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Ars longa, vita brevis

There are several central mathematical problems, or complexes of problems, that every
mathematician who is eager to acquire some broad competence in the subject would like
to understand, even if he has no ambition to attack them all. That would be out of the
question! Those with the most intellectual and aesthetic appeal to me are in number
theory, classical applied mathematics and mathematical physics. In spite of forty years as
a mathematician, I have difficulty describing these problems, even to myself, in a simple,
cogent and concise manner that makes it clear what is wanted and why. As a possible,
but only partial, remedy I thought I might undertake to explain them to a lay audience.

I shall try for a light touch including, in particular, some historical background. Never-
theless the lectures are to be about mathematics. In the first set, there will be geometrical
constructions, simple algebraic equations, prime numbers, and perhaps an occasional in-
tegral. Every attempt will be made to explain the necessary notions clearly and simply,
taking very little for granted except the good will of the audience.

Starting in the easiest place for me, I shall give, during the academic year 1999/2000
about eight lectures on pure mathematics and number theory with the motto beautiful lofty
things. Beginning with the Pythagorean theorem and the geometric construction of the
Pythagorean pentagram, I shall discuss the algebraic analysis of geometric constructions
and especially the proof by Gauss in 1796 of the possibility of constructing with ruler
and compass the regular heptadecagon. This was a very great intellectual achievement of
modern mathematics that can, I believe, be understood by anyone without a great aversion
to high-school algebra. Then I will pass on to Galois’s notions of mathematical structure,
Kummer’s ideal numbers, and perhaps even the relations between ideal numbers and the
zeta-function of Riemann. This material will be a little more difficult, but I see no reason
that it cannot be communicated. It brings us to the very threshold of current research.

Since this attempt is an experiment, the structure and nature of the lectures will depend
on the response of the audience and on my success in revealing the fabric of mathematics.
If it works out, I would like to continue in following years on classical fluid mechanics and
turbulence, with motto l’eau mêlée à la lumière, and then, with the somewhat trite motto
s togo berega, on the analytical problems suggested by renormalization in statistical
mechanics and quantum field theory.
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On the use of these notes.

The texts and diagrams collected below can be read independently or used as supple-

ments to the video-tapes of the lectures. They include not only copies of the transparencies

used during the course of the lectures, but also copies of various texts cited, together with

translations, as well as the lecturer’s own preparatory notes.

There was no clean division of the lectures into eight, or if the whole year is taken into

account sixteen, hours, so that it would be futile to divide these notes into separate sec-

tions. The lectures overlapped, the end of one running into the beginning of the next, and

transparencies were sometimes displayed more than once. Nonetheless, for the convenience

of the viewer, for each lecture a precise location is indicated at which he can conveniently

begin to read or to peruse the material pertinent to it.



The lyf so short, the craft so long to lerne,
Th’assay so hard, so sharp the conquering.



The decision to deliver these lectures arose from two sources. First of all, the Faculty
of the Institute is being encouraged by our employers to leave, at least for brief moments,
the confines of our disciplines and to present ourselves to the public at large. This is, in my
view, an excellent idea, but the format chosen, one-hour public lectures, is not congenial
to all of us, certainly not to me. It is never clear what to present. In particular, my own
elucubrations lead at best infrequently to something that is worth communicating even to
specialists, and even then they are not easily persuaded, if at all. So I hesitate to impose
any discovery of mine on an innocent public.

On the other hand, I, like many other mathematicians, have spent, even perhaps
wasted, much time on a large variety of problems on which I could make no inroads, so
that my efforts have left no trace. Now, it is seldom the habit of mathematicians when
they attack a problem to study systematically its history or the literature surrounding it,
at least this has not been my habit. The youthful impulse is rather to prowl about the
problem for a while, looking perhaps not for an open window or a door with a weak lock,
for if these were available, some earlier malefactor would already have discovered them,
but for some wall that can be scaled or some unsuspected underground access. The upshot
is that if nothing is discovered, one comes away from the effort empty-handed, having
learned little, except what to avoid.

With waxing age and waning energies a different impulse manifests itself, not the
desire to overwhelm this or that outstanding problem by force or cunning but rather the
desire to understand its sources and to formulate clearly its meaning and significance.
Nevertheless, without some external compulsion or, at least, encouragement, this impulse
would in all likelihood come to naught for what a mathematician, even an elderly one,
really wants to do is discover new theories, new techniques and new methods and to solve
the old problems. In an attempt to exploit to my own profit my new obligation to come out
of the closet, and to kill two birds with one stone, I announced these lectures, from which
I hope both you and I will be able to learn some genuine mathematics. I have already
learnt a good deal that I did not know before. In preparing the lectures I have kept in
mind especially those among my colleagues in the humanities who have frequently assured
me of their desire to acquire some understanding of the subject. I am not sure how sincere
they are, but I count on them, and on all of you, to let me know if my instructional efforts
are failing and not simply by failing to mention.

Indeed, there are many reefs on which this undertaking can run aground. My inex-
perience with much of the material may turn out to be an advantage, but my pedagogical
inadequacies are a handicap. Moreover, although these lectures are aimed at an audience
whose experience with mathematics may have ended with high-school the bulk of you are
undoubtedly professional mathematicians whose expectations may or may not be deceived.
A number of the mathematicians, like me, will have been educated in inadequate North
American schools and may, therefore, have had little experience with classical introductory
mathematics, so the beginnings may amuse them. Even so, the moral pressure on me to
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move at too fast a pace will be great, and I am not entirely confident of my courage to
resist it. Questions and observations that slow me down will be much appreciated.

Although the plans as announced are on the whole are rather grandiose, I still have
only the vaguest ideas what I will do in the series on fluid mechanics or on statistical
mechanics and renormalization promised for subsequent years. I thought it would be best
to let the future take care of itself. I am already uneasy enough about the second term’s set
of lectures. For the first term, the plans are fairly clear, although the timing is uncertain.
Four weeks may not be enough and I may have to run over.
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FALL TERM

(I) Introductory geometrical material – the Pythagorean
theorem.

(II) Geometrical construction of regular pentagon.

(III) Analytic geometry and complex numbers.

(IV) Gauss’s construction of regular heptadecagon.

