Partial progress: protocols with more restricted forms of information sharing

- Myopic protocols: Pj only sees layers $1, \ldots,(j-1)$ as well as layer $(j+1)$ of graph. (i.e., limited visibility of layers ahead) [Gronemeier'06]
- Conservative protocols: $P j$ sees layers $(j+1), \ldots, k$ of graph, plus composition of layers $1, \ldots,(j-1)$. Doesn't see individual layers $1, \ldots,(j-1)$ themselves. (i.e., limited visibility of layers behind)
[Damm-Jukna-Sgall'96]

Restricted Protocols

Partial progress: protocols with more restricted forms of information sharing

- Myopic protocols: $P j$ only sees layers $1, \ldots,(j-1)$ as well as layer $(j+1)$ of graph. (i.e., limited visibility of layers ahead)
- Conservative protocols: $P j$ sees layers $(j+1), \ldots, k$ of graph, plus composition of layers $1, \ldots,(j-1)$. Doesn't see individual layers $1, \ldots,(j-1)$ themselves. (i.e., limited visibility of layers behind)
[Damm-Jukna-Sgall'96]
Note: The DJS protocol for $\widehat{\operatorname{MPJ}}_{k}$ is both myopic and conservative!

Restricted Protocols

Partial progress: protocols with more restricted forms of information sharing

- Myopic protocols: $P j$ only sees layers $1, \ldots,(j-1)$ as well as layer $(j+1)$ of graph. (i.e., limited visibility of layers ahead)
[Gronemeier'06]
- Conservative protocols: $P j$ sees layers $(j+1), \ldots, k$ of graph, plus composition of layers $1, \ldots,(j-1)$. Doesn't see individual layers $1, \ldots,(j-1)$ themselves. (i.e., limited visibility of layers behind)
[Damm-Jukna-Sgall'96]
Note: The DJS protocol for $\widehat{\mathrm{MPJ}}_{k}$ is both myopic and conservative! [Chakrabarti'07] gave randomized lower bounds for restricted protocols:
- myopic: $\Omega(n / k)$ bits.
- conservative: $\Omega\left(n / k^{2}\right)$ bits.

Restricted Protocols

Partial progress: protocols with more restricted forms of information sharing

- Myopic protocols: $P j$ only sees layers $1, \ldots,(j-1)$ as well as layer $(j+1)$ of graph. (i.e., limited visibility of layers ahead)
[Gronemeier'06]
- Conservative protocols: $P j$ sees layers $(j+1), \ldots, k$ of graph, plus composition of layers $1, \ldots,(j-1)$. Doesn't see individual layers $1, \ldots,(j-1)$ themselves. (i.e., limited visibility of layers behind)
[Damm-Jukna-Sgall'96]
Note: The DJS protocol for $\widehat{\mathrm{MPJ}}_{k}$ is both myopic and conservative!
[Chakrabarti'07] gave randomized lower bounds for restricted protocols:
- myopic: $\Omega(n / k)$ bits.
- conservative: $\Omega\left(n / k^{2}\right)$ bits.

For the rest of this talk: all protocols are myopic.

Our Results

Question: Can there be any nontrivial myopic protocol for MPJ_{k} ?

Our Results

Question: Can there be any nontrivial myopic protocol for MPJ_{k} ?
No, but in an interesting way...

Our Results

Question: Can there be any nontrivial myopic protocol for MPJ_{k} ?
No, but in an interesting way...
Theorem: In any myopic protocol for MPJ_{k}, some player must send at least $n / 2$ bits.

Our Results

Question: Can there be any nontrivial myopic protocol for MPJ_{k} ?
No, but in an interesting way...
Theorem: In any myopic protocol for MPJ_{k}, some player must send at least $n / 2$ bits.

Definitions:

- $\operatorname{cost}(\mathcal{P}):=$ cost of largest message of \mathcal{P}.
- $\operatorname{tcost}(\mathcal{P}):=$ total cost of \mathcal{P}.
- δn-bit protocol: $\operatorname{cost}(\mathcal{P})=\delta n$.

