
L-FUNCTIONS, CONVERSE THEOREMS,
AND FUNCTORIALITY*

F. Shahidi**

§1. Background and Functoriality.

f = holomorphic modular cusp form or a Maass form with respect to Γ0(N)
= eigenfunction for all the Hecke operator as well as Laplacian

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
if k = 0, where k is the weight of f.

an = Fourier coefficient of f, a1 = 1

ap = p
k−1

2 (αp + βp)

Q = rational numbers

AQ = ring of adeles of Q = Π′
p<∞

Qp · R, a restricted product with respect to

Π
p<∞

Zp .

There is a natural way of realizing

f 7→ πf ⊂ L2
0(A∗QGL2(Q) \GL2(AQ)),

where πf is an irreducible subrepresentation

πf = ⊗
p≤∞

πp

πp = irreducible representation of GL2(Qp).

For all p - N , class of πp ←→
{(

αp 0
0 βp

)}
⊂ GL2(C), a semisimple conjugacy

class. Two immediate problems in number theory of great importance are:
f = Maass form.
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Ramanujan-Petersson Conjecture: |αp| = |βp| = 1. (Proved by Deligne for
holomorphic forms, 1973).

Selberg Conjecture: The smallest positive eigenvalue for ∆ on Γ0(N) \ h ≥ 1
4
,

h = upper half plane.

More generally:

F = number field
AF = ring of adeles

π = irreducible infinite dimensional subrepresentation of

L2(A∗FGL2(F ) \GL2(AF ), ω),
= cuspidal representation.

π = ⊗
v
πv

∀′v, πv ↔
{(

αv 0
0 βv

)}
⊂ GL2(C), semisimple conjugacy class.

Ramanujan-Petersson: |αv| = |βv| = 1.

These problems will be addressed by Duke and Iwanice in their lecture.

Any progress made on these conjectures is very important. In what follows, I will
explain how Langlands-Shahidi plus certain recent converse theorems of Cogdell-
Piatetski-Shapiro can lead to quantum jumps towards these conjectures by estab-
lishing surprising new cases of functoriality with numerous other deep consequences.

Let me now give an important example of functoriality, using GL2, with impor-
tant consequences towards these conjectures.

m = positive integer.

P (x, y) = homogeneous polynomial of degree m

g ∈ GL2(C), Symm(g) ∈ GLm+1(C) giving coefficients of P ((x, y)g) in terms of
those of P (x, y).

The map
g 7→ Symm(g)

gives a (m + 1)-dimensional irreducible representation of GL2(C)

Symm : GL2(C)→ GLm+1(C),



3

m–th symmetric power representation of GL2(C)
π = ⊗

v
πv

∀′v, πv ↔ {tv} =
{(

αv 0
0 βv

)}
⊂ GL2(C)

Symm(tv) = diag(αmv , αm−1
v βv, . . . , β

m
v ) ∈ GLm+1(C).

Symm(tv)↔ Symm(πv),

Symm(πv) = spherical representation of GLm+1(Fv).

Even if πv is not spherical, Harris-Taylor, and Henniart can be used to define
Symm(πv). In fact, if ϕv : W ′

Fv
−→ GL2(C) parametrizes πv by Kutzko and

Langlands, Symm(πv) is attached to Symm(ϕv) = Symm · ϕv.

Conjecture (Langlands). ⊗
v
Symm(πv) is an automorphic representation of GLm+1(AF ),

i.e., it appears in L2(A∗FGLm+1(F ) \ GLm+1(AF )). Thus Symm : GL2(C) −→
GLm+1(C) has a dual Symm : Aut(GL2)→ Aut(GLm+1).

If true for all m, we get Ramanujan-Petersson and Selberg at once.

$2. Results on Functoriality with Applications.

Theorem 1. a) (Kim-Shahidi) Sym3(π) = ⊗
v
Sym3(πv) is automorphic.

b) (Kim) Sym4(π) = ⊗
v
Sym4(πv) is automorphic.

Corollary. a) (Kim-Shahidi) q
−1/9
v < |αv| and |βv| < q

1/9
v .

b) (Kim-Sarnak) F = Q, p−7/64 ≤ |αp|&|βp| ≤ p7/64; smallest positive eigen-
value for ∆ ≥ 0.2376 . . .

c) (Kim-Shahidi) On Sato–Tate: For m up to m = 9, L(s, π, Symm) is mero-
morphic and satisfies a functional equation. If π has a trivial central char-
acter then LS(s, π, Symm) is invertible at s = 1 for m up to m = 8. More-
over, ords=1LS(s, π, Sym9) ∈ {0, 1,−1}. Consequently (Serre), if π satisfies
RP, then given ε > 0, there are sets of positive lower densities for which
av = αv + βv > 1.68 . . .− ε and av < −1.68 . . . + ε, 1.68 . . . = 2 cos(2π/11).

d) (Kim-Shahidi) Modulo Arthur’s multiplicity conjecture for GSp4(AF ), Siegel
modular cusp forms of weight 3 exist. They are in the same L-packet as
Sym3(π), when π is a non-CM form of weight 2, and where Sym3(π) is
considered as a form on GSp4(AF ).