TWO MAJOR WORKS

Euclid’s Elements and Gauss’s Arithmetical Investigations
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Comment on plan

It may be useful to explain briefly the structure of this set of lectures. The purpose
of the Pythagorean theorem in the context of the construction of the regular pentagon
is to construct a certain quadratic irrational or surd, a notion to be explained. The
first impression of some may be that this is simply a rehash of high-school geometry, but
quadratic irrationals remain of major interest even today and the nature of other irrationals
(icosahedral for example) is a central problem. They were, as will be observed in passing,
the source of a crisis in Greek mathematics that lasted more than a century and that was
only resolved by a new understanding of the notion of number. If I were better informed
I would spend more time discussing this crisis and its resolution.

The regular pentagon has, as I shall recall, an evident five-fold geometric symmetry.
It also has, although this is far from evident, a four-fold symmetry that is the clue to its
geometric construction, but of which the Greeks were unaware. This symmetry is revealed
by an algebraic analysis that can only be carried out with the help of complex numbers,
so that some time has to be spent introducing them to you and explaining their role in
analytic geometry. Complex numbers are second nature to those with any mathematical
training, but not to others. Since it is the others to whom these lectures are addressed, I
shall spend the necessary time on them.

The hidden four-fold symmetry of the pentagon understood, we shall be in a position
to understand the hidden sixteen-fold symmetry of the regular seventeen-sided polygon
that permits it to be constructed geometrically. In contrast the heptagon, with seven sides
and a hidden six-fold symmetry cannot be constructed geometrically, that is – to be more
explicit about what is here intended by the adverb geometrically – with the aid of nothing
but a ruler and a compass. The difference between 5, 7 and 17 is that

4 = 2 · 2, 16 = 2 · 2 · 2 · 2 but 6 = 2 · 3.

We want to understand why this difference in the factorization of the three numbers has
such a striking geometric consequence.

That it did was discovered by Gauss as a lad of 18 in 1796. This is often presented as
a curious juvenile achievement of little import in comparison with his other early achieve-
ments, accomplished when he was scarcely older. It would be better if I were able to say,
when the time comes, more about Gauss. I fear that in the past I instinctively avoided
acknowledging what it meant to be a real mathematician. So I cannot now give you any
information beyond the familiar. He was extremely precocious, extremely powerful and
inventive, with an apparently innate mathematical curiosity that I now appreciate is rare.
Mathematical talent is perhaps more common than mathematical curiosity. Although born
to parents of little or no means, his gifts were noticed early, and he was educated at the
expense of the Duke of Brunswick, presumably with the expectation that he would become
a functionary of some sort. Although the talents encouraged were apparently linguistic
not mathematical he found himself at schools with good mathematics libraries and seems
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to have made himself familiar with some of the important mathematical research of the
eighteenth century, including that of Euler and Lagrange, not only mastering it but also
deepening it.

The construction of the regular heptadecagon could appear, if so presented, as a
spontaneous contribution of an adolescent, but seems rather to have been rendered possible
by Gauss’s facility with the complex numbers developed in the course of the century and by
his familiarity with Lagrange’s attempts to analyze the solution of equations by radicals.
What may have been spontaneous in his achievement was the return after more than two
millenia to an ancient geometric problem, the construction of regular polygons, that had
been abandoned because of the difficulties appearing for heptagons. But I do not know.
Here, as elsewhere in the preparation of these lectures, I am brought face to face with my
ignorance.

The plan and its structure are now clear, as is one glaring defect. One hour for the
material in each of the four sections is not enough. An hour is not enough to make the
material comprehensible and it is not enough to make the presentation fun. Once started,
for example, on the construction of the pentagon, I found the geometry irresistible.

My feeling for the Greeks as mathematicians is every bit as inadequate as that for the
youthful Gauss. I do not know whence came their curiosity and depth. Perhaps no-one
does. We live in a highly structured environment dedicated to research. We earn our
living by it and we pin our hopes of recognition on it, but the questions we ask and the
problems we solve are determined more by tradition, more by our colleagues than by our
own natural and spontaneous curiosity. We are seldom playful; our efforts are never simply
for our own amusement. A brief romp with Greek mathematics in which we examine the
construction of the pentagon at length may be an occasion to capture briefly the ludible
spirit of the Greeks.

An hour is also not enough for an adequate understanding of analytic geometric and
complex numbers nor for a presentation of the algebra required for Gauss’s construction.
The complex numbers are an enormously effective tool that swallows the geometry, but
it will be good to ask ourselves how. Moreover the four-fold or sixteen-fold algebraic
symmetry is far more subtle than the five-fold or seventeen-fold geometric symmetry. Since
it will reappear again and in spades when, and if, we discuss Galois and Kummer, it is
best to get used to it now.

The upshot is that four hours is scarcely enough. My plan is, therefore, simply to
go on, probably for another four weeks, so that I will not have finished this first set until
sometime in December. All being well, this will leave me some listeners and enough time
to prepare for the second set in February.
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5− 1 = 4 = 2× 2

17− 1 = 16 = 2× 2× 2× 2

BUT

7− 1 = 6 = 2× 3
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Rainer Maria Rilke
Der Schauende

Ich sehe den Bäumen die Stürme an,
die aus laugewordenen Tagen
an meine ängstlichen Fenster schlagen,
und höre die Fernen Dinge sagen,
die ich nicht ohne Freund ertragen,
nicht ohne Schwester lieben kann.

Dageht der Sturm, ein Umgestalter,
geht durch den Wald und durch die Zeit,
und alles ist wie ohne Alter:
die Landschaft, wie ein Vers im Psalter,
ist Ernst und Wucht und Ewigkeit.

Wie ist das klein, womit wir ringen,
was mit uns ringt, wie ist das groß;
Ließen wir, ähnlicher den Dingen,
uns so vom großen Sturm bezwingen –
wir würden weit und namenlos.

Was wir besiegen, ist das Kleine,
und der Erfolg selbst macht uns klein.
Das Ewige und Ungemeine
will nicht von uns gebogen sein.
Das ist der Engel, der den Ringern
des Alten Testaments erschien;
wenn seiner Wildersacher Sehnen
im Kampfe sich metallen dehnen,
fühlt er sie unter seinen Fingern
wie Saiten tiefer Melodien.