Detailed Results

Main Theorem: There exists a decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{R}$ with $\lim _{k \rightarrow \infty} \phi(k)=\frac{1}{2}$ such that

1. Any deterministic protocol for MPJ_{k} costs at least $\phi(k) n$ bits.

Detailed Results

Main Theorem: There exists a decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{R}$ with $\lim _{k \rightarrow \infty} \phi(k)=\frac{1}{2}$ such that

1. Any deterministic protocol for MPJ_{k} costs at least $\phi(k) n$ bits.
2. There exists a protocol \mathcal{P} for MPJ_{k} with $\operatorname{cost}(\mathcal{P})=\phi(k) n+o(n)$.

Detailed Results

Main Theorem: There exists a decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{R}$ with $\lim _{k \rightarrow \infty} \phi(k)=\frac{1}{2}$ such that

1. Any deterministic protocol for MPJ_{k} costs at least $\phi(k) n$ bits.
2. There exists a protocol \mathcal{P} for MPJ_{k} with $\operatorname{cost}(\mathcal{P})=\phi(k) n+o(n)$.

Theorem: Any deterministic protocol for MPJ_{k} has total cost at least n. Theorem: If \mathcal{P} is a deterministic protocol for $\widehat{\operatorname{MPJ}}_{k}$ then

$$
\operatorname{cost}(\mathcal{P}) \geq n\left(\log ^{(k-1)} n\right)(1-o(1))
$$

Theorem: Any randomized protocol for MPJ_{k} has

$$
\operatorname{cost}(\mathcal{P})=\Omega\left(\frac{n}{k \log n}\right)
$$

Generalized Pointer Jumping

$\operatorname{MPJ}_{m, k}$: just like MPJ_{k}, except $m \leq n$ vertices in first layer.

Generalized Pointer Jumping

$\operatorname{MPJ}_{m, k}$: just like MPJ_{k}, except $m \leq n$ vertices in first layer.

Round Elimination Lemma

Base Case Lemma: Any protocol \mathcal{P} for MPJ $_{m, 2}$ has $\operatorname{cost}(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit protocol \mathcal{P} for $\mathrm{MPJ}_{m, k}$, then there is a δn-bit protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-\delta n / m}$.

Round Elimination Lemma

Base Case Lemma: Any protocol \mathcal{P} for MPJ $_{m, 2}$ has $\operatorname{cost}(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit protocol \mathcal{P} for $\mathrm{MPJ}_{m, k}$, then there is a δn-bit protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-\delta n / m}$.

Message Sets:

- P1's input: $f_{2} \in[n]^{[m]}$
- $M:=M_{\mathrm{m}}=\left\{f_{2}: \mathrm{P} 1\right.$ sends m on input $\left.f_{2}\right\}$.
- Fix m to maximize $|M|$; then $|M| \geq \frac{n^{m}}{2^{\delta n}}$.

Round Elimination Lemma

Base Case Lemma: Any protocol \mathcal{P} for $\operatorname{MPJ}_{m, 2}$ has $\operatorname{cost}(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit protocol \mathcal{P} for $\mathrm{MPJ}_{m, k}$, then there is a δn-bit protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-\delta n / m}$.

Message Sets:

- P1's input: $f_{2} \in[n]^{[m]}$
- $M:=M_{\mathrm{m}}=\left\{f_{2}: \mathrm{P} 1\right.$ sends m on input $\left.f_{2}\right\}$.
- Fix m to maximize $|M|$; then $|M| \geq \frac{n^{m}}{2^{\delta n}}$.

Definition: For $\mathcal{F} \subseteq[n]^{[m]}$, Range $(i, \mathcal{F}):=\left\{f_{2}(i): f_{2} \in \mathcal{F}\right\}$

Round Elimination Lemma

Base Case Lemma: Any protocol \mathcal{P} for $\operatorname{MPJ}_{m, 2}$ has $\operatorname{cost}(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit protocol \mathcal{P} for $\mathrm{MPJ}_{m, k}$, then there is a δn-bit protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-\delta n / m}$.

Message Sets:

- P1's input: $f_{2} \in[n]^{[m]}$
- $M:=M_{\mathrm{m}}=\left\{f_{2}: \mathrm{P} 1\right.$ sends m on input $\left.f_{2}\right\}$.
- Fix m to maximize $|M|$; then $|M| \geq \frac{n^{m}}{2^{\delta n}}$.