Corollary (Kim-Shahidi). Suppose σ is a two dimensional (irreducible) repre-
sentation of Gal(F/F ) of icosahedral type. Assume π(σ) exists (Buzzard–Baron-
Shepard–Dickinson–Taylor). Then L(s, Sym3(σ)), which is a primitive four dimen-
sional Artin L-functions, is entire.
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Corollary (Sarnak). Maass forms with integral coefficients are all Galois and
therefore Selberg conjecture is valid for them.

Remark 1. Other applications are proved and significant applications to arithmetic
geometry are expected.

Remark 2. Theorem 1a) follows from the following theorem by letting π1 = π and
π2 = Ad(π) = Gelbart-Jacquet lift of π.

Theorem 2 (Kim-Shahidi). Let π1 = ⊗
v
π1v, π2 = ⊗

v
π2v be cusp forms on

GL2(AF ) and GL3(AF ), respectively. For each v, let

ϕiv : W ′
Fv
−→ GLi+1(C) i = 1, 2

be attached to πiv. Let π1v � π2v, representation of GL6(Fv), be attached to ϕ1v ⊗
ϕ2v. Set π1 � π2 = ⊗

v
(π1v � π2v). Then π1 � π2 is an automorphic representation

of GL6(AF ). Thus the functorial dual of GL2(C)×GL3(C)→ GL6(C) exists.

§3. The method.

Theorem 2 is proved by applying a recent converse theorem of Cogdell-Piatetski-
Shapiro, in fact a fairly recent one, to analytic properties of L-functions all obtained
from the method of Langlands-Shahidi.

Converse theorems are an important tool in proving functoriality when one com-
pares groups with GL(n). They have been used by several mathematicians including
in Lafforgue’s proof of global Langlands correspondence for GL(n) over function
fields and non-normal cubic base changes for GL(2) and GL(3); Langlands-Tunnel’s
proof of Artin’s conjecture, as well as existence of Sym2 by Gelbart–Jacquet.

In the method of integral representations for GL(m) × GL(n), Rankin-Selberg
product L-functions L(s, π×π′) are expressed as Mellin transforms which allow us to
prove the invariance on the left by the corresponding GL( , F ), F = global field.
This implies a converse theorem. One then needs L(s, π×π′) to have the appropriate
analytic properties. π = ⊗

v
πv, π′ = ⊗

v
π′v cuspidal representation of GLm(AF ) and

GLn(AF ), respectively.

∀′v, πv ←→ tv ∈ GLm(C) and π′v ←→ t′v ∈ GLn(C).

Define:
L(s, πv × π′v) = det(I − (tv ⊗ t′v)q

−s
v )−1

and at every other place use Harris-Taylor-Henniart, ϕv : W ′
Fv
−→ GLm(C),

ϕ′v : W ′
Fv
−→ GLn(C).

L(s, πv × π′v) = L(s, ϕv ⊗ ϕ′v)
= Artin L-function
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set
L(s, π × π′) = Π

v
L(s, πv × π′v).

Then, Jacquet-Piatetski-Shapiro-Shalika, Moeglin-Waldspurger, Shahidi, proved all
the basic analytic properties of L(s, π × π′) that:

1. It is entire, unless π′ ∼= π̃ ⊗ | det |s0 , s0 ∈ C.

2. It satisfies a functional equation s 7→ 1− s.

3. It is bounded in vertical strips of finite width (Gelbart-Shahidi, quite generally
for all the L–functions in our method, Luo-Rudnick-Sarnak for GL(n)).

4. non-zero for Re(s) ≥ 1.

We can now state a converse theorem (1998) which we used in proving Theorem
2.

Theorem (Cogdell-Piatetski-Shapiro). Π = ⊗
v

Πv irreducible admissible repre-

sentation of GLm(AF ) whose central character is a grossëncharacter. Let S be a fi-
nite set of finite places of F , τS(n) = cuspidal representations of GLn(AF ), unram-
ified for all v ∈ S. For each σ ∈ τS(n), n ≤ m−2, let L(s, Π×σ) =

∏
v

L(s, Πv×σv).

Assume:

a) L(s, Π× σ) converges absolutely for Re(s)� 0 and is entire,

b) L(s, Π× σ) is bounded in vertical strips of finite width,

c) and L(s, Π × σ) satisfies a standard functional equation, i.e., L(s, Π × σ) is
“nice”. Then there exists an automorphic representation Π′ of GLm(AF ) such
that Πv

∼= Π′v, ∀v /∈ S and in particular for all v =∞.