Wen dieser Engel überwand,
welcher so oft auf Kampf verzichtet,
der geht gerecht und aufgerichtet
und groß aus jener harten Hand,
die sich, wie formend, an ihn schmiegte.
Die Siege laden ihn nicht ein.
Sein Wachstum ist: Der Tiefbesiegte
von immer Größerem zu sein.
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SOZERCANIE

Derev~� skladkami kory
Mne govor�t ob uraganah,
I � ih soobweni$i strannyh
Ne v silah slyxat~ sred~ ne�dannyh
Nevzgod, v skitan~�h posto�nnyh,
Odin, bez druga i sestry.
Skvoz~ rowu rvets� nepogoda,
Skvoz~ izgorodi i doma.
I vnov~ bez vozrasta priroda,
I dni, i vewi obihoda,
I dal~ prostranstv — kak stih psalma.
Kak melki s �izn~� naxi spory,
Kak krupno to, qto protiv nas!
Kogda b my poddalis~ naporu
Stihii, iwuwe$i prostora,
My vyrosli by vo sto raz.
Vse, qto my pobe�daem, — malost~,
Nas uni�aet nax uspeh.
Neobyqa$inost~, nebyvalost~
Zovet borcov sovsem ne teh.
Tak angel Vethogo zaveta
Naxel sopernika pod stat~.
Kak arfu, on s�imal atleta,
Kotorogo l�ba� �ila
Struno� angelu slu�ila,
Qtob shvatko$i gimn na nem sygrat~.
Kogo tot angel pobedil,
Tot pravym, ne gord�s~ sobo�,
Vyhodit iz takogo bo�
V soznan~i i rascvete sil.
Ne stanet on iskat~ pobed.
On �det, qtob vysxee naqalo
Ego vse qawe pobe�dalo,
Qtoby rasti emu v otvet.
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Habe Furcht vor dem großen Sturm,
und gib acht auf den kleinen Wind.
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Transitional remarks

As a start, I return just for a minute to the beginnings of my unsuccessful effort over
more than four decades to master a difficult trade. Through a kind of fluke I found myself at
university at quite an early age – not quite seventeen – but with no preparation, whereupon
on an impulse that I think I now understand I decided, with no notion whatsoever of
mathematics or physics and no notion whatsoever of academic life, that I wanted to be
a mathematician or perhaps a physicist. Although physics turned out finally to be too
difficult for me, I did come across not long after this decision a copy of the Einstein volume
in Schilpp’s series of hefty tomes The Library of Living Philosophers. It was in the windows
of a stationer’s shop in the town near to the hamlet in which I grew up. (For those who
are familiar with the local topography, it was on the corner of Columbia Ave. and 6th St.
in New Westminster.)

I still have it although I never made much of it, but there was a brief intellectual
biography by Einstein in which he describes two memorable intellectual experiences of his
childhood: his introduction to a compass at the age of five and his discovery of Euclid at
the age of twelve. Although an uncle appears to have introduced him to euclidean geometry
and the pythagorean theorem even earlier, at that age he was presented with what was
then a widely used text Lehrbuch der Geometrie zum Gebrauch an höheren Lehranstalten
that thanks to our librarian, Momota Ganguli, I was able to have a look at. Although
obscure in places, it appears a book rich in content that well deserved its success. Einstein
cites explicitly the theorem that especially impressed him, oddly enough a theorem that
is not to be found in the Elements, although it was presumably known at the time and to
Euclid. It is an elegant fact with an elegant proof and quite simple, so that, as a warm-up,
I begin with it.

**************
Anyhow, without any background in mathematics myself, and not knowing where to

begin, I followed Einstein’s implicit recommendation and acquired a copy of the Element’s
(Todhunter’s edition in the Everyman collection, a very popular, very cheap collection of
my youth and still, in my view, very useful). I did not make much headway with it. There
were several reasons, not least, but not only, my uncertain intellectual taste. I already
knew about analytic geometry and it was clear that most, perhaps all, the geometrical
propositions of Euclid, which were the ones I was looking at, could be proved much more
quickly algebraically. Since I had a lot of time to make up, I very quickly abandoned the
geometry as such. In retrospect it is clear that the Elements is a much more complex and
sophisticated text, both scientifically and historically, than I was able to deal with at the
time.
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HEATH’S INTRODUCTION TO THE EVERYMAN EDITION

It was with the greatest interest that I heard that the publishers thought of
adding to Everyman’s Library an edition of the Elements of Euclid; for what book in
the world could be more suitable for inclusion in the Library than this, the greatest
textbook of elementary mathematics that there has ever been or is likely to be, a
book which, ever since it was written twenty-two centuries ago, has been read and
appealed to as authoritative by mathematicians great and small, from Archimedes
and Apollonius of Perga onwards? No textbook, presumably, can ever be without
flaw (especially in a subject like geometry, where some first principles, postulates or
axioms, have to be assumed without proof, and any number of alternative systems
are possible), and flaws there are in Euclid; but it is safe to say that no alternative to
the Elements has yet been produced which is open to fewer or less serious objections.
The only general criticism of it which is deserving of consideration is that it is
unsuitable as a textbook for very young boys and girls who are just beginning to
learn the first things about geometry. This can be admitted without detracting
in the least from the greatness or the permanent value of the book. The simple
truth is that it was not written for schoolboys or schoolgirls, but for the grown man
who would have the necessary knowledge and judgment to appreciate the highly
contentious matters which have to be grappled with in any attempt to set out the
essentials of Euclidean geometry as a strictly logical system, and, in particular, the
difficulty of making the best selection of unproved postulates or axioms to form
the foundation of the subject. My advice would, therefore, be: if you must spoon-
feed the very young, do so; but when they have shown a taste for the subject and
attained the standard necessary for passing honours examinations, let them then be
introduced to Euclid in his original form as an antidote to the more or less feeble
echoes of him that are to be found in the ordinary school textbooks of ‘geometry.’ I
should be surprised if such qualified readers, making the acquaintance of Euclid for
the first time, did not find it fascinating, a book to be read in bed or on a holiday,
a book as difficult as any detective story to lay down when once begun. I know of
one actual case, that of an undergraduate at Cambridge suddenly presented with a
copy of Euclid, where this happened. This is the true test of such a book. Nor does
the reading of it require the ‘higher mathematics.’ Any intelligent person with a
fair recollection of school work in elementary geometry would find it (progressing as
it does by gradual and nicely contrived steps) easy reading, and should feel a real
thrill in following its development, always assuming that enjoyment of the book is
not marred by any prospect of having to pass an examination in it! This is why
I applaud the addition of this great classic to Everyman’s Library; for everybody
ought to read it who can, that is, all educated persons except the very few who are
constitutionally incapable of mathematics.
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Euclid and Harish-Chandra

