Hodge theory aspects of homological mirror symmetry

Jingyu Zhao

Institute of Advanced Study

jzhao@ias.edu

September 28, 2016

Jingyu Zhao (IAS)

Hodge theory aspects of HMS

3

- < ∃ →

< 67 ▶

Hodge decomposition

• Given a complex manifold, one can decompose the de Rham complex $A_X^* := \Omega^*_{dR}(X) \otimes_{\mathbb{R}} \mathbb{C}$ as $A_X^k \cong \bigoplus_{p+q=k} A^{p,q}(X)$, where $\alpha \in A^{p,q}(X)$ is locally of the form

$$\sum f_{i_1\cdots \bar{i}_q} dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\bar{z}_{\bar{i}_1} \wedge \cdots \wedge d\bar{z}_{\bar{i}_q}.$$

<20 ≥ 3

Hodge decomposition

 Given a complex manifold, one can decompose the de Rham complex
 A^{*}_X := Ω^{*}_{dR}(X) ⊗_ℝ C as A^k_X ≅ ⊕_{p+q=k}A^{p,q}(X), where α ∈ A^{p,q}(X) is
 locally of the form

$$\sum f_{i_1\cdots \overline{i_q}} dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\overline{z}_{\overline{i_1}} \wedge \cdots \wedge d\overline{z}_{\overline{i_q}}.$$

• For Kähler manifolds, Hodge theory gives the Hodge decomposition

$$H^k(X,\mathbb{C})\cong \oplus_{p+q=k}H^{p,q}(X)\cong \oplus_{p+q=k}H^p(X,\Omega^q_X),$$

where Ω_X^* is the sheaf of holomorphic differential forms. This decomposition depends on the complex structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

3

Let X be a complex manifold, there is a double complex (A^{*,*}_X, ∂, ∂
),
 i.e. ∂² = ∂² = ∂∂ + ∂∂ = 0.

- Let X be a complex manifold, there is a double complex (A^{*,*}_X, ∂, ∂̄), i.e. ∂² = ∂̄² = ∂∂̄ + ∂̄∂ = 0.
- If X is Kähler, the associated spectral sequence degenerates at E₁ and converges to de Rham cohomology H^{*}(X, C).

- Let X be a complex manifold, there is a double complex (A^{*,*}_X, ∂, ∂̄), i.e. ∂² = ∂̄² = ∂∂̄ + ∂̄∂ = 0.
- If X is Kähler, the associated spectral sequence degenerates at E₁ and converges to de Rham cohomology H^{*}(X, C).
- In characteristic zero, *E*₁-degeneration follows from Hodge theory for Kähler manifolds.

- Let X be a complex manifold, there is a double complex (A^{*,*}_X, ∂, ∂̄), i.e. ∂² = ∂̄² = ∂∂̄ + ∂̄∂ = 0.
- If X is Kähler, the associated spectral sequence degenerates at E₁ and converges to de Rham cohomology H^{*}(X, C).
- In characteristic zero, *E*₁-degeneration follows from Hodge theory for Kähler manifolds. Deligne and Illusie gave another purely algebraic proof using reduction to finite characteristics.

- Let X be a complex manifold, there is a double complex (A^{*,*}_X, ∂, ∂̄), i.e. ∂² = ∂̄² = ∂∂̄ + ∂̄∂ = 0.
- If X is Kähler, the associated spectral sequence degenerates at E₁ and converges to de Rham cohomology H^{*}(X, C).
- In characteristic zero, *E*₁-degeneration follows from Hodge theory for Kähler manifolds. Deligne and Illusie gave another purely algebraic proof using reduction to finite characteristics.
- On E₁-page, E₁^{p,q} ≅ H^p(X, Ω_X^q) and E₁-degeneration implies the Hodge decomposition for H^k(X, ℂ).

- 3

- Let X be a complex manifold, there is a double complex (A^{*,*}_X, ∂, ∂̄), i.e. ∂² = ∂̄² = ∂∂̄ + ∂̄∂ = 0.
- If X is Kähler, the associated spectral sequence degenerates at E₁ and converges to de Rham cohomology H^{*}(X, C).
- In characteristic zero, *E*₁-degeneration follows from Hodge theory for Kähler manifolds. Deligne and Illusie gave another purely algebraic proof using reduction to finite characteristics.
- On E_1 -page, $E_1^{p,q} \cong H^p(X, \Omega_X^q)$ and E_1 -degeneration implies the Hodge decomposition for $H^k(X, \mathbb{C})$. In fact, there is a (pure) Hodge structure of weight k on $H^k(X, \mathbb{C})$.