Definition: For $\mathcal{F} \subseteq[n]^{[m]}$, Range $(i, \mathcal{F}):=\left\{f_{2}(i): f_{2} \in \mathcal{F}\right\}$

Range Lemma: If $|\mathcal{F}| \geq\left(m^{\prime}\right)^{m}$, then $\exists i$ with $|\operatorname{Range}(i, \mathcal{F})| \geq m^{\prime}$

Proof of Round Elimination Lemma

Base Case Lemma: Any protocol \mathcal{P} for MPJ $_{m, 2}$ has $\operatorname{cost}(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit protocol \mathcal{P} for $\mathrm{MPJ}_{m, k}$, then there is a δn-bit protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-\delta n / m}$.

Proof:

Proof of Round Elimination Lemma

Base Case Lemma: Any protocol \mathcal{P} for $\operatorname{MPJ}_{m, 2}$ has $\operatorname{cost}(\mathcal{P}) \geq m$ (INDEX)

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit protocol \mathcal{P} for $\mathrm{MPJ}_{m, k}$, then there is a δn-bit protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-\delta n / m}$.

Proof:

- Fix M. Note: $|M| \geq \frac{n^{m}}{2^{\delta n}}=2^{m \log n-\delta n}=\left(m^{\prime}\right)^{m}$.
- By Range Lemma, $\exists i \in[m]$ s.t. $|\operatorname{Range}(i, M)| \geq m^{\prime}$. Fix i.
- For each $j \in\left[m^{\prime}\right]$, fix $g_{j} \in M$ s.t. $g_{j}(i)=j$.
- Protocol \mathcal{Q} : on input $\left(j, f_{3}, \ldots, f_{k-1}, x\right)$, players simulate \mathcal{P} on input $\left(i, g_{j}, f_{3}, \ldots, f_{k-1}, x\right)$.

Analysis

Define

- $a_{0}:=0, a_{\ell}:=\delta 2^{a_{\ell-1}}$
$a_{0}=0$
- $m_{\ell}:=n 2^{-a_{\ell}}$

Definition: Let $\phi(k):=$ least δ such that $a_{k-1} \geq 1$

Analysis

Define

- $a_{0}:=0, a_{\ell}:=\delta 2^{a_{\ell-1}}$
$a_{1}=\delta$
- $m_{\ell}:=n 2^{-a_{\ell}}$

Definition: Let $\phi(k):=$ least δ such that $a_{k-1} \geq 1$

Analysis

Define

- $a_{0}:=0, a_{\ell}:=\delta 2^{a_{\ell-1}}$
$a_{2}=\delta 2^{\delta}$
- $m_{\ell}:=n 2^{-a_{\ell}}$

Definition: Let $\phi(k):=$ least δ such that $a_{k-1} \geq 1$

Analysis

Define

- $a_{0}:=0, a_{\ell}:=\delta 2^{a_{\ell-1}}$

$$
a_{3}=\delta 2^{\delta 2^{\delta}}
$$

- $m_{\ell}:=n 2^{-a_{\ell}}$

Definition: Let $\phi(k):=$ least δ such that $a_{k-1} \geq 1$

Analysis

Define

- $a_{0}:=0, a_{\ell}:=\delta 2^{a_{\ell-1}}$

$$
a_{4}=\delta 2^{\delta 2^{\delta 2^{\delta}}}
$$

- $m_{\ell}:=n 2^{-a_{\ell}}$

Definition: Let $\phi(k):=$ least δ such that $a_{k-1} \geq 1$

Analysis

Define

- $a_{0}:=0, a_{\ell}:=\delta 2^{a_{\ell-1}}$

$$
a_{\ell}=\delta 2^{\delta 2^{\delta 2^{\delta 2^{2}}}}
$$

- $m_{\ell}:=n 2^{-a_{\ell}}$

Definition: Let $\phi(k):=$ least δ such that $a_{k-1} \geq 1$

Analysis

Define

- $a_{0}:=0, a_{\ell}:=\delta 2^{a_{\ell-1}}$
- $m_{\ell}:=n 2^{-a_{\ell}}$

$$
a_{\ell}=\delta 2^{\delta 2^{\delta 2^{\delta 2}}}
$$

Definition: Let $\phi(k):=$ least δ such that $a_{k-1} \geq 1$
Claim: $\lim _{k \rightarrow \infty} \phi(k)=1 / 2$
(Induction)

