Fractional Perfect Matchings in Hypergraphs

Andrzej Rucinski

Abstract

A perfect matching in a k-uniform hypergraph $H=(V, E)$ on n vertices is a set of n / k disjoint edges of H, while a fractional perfect matching in H is a function $w: E \rightarrow[0,1]$ such that for each $v \in V$ we have $\sum_{e \ni v} w(e)=1$. Given $n \geq 3$ and $3 \leq k \leq n$, let m be the smallest integer such that whenever the minimum vertex degree in H satisfies $\delta(H) \geq m$ then H contains a perfect matching, and let m^{*} be defined analogously with respect to fractional perfect matchings. Clearly, $m^{*} \leq$ m.

We prove that for large $n, m \sim m^{*}$, and suggest an approach to determine m^{*}, and consequently m, utilizing the Farkas Lemma. This is a joint work with Vojta Rodl.