- 3

イロト イポト イヨト イヨト

3

・ロン ・四 ・ ・ ヨン ・ ヨン

• A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.

- A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.
- Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds,

- A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.
- Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds, denoted as X and X[∨].

- A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.
- Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds, denoted as X and X[∨].
- In 1990, Greene and Plesser constructed the mirror for the quintic 3-fold in $\mathbb{P}^4.$

- A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.
- Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds, denoted as X and X[∨].
- In 1990, Greene and Plesser constructed the mirror for the quintic 3-fold in $\mathbb{P}^4.$
- Candelas, de la Ossa, Green and Parkes predicted the genus zero Gromov-Witten invariants (symplectic) of X using period integrals (complex) on the mirror X[∨] (Ref.Givental, Lian-Liu-Yau).

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン

• What does Hodge theory say about mirror pairs?

< 67 ▶

3

- What does Hodge theory say about mirror pairs?
- Let $h^{p,q}(X) := \dim_{\mathbb{C}} H^p(X, \Omega^q_X).$

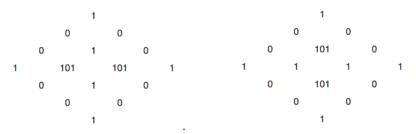
▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- What does Hodge theory say about mirror pairs?
- Let $h^{p,q}(X) := \dim_{\mathbb{C}} H^p(X, \Omega^q_X)$. They are called Hodge numbers.

- 4 週 ト - 4 三 ト - 4 三 ト

- 31

- What does Hodge theory say about mirror pairs?
- Let $h^{p,q}(X) := \dim_{\mathbb{C}} H^p(X, \Omega^q_X)$. They are called Hodge numbers.
- The Hodge numbers of the quintic and its mirror looks like



- What does Hodge theory say about mirror pairs?
- Let $h^{p,q}(X) := \dim_{\mathbb{C}} H^p(X, \Omega^q_X)$. They are called Hodge numbers.
- The Hodge numbers of the quintic and its mirror looks like

• Mirror symmetry is manifested as a 90 degree rotation of Hodge diamonds.

• Given a symplectic manifold X and a complex manifold X^{\vee}

CategoriesObjectsFuk(X)Lagrangian submanifolds $Coh(X^{\vee})$ Coherent sheaves

 $\begin{array}{l} \mathsf{Morphisms} \\ \mathcal{CF}^*(L_0, L_1) = \mathbb{K} \langle L_0 \pitchfork L_1 \rangle \\ \mathcal{E} \mathsf{xt}^*(\mathcal{E}_0, \mathcal{E}_1) \end{array}$

→

- Given a symplectic manifold X and a complex manifold X^{\vee}
- CategoriesObjectsFuk(X)Lagrangian submanifolds $Coh(X^{\vee})$ Coherent sheaves

Morphisms $CF^*(L_0, L_1) = \mathbb{K} \langle L_0 \pitchfork L_1 \rangle$ $\mathcal{E}xt^*(\mathcal{E}_0, \mathcal{E}_1)$

• In 1994, M. Kontsevich proposed homological mirror symmetry:

- Given a symplectic manifold X and a complex manifold X^{\vee}
- Categories Objects *Fuk*(X) Lagrangian submanifolds $CF^*(L_0, L_1) = \mathbb{K} \langle L_0 \pitchfork L_1 \rangle$ $Coh(X^{\vee})$ Coherent sheaves

Morphisms $\mathcal{E}xt^*(\mathcal{E}_0, \mathcal{E}_1)$

 In 1994, M. Kontsevich proposed homological mirror symmetry: For mirror Calabi-Yau's, there are derived equivalences between

Fuk(X) and $Coh(X^{\vee})$,

Coh(X) and $Fuk(X^{\vee})$.

A B M A B M

- Given a symplectic manifold X and a complex manifold X^{\vee}
- Categories Objects *Fuk*(X) Lagrangian submanifolds $CF^*(L_0, L_1) = \mathbb{K} \langle L_0 \pitchfork L_1 \rangle$ $Coh(X^{\vee})$ Coherent sheaves

Morphisms $\mathcal{E}xt^*(\mathcal{E}_0, \mathcal{E}_1)$

 In 1994, M. Kontsevich proposed homological mirror symmetry: For mirror Calabi-Yau's, there are derived equivalences between

Fuk(X) and $Coh(X^{\vee})$,

Coh(X) and $Fuk(X^{\vee})$.

 Question: Can we use HMS to transfer the well-studied Hodge theory from the complex side to the symplectic side?.

