Fractional Perfect Matchings in Hypergraphs

Andrzej Rucinski

Abstract

A perfect matching in a k-uniform hypergraph H=(V,E) on n vertices is a set of n/k disjoint edges of H, while a fractional perfect matching in H is a function $w:E\to [0,1]$ such that for each $v\in V$ we have $\sum_{e\ni v}w(e)=1$. Given $n\ge 3$ and $3\le k\le n$, let m be the smallest integer such that whenever the minimum vertex degree in H satisfies $\delta(H)\ge m$ then H contains a perfect matching, and let m^* be defined analogously with respect to fractional perfect matchings. Clearly, $m^*\le m$.

We prove that for large $n, m \sim m^*$, and suggest an approach to determine m^* , and consequently m, utilizing the Farkas Lemma. This is a joint work with Vojta Rodl.