To apply this to Theorem 2, let

S = {v <∞|π1v or π2v is ramified}.
σ = ⊗

v
σv ∈ τS(n), n = 1, 2, 3, 4

χ = ⊗
v
χv = highly ramified at some v0 ∈ S, grössencharacter. Then

L(s, π1v × π2v × (σv ⊗ χv)) and ε(s, π1v × π2v × (σv ⊗ χv), ψv)

are defined by Langlands-Shahidi method at every v, extending the factors for triple
products at unramified places. In particular, they are Artin factors for v = ∞.
Moreover:

L(s, π1 × π2 × (σ ⊗ χ)) = Π
v

L(s, π1v × π2v × (σv ⊗ χv))

is “nice” by techniques of the same method. More precisely
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a) Follows from an observation of Kim (Langlands Lemma on holomorphy of con-
stant terms of Eisenstein series if the inducing representation is not fixed by any
non-trivial Weyl group element.) — Canadian Journal.

b) New result of Gelbart-Shahidi (JAMS), subtle; uses non-constant term of Eisen-
stein series as one needs to deal with inverses of L-functions up to and including
Re(s) = 1.

c) Proved in full generality by Shahidi (Annals 1990), where local factors were de-
fined and a number of their properties were proved (and some were conjectured).
They are fundamental in all the cases of functoriality proved by us. Moreover
for v /∈ S:

L(s, π1v × π2v × (σv ⊗ χv)) = L(s, (π1v � π2v)× (σv ⊗ χv))

as well as for root numbers. One needs new local results on normalized inter-
twining operators (Casselman–Shahidi, Kim, Muic, Zhang, Asgari).

By the converse theorem, there exists an automorphic representation Π = ⊗
v
Πv

such that Πv = π1v � π2v, ∀v /∈ S. Using weak Ramanujan type arguments (Ra-
makrishnan, Cogdell-Piatetski-Shapiro), one gets

Π = σ1 � · · ·� σk

σi’s = unitary cuspidal representations of GLri(AF ), ri = 2, 3, 4.

We then embark on a path to prove the strong lift, i.e., that our factors are
the same as L(s, (π1v � π2v) × σv) for all v. Similarly for root numbers. We use
base change, both normal (Arthur-Clozel,Langlands) or non-normal (JPSS) and
our machinery. (We even need a K-type result at the end, provided to us by
Bushnell-Henniart.)

Langlands-Shahidi method exploits the analytic properties of Eisenstein series.
One has a triple (G,M, π), where G is a reductive group, M is a maximal Levi,
and π is a cuspidal representation of M = M(AF ). In the constant term of the
corresponding Eisenstein series, several L-functions show up. So do their inverses
in a non-constant term, if we assume π is globally generic. We can then deduce the
properties we need for L-functions by inductive use of such triples.

We get L(s, π1 × π2 × (σ ⊗ χ)), σ ∈ τS(n), for n = 1, 2, 3, 4 from triples:

n = 1 G = GL5 M = GL2 ×GL3

n = 2 G = Spin(10) MD = derived group of M = SL3 × SL2 × SL2

n = 3 G = simply connected E6, MD = SL3 × SL2 × SL3
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n = 4 G = simply connected E7, MD = SL3 × SL2 × SL4

The number of L-functions appearing in the constant term in these cases are
1, 2, 3 and 4, respectively. We observe that this functorial product is not endoscopic
of any kind.

Sym4(π) is proved by applying

Λ2: Aut(GL4(AF )) −→ Aut(GL6(AF )),

dual to the exterior square map

Λ2: GL4(C) −→ GL6(C),

to Sym3(π). Functoriality of Λ2 is proved by Kim by applying our machinery
to G = Spin(2n), n = 4, 5, 6, 7, and MD = SL(n − 3) × SL(4), n = 4, 5, 6, 7,
respectively. This is a twisted endoscopic case of highest subtlety.

Classical Groups: Last, but not least, we like to mention that we have also
proved the functoriality of

i : Sp2n(C) ↪→ GL2n(C),

i.e., the existence of

i : Aut(SO2n+1(AF )) −→ Aut(GL2n(AF )),

in a joint work: Cogdell-Kim-Piatetski-Shapiro-Shahidi, using the very same ma-
chinery as others, for the generic spectrum. The fact that our lift is strong is proved
by Ginzburg–Rallis–Soudry using their backward lift. Modulo a result of theirs, this
is also proved by Kim. Beside converse theorems, we needed to borrow one more
result from Rankin-Selberg: The stability of local root numbers under highly ram-
ified twists. (The general case is being studied by Arthur modulo fundamental
lemmas.)

To generalize this to arbitrary quasisplit classical groups we need this lemma. In
fact, one hopes to prove the stability in full generality of our method for any qua-
sisplit reductive group. We can then prove the following new cases of functoriality:

i : GSO2n(C) ↪→ GL2n(C)

and
i : GSp2n(C) ↪→ GL2n(C)

leading to
i : Aut(GSpin2n(AF )) −→ Aut(GL2n(AF ))

and
i : Aut(GSpin2n+1(AF )) −→ Aut(GL2n(AF )).
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(Functoriality of Λ2 and GSp4(C) −→ GL4(C) are among these.) These are exam-
ples of the most general kind of twisted endoscopic transfer. There is also the work
of Friedberg-Goldberg to generalize our method to non-generic ones. But that is
still in very early stages. One can also approach this from the point of view of a
conjecture on genericity of tempered L–packets.

Beyond these we need new ideas. Two possible paths to follow are the theory of
infinite dimensional groups and Langlands new ideas: “Beyond Endoscopy”. These
remain to be seen.