Round elimination ($m=m_{\ell}$):

$$
m^{\prime}=n 2^{-\frac{\delta n}{m_{\ell}}}=n 2^{-\delta n / n 2^{-a_{\ell}}}=n 2^{-\delta 2^{a_{\ell}}}=n 2^{-a_{\ell+1}}=m_{\ell+1}
$$

Proof of Main Theorem

Theorem: Any myopic protocol \mathcal{P} for $\operatorname{MPJ}_{k}=\operatorname{MPJ}_{n, k}$ has

$$
\operatorname{cost}(\mathcal{P}) \geq n \phi(k)
$$

Proof:

Proof of Main Theorem

Theorem: Any myopic protocol \mathcal{P} for $\mathrm{MPJ}_{k}=\mathrm{MPJ}_{n, k}$ has

$$
\operatorname{cost}(\mathcal{P}) \geq n \phi(k)
$$

Proof:

δn-bit protocol for MPJ m $_{m_{0}, k} \Rightarrow$
$\ldots k-2$ round eliminations $\ldots \Rightarrow$
δn-bit protocol for MPJ $m_{k-2,2} \Rightarrow$

$$
\begin{array}{ll}
\delta n \geq n 2^{-a_{k-2}}=m_{k-2} & (\text { Base Case Lemma) } \Rightarrow \\
a_{k-1}=\delta 2^{a_{k-2}} \geq 1 \Rightarrow & \\
\delta \geq \phi(k) & \text { (by def. of } \phi(k))
\end{array}
$$

A Sketch of Matching Upper Bound

Idea: Cover $[n]^{[m]}$ with sets $S_{1}, \ldots, S_{t} \subseteq[n]^{[m]}$ s.t.

$$
\mid \text { Range }(i, S) \mid=m^{\prime} \text { for all } i, S
$$

Packing lower bound: $t \geq 2^{\delta n}$.
Claim: $t \leq 2^{\delta n+o(n)}$.

Protocol:

- P1 sends $S \ni f_{2}$.
- Players $2, \ldots$, k see i, set $\left[m^{\prime}\right]:=\operatorname{Range}(i, S)$.
- Players $2, \ldots, \mathrm{k}$ run $\mathrm{MPJ}_{m^{\prime}, k-1}$ protocol on $\left(f_{2}(i), f_{3}, \ldots, x\right)$.

Randomizing the Lower Bound

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit, ε-error distributional protocol \mathcal{P} for $\mathrm{MPJ}_{m, k}$, then there is a δn-bit, ε^{\prime}-error protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-2 \delta n / m}$ and $\varepsilon^{\prime}=2 n \varepsilon$. Proof:

Randomizing the Lower Bound

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit, ε-error distributional protocol \mathcal{P} for $\operatorname{MPJ}_{m, k}$, then there is a δn-bit, ε^{\prime}-error protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-2 \delta n / m}$ and $\varepsilon^{\prime}=2 n \varepsilon$. Proof:

- $z:=\left(f_{3}, \ldots, f_{k-1}, x\right)$
- Call $\left(i, f_{2}\right)$ bad if $\operatorname{Pr}_{z}\left[\right.$ error $\left.\mid\left(i, f_{2}\right)\right]>2 n \varepsilon$
- Call f_{2} bad if $\operatorname{Pr}_{i}\left[\left(i, f_{2}\right)\right.$ bad $\left.\mid f_{2}\right] \geq 1 / n$

Randomizing the Lower Bound

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit, ε-error distributional protocol \mathcal{P} for $\operatorname{MPJ}_{m, k}$, then there is a δn-bit, ε^{\prime}-error protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-2 \delta n / m}$ and $\varepsilon^{\prime}=2 n \varepsilon$.