In the early sixties, the mathematician Harish-Chandra joined the Faculty of the
Institute, At that time his papers were much admired but little read. They were regarded
as too difficult. Their purpose was to be correct, they took no pity on the reader, but moved
forward relentlessly, lemma after lemma, theorem after theorem, paper after paper with
little attempt to distinguish the real obstacles from the more straighforward development.
Euclid, to whom I now come long after reading much of Harish-Chandra, has a similar
style, so that I am struck with admiration for any school-boy of an earlier era who drew
his intellectual nourishment directly from Euclid. I recall that Einstein did not.

17



Lecture 2

Pythagoras 530 BC

Plato 380 BC

Eudoxus 360 BC

Aristotle 340 BC

Euclid 290 BC
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It will be clear both from the announcement and the exculpatory re-
marks that my intention is to clarify both for myself and for the audience
some problems of contemporary mathematics, and that any historical pre-
liminaries are principally for the sake of clarifying the mathematical issues,
not the historical issues. I want therefore to stress once again that when
it comes to mathematics in antiquity or even during the Renaissance, I am
almost immediately in over my head. In particular, since I make a few
remarks concerning Pythagoras and the pythagorean theorem that may be-
long more to the realm of myth than of history, it may be best as a warning
to the audience to cite some phrases from the book of Otto Neugebauer, an
historian of science who, I recall for the younger members of the audience,
spent the last years of his life attached to the Institute.
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Some quotations from

O. Neugebauer’s

The exact sciences in antiquity

1. The above example of the determination of the diagonal of the
square from its side is sufficient proof that the “Pythagorean” the-
orem was known more than a thousand years before Pythagoras.

2. It seems to me evident, however, that the traditional stories
of discoveries made by Thales or Pythagoras must be discarded as
totally unhistorical.

3. We know today that all the factual mathematical knowledge
which is ascribed to the early Greek philosophers was known many
centuries before, though without the accompanying evidence of any
formal method which the mathematicians of the fourth century
would have called a proof. For us, there is nothing to do but to
admit that we have no idea of the role which the traditional heroes
of Greek science played.

4. The Greeks themselves had many theories about the origins of
mathematics. . . . A much more sophisticated attitude is represented
by Aristotle, who considers the existence of a ”leisure class”, to use a
modern term, a necessary condition for scientific work. Our factual
knowledge about the development of scientific thought and of the
social position of the men who were responsible for it is so utterly
fragmentary, however, that it seems to me completely impossible
to test any such hypothesis, however plausible it may appear to a
modern man.
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The exact sciences in antiquity
Extract

This is confirmed by a small tablet, now in the Yale Babylonian Col-
lection. On it is drawn a square with its two diagonals. The side shows the
number 30, the diagonal the numbers 1, 24, 51, 10 and 42, 25, 35. The meaning
of these numbers becomes clear if we multiply 1, 24, 51, 10 by 30, an operation
which can easily be performed by dividing 1, 24, 51, 10 by 2 because 2 and 30
are reciprocals of each other. The result is 42, 25, 35. Thus we have obtained
from a = 30 the diagonal 42; 25, 35 by using

√
2 = 1; 24, 51, 10.

The accuracy of this approximation can be checked by squaring 1; 24, 51, 10.
One finds

1; 59, 59, 59, 38, 1, 40

corresponding to an error of less than 22/604.

Comments

1; 24, 51, 10÷ 2 = 0; 30 + 0; 12 + 0; 0, 25 + 0; 0, 0, 30 + 0; 0, 0, 5 = 0; 42, 25, 35

1 + 24
60 + 51

602 + 10
603 = 1.41421296 . . .

2× 24 = 48; 2× 51 = 1, 42; 2× 10 = 20;
24× 24 = 9, 36; 51× 51 = 43, 21; 10× 10 = 1, 40;
24× 51 = 20, 24; 24× 10 = 4, 0; 51× 10 = 8, 30;

Doubled: 40, 48; 8, 0; 17, 0;

Thus 1; 24, 51, 10 squared is

1; +; 9, 36+; 0, 0, 43, 21+; 0, 0, 0, 0, 1, 40+; 48+; 1, 42+; 0, 0, 20+; 0, 40, 48+; 0, 0, 8+; 0, 0, 0, 17

or

1; 59, 59, 59, 38, 1, 40
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2 =
a2

b2

2b2 = a2

a = 2c, 2b2 = 4c2, b2 = 2c2

Thus a and b both even.
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5 =
a2

b2

5b2 = a2

a = 5c, 5b2 = 25c2, b2 = 5c2

Thus a and b both divisible by 5.
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Aristotle: Analytica Priora

For all who effect an argument per impossibile infer syllogisti-
cally when something impossible results from the assumption of its
contradictory; e.g. that the diagonal of the square is incommensu-
rate with the side, because odd numbers are equal to evens if it is
supposed to be commensurate. One infers syllogistically that odd
numbers come out equal to evens, and one proves hypothetically
the incommensurability of the diagonal, since a falsehood results
through contradicting this.