- 本間 ト イヨ ト イヨ ト 三 ヨ

• Given a symplectic manifold X and a complex manifold X^{\vee}

CategoriesObjectsFuk(X)Lagrangian submanifolds $Coh(X^{\vee})$ Coherent sheaves

Morphisms $CF^*(L_0, L_1) = \mathbb{K} \langle L_0 \pitchfork L_1 \rangle$ $\mathcal{E}xt^*(\mathcal{E}_0, \mathcal{E}_1)$

• In 1994, M. Kontsevich proposed homological mirror symmetry: For mirror Calabi-Yau's, there are derived equivalences between

Fuk(X) and $Coh(X^{\vee})$,

Coh(X) and $Fuk(X^{\vee})$.

 Question: Can we use HMS to transfer the well-studied Hodge theory from the complex side to the symplectic side?. To do this, need a Hodge theory for categories.

- 小田 ト イヨト 一日

Jingyu Zhao (IAS)

3

• Given an associative algebra \mathcal{A} , on Hochschild chains $C_*(\mathcal{A})$ one has two differentials, the Hochschild differential b and Connes differential B, such that bB + Bb = 0.

 Given an associative algebra A, on Hochschild chains C_{*}(A) one has two differentials, the Hochschild differential b and Connes differential B, such that bB + Bb = 0. HH_{*}(A) = H_{*}(C_{*}(A), b),

Given an associative algebra A, on Hochschild chains C_{*}(A) one has two differentials, the Hochschild differential b and Connes differential B, such that bB + Bb = 0. HH_{*}(A) = H_{*}(C_{*}(A), b), HC_{*}(A) = H_{*}(C_{*}(A)[u], b + uB), |u| = -2.

- Given an associative algebra A, on Hochschild chains C_{*}(A) one has two differentials, the Hochschild differential b and Connes differential B, such that bB + Bb = 0. HH_{*}(A) = H_{*}(C_{*}(A), b), HC_{*}(A) = H_{*}(C_{*}(A)[u], b + uB), |u| = -2.
- If \mathcal{A} is the coordinate ring of a smooth affine variety X, the Hochschild-Konstant-Rosenberg says $HH_*(\mathcal{A}) \cong \Omega^*_X$, and moreover $HKR: (HH_*(\mathcal{A}), B) \to (\Omega^*_X, d_{dR})$ is a chain map.

・何・ ・ヨ・ ・ヨ・ ・ヨ

- Given an associative algebra A, on Hochschild chains C_{*}(A) one has two differentials, the Hochschild differential b and Connes differential B, such that bB + Bb = 0. HH_{*}(A) = H_{*}(C_{*}(A), b), HC_{*}(A) = H_{*}(C_{*}(A)[u], b + uB), |u| = -2.
- If A is the coordinate ring of a smooth affine variety X, the Hochschild-Konstant-Rosenberg says HH_{*}(A) ≅ Ω^{*}_X, and moreover HKR: (HH_{*}(A), B) → (Ω^{*}_X, d_{dR}) is a chain map.
- For associative algebra, or a differential graded (DG) category A (such as Coh(X)), one can replace

(4個) (4回) (4回) (5)

- Given an associative algebra A, on Hochschild chains C_{*}(A) one has two differentials, the Hochschild differential b and Connes differential B, such that bB + Bb = 0. HH_{*}(A) = H_{*}(C_{*}(A), b), HC_{*}(A) = H_{*}(C_{*}(A)[u], b + uB), |u| = -2.
- If A is the coordinate ring of a smooth affine variety X, the Hochschild-Konstant-Rosenberg says HH_{*}(A) ≅ Ω^{*}_X, and moreover HKR: (HH_{*}(A), B) → (Ω^{*}_X, d_{dR}) is a chain map.
- For associative algebra, or a differential graded (DG) category A (such as Coh(X)), one can replace
 Hodge-to-de Rham spectral sequence H^p(X, Ω^q_X) ⇒ H^{p+q}(X, ℂ) by
 Hochschild-to-cyclic spectral sequence HH_p(A)u^q ⇒ HC_{p+q}(A).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Previous studies on Hodge theoretic aspects

< 67 ▶

э

Previous studies on Hodge theoretic aspects

Let \mathcal{A} be a smooth and proper DG category. (e.g. Coh(X) of a projective variety, **proper**: morphism space in \mathcal{A} has finite homological dimension.)

Previous studies on Hodge theoretic aspects

Let \mathcal{A} be a smooth and proper DG category. (e.g. Coh(X) of a projective variety, **proper**: morphism space in \mathcal{A} has finite homological dimension.)

• Barannikov and Kontsevich-Katzarkov-Pantev have developed noncommutative Hodge theories for *A*.

Previous studies on Hodge theoretic aspects

Let \mathcal{A} be a smooth and proper DG category. (e.g. Coh(X) of a projective variety, **proper**: morphism space in \mathcal{A} has finite homological dimension.)