Proof:

- $z:=\left(f_{3}, \ldots, f_{k-1}, x\right)$
- Call $\left(i, f_{2}\right)$ bad if $\operatorname{Pr}_{z}\left[\right.$ error $\left.\mid\left(i, f_{2}\right)\right]>2 n \varepsilon$

$$
\Rightarrow \operatorname{Pr}\left[\left(i, f_{2}\right) \text { bad }\right]<1 / 2 n
$$

(Markov)

- Call f_{2} bad if $\operatorname{Pr}_{i}\left[\left(i, f_{2}\right)\right.$ bad $\left.\mid f_{2}\right] \geq 1 / n$

$$
\begin{equation*}
\Rightarrow \operatorname{Pr}\left[f_{2} \text { bad }\right]<1 / 2 \tag{Markov}
\end{equation*}
$$

Randomizing the Lower Bound

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit, ε-error distributional protocol \mathcal{P} for $\operatorname{MPJ}_{m, k}$, then there is a δn-bit, ε^{\prime}-error protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-2 \delta n / m}$ and $\varepsilon^{\prime}=2 n \varepsilon$.

Proof:

- $z:=\left(f_{3}, \ldots, f_{k-1}, x\right)$
- Call $\left(i, f_{2}\right)$ bad if $\operatorname{Pr}_{z}\left[\right.$ error $\left.\mid\left(i, f_{2}\right)\right]>2 n \varepsilon$

$$
\begin{equation*}
\Rightarrow \operatorname{Pr}\left[\left(i, f_{2}\right) \text { bad }\right]<1 / 2 n \tag{Markov}
\end{equation*}
$$

- Call f_{2} bad if $\operatorname{Pr}_{i}\left[\left(i, f_{2}\right)\right.$ bad $\left.\mid f_{2}\right] \geq 1 / n$

$$
\begin{equation*}
\Rightarrow \operatorname{Pr}\left[f_{2} \text { bad }\right]<1 / 2 \tag{Markov}
\end{equation*}
$$

Note: f_{2} good $\Rightarrow\left(i, f_{2}\right)$ good for all i.

Randomizing the Lower Bound

Round Elimination Lemma: Let $k \geq 3$. If there is a δn-bit, ε-error distributional protocol \mathcal{P} for $\mathrm{MPJ}_{m, k}$, then there is a δn-bit, ε^{\prime}-error protocol \mathcal{Q} for $\mathrm{MPJ}_{m^{\prime}, k-1}$ with $m^{\prime}=n \cdot 2^{-2 \delta n / m}$ and $\varepsilon^{\prime}=2 n \varepsilon$.

Proof:

- $z:=\left(f_{3}, \ldots, f_{k-1}, x\right)$
- Call $\left(i, f_{2}\right)$ bad if $\operatorname{Pr}_{z}\left[\right.$ error $\left.\mid\left(i, f_{2}\right)\right]>2 n \varepsilon$

$$
\begin{equation*}
\Rightarrow \operatorname{Pr}\left[\left(i, f_{2}\right) \text { bad }\right]<1 / 2 n \tag{Markov}
\end{equation*}
$$

- Call f_{2} bad if $\operatorname{Pr}_{i}\left[\left(i, f_{2}\right)\right.$ bad $\left.\mid f_{2}\right] \geq 1 / n$

$$
\begin{equation*}
\Rightarrow \operatorname{Pr}\left[f_{2} \text { bad }\right]<1 / 2 \tag{Markov}
\end{equation*}
$$

Note: f_{2} good $\Rightarrow\left(i, f_{2}\right)$ good for all i.

- Follow deterministic proof

$$
M:=M_{\mathrm{m}}=\left\{\operatorname{good} f_{2}: \mathrm{P} 1 \text { sends } \mathrm{m} \text { on input } f_{2}\right\} \ldots
$$

Conclusions/Open Problems

Conclusions

- Still far from proving MPJ $_{k} \notin \mathrm{ACC}^{0}$
- Provided the first $o(n)$ protocol for MPJ_{k}
- Characterized maximum communication complexity of myopic protocols up to $1+o(1)$ factors.
- Lower bound technique applies to MPJ_{k} and $\widehat{\mathrm{MPJ}}_{k}$ and does randomize; seems promising for other problems.

Open Problems

1. Settle $D\left(\mathrm{MPJ}_{k}\right)$
2. Possible first step: improve bound on MPJ 3
3. Relax protocol restrictions: 2-myopic, ...

Questions?
Contact jbrody@cs.dartmouth.edu