Plato: Theaetetus

Socrates. But I am more interested in our own Athenian youth, and
I would rather know who among them are likely to do well. Tell me
then, if you have met with any who is at all remarkable.
Theororus. Yes, Socrates, I have become acquainted with one very
remarkable Athenian youth, whom I commend to you as well worthy
of your attention. If he had been a beauty I should have been afraid
to praise him, ...
Socrates. Herein lies the difficulty which I can never solve to my
satisfaction – What is knowledge?
Theodorus. I would rather that you would ask one of the young
fellows.
Theatetus. Theodorus was writing out for us something about roots,
such as the sides of squares three or five feet in area showing that
they are incommensurable by the unit: he took the other examples
up to seventeen, but there for some reason he stopped. Now as there
are innumerable such roots, the notion occurred to us of attempting
to find some common description which can be applied to them all.
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The comments at the end of the first talk that were not about Rilke
were about square roots, and in particular about the proof that

√
2 and

√
5

are irrational. So I want to make a couple of additional remarks.
I give first of all, two standard quotations, one from Aristotle and

one from Plato. The one from Aristotle makes clear that the arithmetic
proof of the irrationality of

√
2 that I presented was not too much of an

anachronism, even if it was not the first proof discovered by the Greeks.
This is not certain. There is a second proof, a geometric proof. This can be
construed as a proof by paper-folding and was shown to me by one member
of the audience. It has been suggested, for various reasons, that the first
proof ever given may have been geometric, but there is apparently no solid,
universally accepted evidence or argument one way or the other.

Although the dialogue Theaetetus is not primarily concerned with
mathematics but with other matters, I cite selectively from it to obtain a
dialogue appropriate to our purposes. Theodorus, apparently a celebrated
geometer but known largely through this text was the teacher of Theatetus.
That he stopped at 17 has been taken as evidence that his proof must have
been difficult of execution, for example geometric, and not along the line of
the one I gave for

√
5. Hardy and Wright in their Introduction to the theory

of numbers are not at all persuaded by this line of argument. In any case the
issue with Theodorus is not

√
2 but the square roots of larger numbers, 3, 5

and so on up to 17, with of course 4, 9, and 16 omitted. Hardy and Wright
offer, however, both arithmetic and geometric proofs, and it is worthwhile
having a look at their discussion.

I observe in passing that Theodorus seems to have had an anxious ad-
ministration, fearful of sexual harassment charges, looking over his shoulder.
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The importance of the discovery of the irrationality of
√

2 and of the
crisis it caused in Greek mathematics is germane to the story I want to
relate only in so far as we want to arrive at some understanding of the
contemporary problems posed by irrationality, and indeed by irrationality
of a special kind, by algebraic irrationality, a notion that it will take us some
time to reach. Nonetheless, a few succint quotations from Neugebauer and
from Heath may not be out of place, especially since as was observed to
me by a friend, Eudoxus, the great mathematician who resolved the crisis,
may be quite unfamiliar to mathematicians. I cannot say that his name
had been familiar to me.

Observe (perhaps!) that one things that emerges from the comments of
Neugebauer is that the geometrical treatment which I follow was the result
of the Greek’s geometrical treatment of number, somewhat of a historical
accident and apparently peculiar to the Greeks, as other mathematicians of
antiquity without the Greek’s respect for logic proceeded differently. Since
the geometrical treatment is, as we shall see, much less straightforward than
an algebraic treatment, it may be that the historical approach obscures as
much as it enlightens.
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1.(Neugebauer) It is also generally accepted that the essential turn
in the development came about through the discussion of the conse-
quences of the arithmetical fact that no ratio of two integers could
be found such that its square had the value 2. The geometrical corol-
lary that the diagonal of the square could not be “measured” by its
side obviously caused serious discussion about the relation between
geometrical and arithmetical proof. . . . The reaction of the mathe-
maticians . . . led to two major steps. . . . this gave rise to the strictly
axiomatic procedure. Secondly, it had become clear that one should
consider the geometrical objects as the given entities such that the
case of integer ratios appeared as a special case of only secondary
interest.

2.(Heath) Theory of proportion. The anonymous author of a schol-
ium to Euclid’s Book V . . . tells us . . . that this Book, containing
the general theory of proportion. . .‘is the discovery of Eudoxus, the
teacher of Plato’. There is no reason to doubt the truth of this
statement. . . .

The essence of the new theory was that it was applicable to
incommensurable as well as commensurable quantities; and its im-
portance cannot be overrated, for it enabled geometry to go forward
again, after it had received the blow which paralyzed it for the time.
This was the discovery of the irrational, at a time when geometry
still depended on the Pythagorean theory of proportion, that is, the
numerical theory which was of course applicable only to commen-
surables. . . .

The greatness of the new theory itself needs no further argu-
ment when it is remembered that the definition of equal ratios in
Eucl. V, Def. 5 corresponds exactly to the modern theory of irra-
tionals due to Dedekind, and that it is word for word the same as
Weierstraß’s definition of equal numbers.
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AREA OF TRIANGLE

Area= 1
2×Base×Height
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A difficulty

I introduce the formula for the area of a triangle, as it is familiar, but in the euclidean
context an area is an area and a number is a number, and they are different things. We
should rather, in Euclid’s terms, speak of the area of a parallelogram being double of that
of the triangle or simply of the parallelogram being double the triangle, but leave this aside
for the moment.

Since a triangle has three different sides, each of which can be taken as the base, and
correspondingly three different heights, the formula for the area is in fact three formulas,
and one may ask why they should give the same result. In fact, this question is not
addressed in Euclid. It appears, as my colleague Pierre Deligne pointed out to me, to be
an implicit, not explicit, assumption on the part of Euclid that the area of a plane figure
is a well defined notion and that it is additive, thus if one figure is decomposed into the
sum of two, as a parallelogram is decomposed into the sum of two triangles, then the area
of the larger will be the sum of the areas of the smaller.

This difficulty vitiates, as Deligne observed, Euclid’s proof of the pythagorean theorem.
I run through Euclid’s proof and various alternate proofs, and then return to the difficulty.

************************

Hilbert treats the definition of areas of polygons in his book Grundlagen der Geome-
trie, the basic problem being to show that the area is well-defined. He begins by showing
that the three possible formulas for the area of a triangle all give the same result. For
this he needs the theory of similar triangles, thus the theory of proportions or Book V of
Euclid. In other words, from an even more rigorous point of view Euclid’s efforts to avoid
this theory in his early chapters have been in vain. Areas can only be adequately defined
by introducing numbers, thus proportions, and by establishing some consequences of the
theory of proportions, thus the theory of similar triangles.
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Eudoxus and Grothendieck

Euclid’s proof of the pythagorean theorem has been a puzzle to many people. Nietzche
apparently found it stelzbeinig and hinterlistig, thus stilted and sly, and he was not far off
the mark. Aldous Huxley, in a short story about thwarted mathematical genius Young
Archimedes suggests, and he has the support of some historians of mathematics, that
Pythagorus was likely to have used a simpler, more geometrically evident proof.