- Barannikov and Kontsevich-Katzarkov-Pantev have developed noncommutative Hodge theories for *A*.
- Kaledin in 2016 proved the degeneration of noncommutative Hodge-to-de Rham spectral sequence for smooth and proper DG categories.

E + 4 E +

Previous studies on Hodge theoretic aspects

Let \mathcal{A} be a smooth and proper DG category. (e.g. Coh(X) of a projective variety, **proper**: morphism space in \mathcal{A} has finite homological dimension.)

- Barannikov and Kontsevich-Katzarkov-Pantev have developed noncommutative Hodge theories for *A*.
- Kaledin in 2016 proved the degeneration of noncommutative Hodge-to-de Rham spectral sequence for smooth and proper DG categories.
- Ganatra, Perutz and Sheridan in 2015 used noncommutative Hodge theory to show that HMS for Calabi-Yau manifolds implies enumerative mirror symmetry for the quintic.

- 3

A B F A B F

3

・ロン ・四 ・ ・ ヨン ・ ヨン

• Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^{\vee} = \mathbb{C}^*$.

3

- 4 回 ト - 4 回 ト

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^{\vee} = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It's more natural to consider coherent sheaves with noncompact supports.

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^{\vee} = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It's more natural to consider coherent sheaves with noncompact supports.
- E.g. Take the structure sheaf $\mathcal{O}_{\mathbb{C}^*}$,

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^{\vee} = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It's more natural to consider coherent sheaves with noncompact supports.
- E.g. Take the structure sheaf $\mathcal{O}_{\mathbb{C}^*}$, the morphism space $Ext^*(\mathcal{O}_{\mathbb{C}^*}, \mathcal{O}_{\mathbb{C}^*}) = \mathbb{C}[z, z^{-1}]$ is infinite dimensional.

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^{\vee} = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It's more natural to consider coherent sheaves with noncompact supports.
- E.g. Take the structure sheaf $\mathcal{O}_{\mathbb{C}^*}$, the morphism space $Ext^*(\mathcal{O}_{\mathbb{C}^*}, \mathcal{O}_{\mathbb{C}^*}) = \mathbb{C}[z, z^{-1}]$ is infinite dimensional.
- In order for HMS to hold, one needs a version of Fukaya category which is possibly nonproper. This is the **wrapped Fukaya category** W(X) (Abouzaid-Seidel).

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^{\vee} = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It's more natural to consider coherent sheaves with noncompact supports.
- E.g. Take the structure sheaf $\mathcal{O}_{\mathbb{C}^*}$, the morphism space $Ext^*(\mathcal{O}_{\mathbb{C}^*}, \mathcal{O}_{\mathbb{C}^*}) = \mathbb{C}[z, z^{-1}]$ is infinite dimensional.
- In order for HMS to hold, one needs a version of Fukaya category which is possibly nonproper. This is the wrapped Fukaya category W(X) (Abouzaid-Seidel).
- For open manifolds U = X\D where X is a compact Kähler manifold and D is a normal crossing divisor, Deligne in 1971 constructed a mixed Hodge structure on H^{*}(U, C) = ℍ^{*}(X, Ω[•]_X(log D)).

イロト 不得 トイヨト イヨト 二日

• Q1: When does the Hodge-to-de Rham (Hochschild to cyclic homology) spectral sequence degenerate for W(X)?

3

Q1: When does the Hodge-to-de Rham (Hochschild to cyclic homology) spectral sequence degenerate for W(X)?
 By Kaledin, degenerate if W(M) is proper.

- Q1: When does the Hodge-to-de Rham (Hochschild to cyclic homology) spectral sequence degenerate for W(X)?
 By Kaledin, degenerate if W(M) is proper.
- Q2: If it does not degenerate at *E*₁-page, does it degenerate at *E*₂-page or so on?

- Q1: When does the Hodge-to-de Rham (Hochschild to cyclic homology) spectral sequence degenerate for W(X)?
 By Kaledin, degenerate if W(M) is proper.
- Q2: If it does not degenerate at *E*₁-page, does it degenerate at *E*₂-page or so on?
- Q3: Given a (nondegenerate) Liouville manifold, by Ganatra $HH_*(\mathcal{W}(M)) \cong SH^{*+n}(M)$ and $HC_*(\mathcal{W}(M)) \cong SH^{*+n}_{S^1}(M)$. When the spectral sequence degenerate at E_1 , it induces a "Hodge" filtration. It is a symplectic invariant, does it respect symplectomorphisms?

(4個) (4回) (4回) (5)

Thank you!

3

(本語)と 本語(と) 本語(と