First alternate proof

It seems, however, that in spite of the appeal of this proof most historians are of the
opinion that it does not have a Greek feel. Heath presents a proof that is possibly Greek,
and possibly the one used by Pythagorus or his school.

Second alternate proof

The difficulty is that it uses the notion of similar triangles, and similar triangles are
first discussed by Euclid in Book VI after he has developed, following Eudoxus, the theory
of proportions in Book V. The theory of proportions is, if one likes, the theory of pure
numbers, as opposed to lengths or areas, a notion whose difficulty appears when it is
recognized that not all lengths or areas are multiples of one aliquot part, as the Greeks
discovered as a consequence of the pythagorean theorem, so that there are pure numbers
that are not representable as fractions a/b. Thus, it appears that the first proof of the
pythagorean theorem was by a method which was revealed by further deductions from the
theorem as flawed.

One aspect of the art of mathematics is the formulation of good definitions. In the
second half of the twentieth century Grothendieck was the master of this. His definitions,
with a breathtaking clarity, often transformed what had previously been regarded as an
arcane, difficult theory, for example, that of complex multiplication, into self-evident conse-
quences. A first reading of Euclid on proportions suggests that Eudoxus may have been the
Greek Grothendieck. The proof of Proposition VI.1, accessible to all of you, is an elegant
example of what can be done with a good definition. I recommend it as supplementary
reading.

Proposition VI.1 Triangles and parallelograms which are under the same height are to
one another as their bases.

At all events, Euclid’s proof of Proposition I.47, the pythagorean theorem, appears,
as Heath argues, to be Euclid’s original response to an expository challenge. He needed
the theorem early; yet he was not permitted to use the earlier proof because he had not
yet developed the theory of proportions and the theory of similar triangles. So he found a
new proof, not altogether different from the earlier proof yet without its flaw.
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Young Archimedes

“There!” he said triumphantly, and straightened himself
up to look at them. “Now I’ll explain.”

And he proceded to prove the theorem of Pythagoras —
not in Euclid’s way, but by the simpler and more satisfying
method which was, in all probability, employed by Pythagoras
himself. He had drawn a square and dissected it, by a pair
of crossed perpendiculars, into two squares and two equal rec-
tangles. The equal rectangles he divided up by their diago-
nals into four equal right-angled triangles. The two squares
are then seen to be the squares on the two sides of any of these
triangles other than the hypothenuse. So much for the first di-
agram. In the next he took the four right-angled triangles into
which the rectangles had been divided and rearranged them
round the original square so that their right angles filled the
corners of the square, the hypotenuses looked inwards, and the
greater and lesser sides of the triangles were in continuation
along the sides of the squares (which are equal to the sum of
these sides). In this way the original square is redissected into
four right-angled triangles and the square on the hypotenuse.
The four triangles are equal to the two rectangles of the origi-
nal dissection. Therefore the square on the hypotenuse is equal
to the sum of the two squares — the squares on the two other
sides — into which, with the rectangles, the original square was
first dissected.
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A

B

C

D

AD

AB
=
AB

AC
=⇒ AD · AC = AB2

DC

BC
=
BC

AC
=⇒ DC · AC = BC2

Thus

AB2 +BC2 = AD · AC +DC · AC = AC2

37



TETRAHEDRON/FIRE

CUBE/EARTH

���



OCTAHEDRON/AIR

ICOSAHEDRON/WATER

39



A B

CD

DB : AB =
√

2 : 1

A B

C

D

CD : AB : AD =
√

3 : 2 : 1, (
√

3 )2 + 1 = 22
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DODECAHEDRON
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The Dodecahedron and the Celts

The use of the pentagon as an artistic motif was apparently extremely extremely rare,
and it appears, although I have made no serious attempt to examine the literature, that the
dodecahedron as an artistic motif was almost entirely confined to the Celts, and perhaps the
Etruscans, during the first half of the first millenium before Christ. It has been proposed.
with good reason, that it was suggested to the Celts, for whom the smelting of iron was
very important, by the form of iron pyrite crystals, which is approximately but not exactly
dodecahedronal. That would contradict the laws of crystallography. Hermann Weyl in his
book on symmetry observes that radiolarians appear with dodecahedral symmetry, but
since they are minute marine creatures, it is unlikely that they had come to the attention
of the Celts.

It has also been suggested that Pythagorus who spent some time in Italy may have
had some contact with the Celts or with Etruscans and may have been introduced by them
to the dodecahedron.
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θ + 2θ + 2θ = 180◦

5θ = 180◦

θ = 36◦

5θ = π

θ =
π

5
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Lecture 3

�

'

' = 2�
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26 EAB = 6 EAB + 6 EBA

6 EAB + 6 EBA+ 6 BEA = 2 right angles

6 FEB + 6 BEA = 2 right angles

=⇒ 6 FEB = 26 EAB

6 GEC = 26 GDC

6 GEB = 26 GDB

=⇒ 6 BEC = 26 BDC
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Reminder

Our ultimate purpose over the course of the year is to acquire a feeling for modern
number theory, especially for a few of the many conjectural links between algebraic irra-
tionalies on the one hand and, on the other, the Riemann zeta function and, implicitly,
various similar functions. The rogue’s yarn that will run through much of the material is
the algebraic symmetry to which the name of Galois is attached and which I wanted to
introduce in as concrete and appealing a way as possible, and in a way that linked it, in a
certainly anachronous but not entirely factitious manner, with classical mathematics.

Apart from its intrinsic appeal, that is the reason for treating the construction of
the pentagon, and our task today will be to acquire some feel for this construction. It
is not easy. So we have to spend an hour on difficult mathematics. You should not be
discouraged if you don’t understand everything. What follows, namely the basic notions
of analytic or Cartesian geometry, will be a little duller, but easier.

***********************

It is generally accepted that the subject of modern algebra was born during the Re-
naissance and analytic geometry, at least the treatment of Descartes, would have been
unthinkable without the new algebraic methods. Among other things, it was understood
during this period how to solve cubic equations and quartic equations. I could have used
them as an introduction to the algebraic symmetry, but decided that a geometrical intro-
duction would be more appealing.
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THE CONSTRUCTION OF THE TRIANGLE

Proposition IV.10 To construct an isosceles triangle having each
of the angles at the base double of the remaining one.

This proposition is a result of several others from which I single out
the three most important.

Proposition II.11 To cut a given line so that the rectangle con-
tained by the whole and one of the segments is equal to the square
on the remaining segment.

Proposition III.37 If a point be taken outside a circle and from
the point there fall on the circle two straight lines, if one of them
cut the circle, and the other fall on it, and if further the rectangle
contained by the whole of the straight line which cuts the circle and
the straight line intercepted on it outside between the point and the
convex circumference be equal to the square on the straight line which
falls on the circle, the straight line which falls on it will touch the
circle.

Proposition III.32 If a straight line touch a circle, and from the
point of contact there be drawn across, in the circle, a straight line
cutting the circle, the angles which it makes with the tangent will be
equal to the angles in the alternate segments of the circle.
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With this proposition we are in the fourth book of the Elements. The pythagorean
theorem is Proposition I.47, and is thus from the first book. There are thirteen books in
all, but the propositions that we need come from the first four, which are all geometric
in content. Book I contains the most familiar material, ending with the pythagorean
theorem. Book II, to which we shall have to return for some propositions, deals with what
is sometimes called geometrical algebra, thus with material that is somewhat perplexing to
a modern reader, as familiar algebraic operations are clothed in very unfamiliar geometric
garb. Book III deals by and large with properties of circles that have, even for us, an
appealing geometric meaning. We shall need some of them, too, so that we shall acquire
some familiarity with these two books at first hand. Book IV deals with the inscription of
polygons in a circle, starting with the more elementary and familiar case of an arbitrary
triangle and a square. I observe in passing the difference. An arbitrary triangle can be
inscribed in a circle, but not all quadrilaterals can. Finally it is shown how to inscribe in
a circle a regular pentagon, a regular hexagon, and a regular pentadecagon, with fifteen
sides. To inscribe a hexagon is easy and the construction is probably known to all of you.
and the regular pentadecagon is easily dealt with once the triangle and the pentagon are
inscribed. Thus our aim is to reach the end of the fourth book. We shall go no farther in
Euclid for the moment, but it may be useful to review briefly the contents of the remaining
books.

The fifth book has quite a different character. It treats Eudoxus’s theory of propor-
tions. The sixth book treats, on the basis of Book V, largely of similar figures, especially
of similar triangles, and thus contains material that is either intuitively familiar or familiar
from school geometry, where it will have been treated without the explicit help of the the-
ory of proportions. Books VII, VIII and IX treat of numbers and number theory, especially
of prime numbers, so that we may have occasion to return to them, explicitly or implicitly.

From the point of view of our later algebraic analysis of Euclidean constructions,
Book X is the most interesting. We shall show that Euclidean constructions amount, in
algebraic terms, to repeatedly adding, subtracting, multiplying and dividing numbers and
repeatedly forming their square roots. This book studies, entirely in geometrical terms,
the numbers so obtained. I give some examples from Heath’s notes to the book. Our
purpose is not to study a large number of specific examples or to study the examples in
exclusively geometric terms, but to understand why Euclid’s constructions lead only to
square roots, and what can be constructed using nothing but square roots, and no other
surds or algebraic irrationalities.

Books XI, XII, and XIII are about three-dimensional geometry, but are quite different.
Book XI treats lines and planes in three-space, thus what we would call the affine geometry
of three-space, usually treated in courses on linear algebra, up to and including volumes
of parallelograms. Book XII uses especially the method of exhaustion to treat areas and
volumes of other, less simple plane figures and solid volumes, for example, circles (disks!)
and spheres. Finally, Book XIII treats the construction and the properties of the five
regular, or Platonic, solids. This is, among other things, a much deeper, or if you like
more elaborate, analysis of various quadratic irrationalities,

√
2,
√

3,
√

5, that we have
already encountered. Thus it is not unrelated to Book X.
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√
a
√
B

4
√
AB =

√√
AB√

a2 − k2a2

1 + k2

A− k2A
4
√
A(A− k2A)

ρ√
2

√
1− k√

1 + k2

ρ√
2(1 + k2

√√
1 + k2 + k +

ρ√
2(1 + k2

√√
1 + k2 − k

ρλ1/4

√
2

√
1 +

k√
1 + k2

+
ρλ1/4

√
2

√
1− k√

1 + k2
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HEXAGON

A

B

C

AB = BC
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Proposition II.11 To cut a given line so that the rectangle con-
tained by the whole and one of the segments is equal to the square
on the remaining segment.

This reappears in Book VI as Proposition VI.30, but after the theory
of proportions has been established in Book V.

Proposition VI.30 To cut a given line in extreme and mean ratio.

I recall the definition.

Definition VI.3 A straight line is said to have been cut in extreme
and mean ratio when, as the whole line is to the greater segment, so
is the greater to the less.

x 1 - x

Thus

1
x

=
x

1− x =⇒ 1− x = x2 =⇒ x2 + x− 1 = 0 =⇒ x =
−1±

√
5

2

Since x is positive

x =
√

5− 1
2

=⇒ x

1− x =
√

5 + 1
2

Golden Section
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Proposition III.37 If a point be taken outside a circle and from the
point there fall on the circle two straight lines, if one of them cut the
circle, and the other fall on it, and if further the rectangle contained by
the whole of the straight line which cuts the circle and the straight line
intercepted on it outside between the point and the convex circumference
be equal to the square on the straight line which falls on the circle, the
straight line which falls on it will touch the circle.

This proposition is the converse to the following one, the one I shall
prove.

Proposition III 36 If a point be taken outside a circle and from it there
fall on the circle two straight lines, and if one of them cut the circle and
the other touch it, the rectangle contained by the whole of the straight
line which cuts the circle and the straight line intercepted on it outside
between the point and the convex circumference will be equal to the square
on the tangent.

A

B

C
D

AC ·AD = AB2
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Proposition III.32 If a straight line touch a circle, and from the
point of contact there be drawn across, in the circle, a straight line
cutting the circle, the angles which it makes with the tangent will be
equal to the angles in the alternate segments of the circle.

B

C

A

D

E F

6 FBD = 6 BAD, 6 EBD = 6 BCD
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PROOF

B

C

A
D

E F

∠ADB = � =⇒ ∠BAD + ∠ABD = �

∠ABF = � =⇒ ∠FBD +∠DBA = �

Thus
∠BAD = ∠FBD =⇒ ∠EBD = ∠BCD
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SUPPLEMENT TO PROOF

Proposition III.22 The opposite angles of quadrilaterals in circles are
equal to two right angles

B

C

A

D

Add two lines to the diagram.

B

C

A

D

∠CAB = ∠BDC
∠ACB = ∠ADB

=⇒ ∠ADC = ∠BAC + ∠ACB
=⇒ ∠ABC +∠ADC =
∠ABC +∠BAC + ∠ACB = 2�
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CONSTRUCTION

Take a segment AB and divide it by a point C so that AB : AC = AC÷CB.
Draw a circle with center A passing through B and choose D so that BD =
AC. The desired triangle is ABD

A

B

C

D

AC = BD, AB · BC = AC2 =⇒ AB · BC = BD2

Thus BD touches the circle ACD. Moreover ∠BDC = ∠DAC. Therefore

∠CBD = ∠BDA = ∠BDC +∠CDA = ∠DAC +∠CDA = ∠BCD

Thus CD = BC = AC so that ∠CAD = ∠ADC and ∠BCD = 2×∠CAD.

But ∠BCD = ∠BDA = ∠ABD.
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THE CONSTRUCTION BACKWARD

Suppose the triangle ABD is given with the property that

∠BDA = ∠DBA = 2× ∠DAB

Bisect BDA. Then BD = DC = CA. BD must touch the circle
ACD so that AC2 = BD2 = BC · BA.

A

B

C

D
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PROPOSITION II.11

Proposition II.11 To cut a given line so that the rectangle contained by
the whole and one of the segments is equal to the square on the remaining
segment.

Let AB be the given line. Describe the square ABCD on AB. Bisect AC at
E and join E to B. (Note that if AB = 1 then EB =

√
12 + 1/22 =

√
5/2.)

Let EF be made equal to BE. Draw the square FH on AF . (Then AH =
FA =

√
5/2− 1/2.)

A

E

C

F

B

D

K

G

H
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PROPOSITION II.11 – CONTINUED

As a first step we need that

CF · FA+AE2 = EF 2
(

(y + 1) · y +
1
22

= (y +
1
2
)2
)

This is Proposition II.6 and will be proved separately.

EF 2 = EB2 = AE2 +BA2 =⇒ CF · FA = BA2

FA = FG =⇒ FK = AD (Areas)

Subtract AK from each. Then FH = HD. The rectangle contained
by AB, BH is equal to the square on HA.

Proposition II.6 If a straight line be bisected and a straight line
be added to it in a straight line, the rectangle contained by the whole
with the added straight line and the added straight line together with
the square on the half is equal to the square on the straight line made
up of the half and the added straight line.

This is the relation

(x+ y) · y +
x2

22
= (y +

x

2
)2
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AB (= x) is bisected at C and BD (= y) is added to it in a
straight line. To be shown that

AD ·DB + CB2 = CD2

A C B D

K

H

M

L

E G F

Draw the square CEFD; join DE and draw BG parallel to DF and
KM through H parallel to AD. Thus AL = CH = HF . Adding
CM , we have

AM =GnomonCDF

Thus the rectangle AD, BD is equal to the gnomon CDF and the
rectangle AD, BD together with the square on CB is equal to the
gnomon plus LG, thus to the square on CD.
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D
A

B

C

I introduce coordinates.

1 2 3 4

-1

-0.5

0.5

1

1.5

D
A

B

C

D at (0, 0); center at (a, 0); radius is r; C = (x1, y1), A = (x2, y2)

DC =
√
x2

1 + y2
1 DA =

√
x2

2 + y2
2

The proposition implicitly affirms that

DC ·DA =
√
x2

1 + y2
1

√
x2

2 + y2
2

is independent of line, provided that it falls on the circle, so that this number
equals its value in the extreme case that A = C, thus is equal to DB2
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1 2 3 4

-1

-0.5

0.5

1

Suppose (1, α) is the point where the line x = 1 crosses the line DA. By
the theory of similar triangles, a point (x, y) lies on the line exactly when it
is of the form (x, y) = (x, αx), thus y = αx. Both (x1, y1) and (x2, y2) are
solutions of the equation

(x− a)2 + y2 = r2 or (x− a)2 + α2x2 = r2

or

x2 − 2ax+ a2 + α2x2 = a2 or (1− α2)x2 − 2ax+ a2 − r2 = 0

Recall
Ax2 +Bx+ C = 0

has solutions

x2 =
−B +

√
B2 −AC

2A
, x1 =

−B −
√
B2 −AC

2A
Thus

x1x2 =
B2 −B2 + 4AC

4A2
=
C

A

Since y1 = αx1 and y2 = αx2,√
x2

1 + y2
1 =

√
1 + α2x1,

√
x2

2 + y2
2 =

√
1 + α2x2√

x2
1 + y2

1

√
x2

2 + y2
2 = (1 + α2)x1x2 = (1 + α2)

a2 − r2

1 + α2
= a2 − r2
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Solve:
ax2 + bx+ c = 0

Complete the square.

a(x2 + 2
b

2a
+

b2

4a2
) + (c− b2

4a
) = a(x2 + 2

b

2a
+

b2

4a2
) +

(4ac− b2)
4a

= 0

We divide by a.

(x2 + 2
b

2a
+

b2

4a2
) +

(4ac− b2)
4a2

= (x+
b

2a

2

+
(4ac− b2)

4a2
= 0

Thus

x+
b

2a
= ±
√
b2 − 4ac

2a

or

x =
−b±

√
b2 − 4ac

2a

72


