Spectra of non-normal random matrices and noise stability

Ofer Zeitouni

Weizmann Institute

March 2014

Regularization by noise

Consider the nilpotent N-by-N matrix

$$T_N = \left(egin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{array} \right)$$

Eigenvalues $\lambda_i = 0$, empirical measure $n^{-1} \sum \delta_{\lambda_i} = \delta_0$. Let G_N be a matrix with i.i.d. standard Gaussians. For $\gamma > 1/2$, $\|N^{-\gamma}G_N\| \to 0$, almost surely.

Regularization by noise

Consider the nilpotent N-by-N matrix

$$T_N = \left(egin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{array} \right)$$

Eigenvalues $\lambda_i = 0$, empirical measure $n^{-1} \sum \delta_{\lambda_i} = \delta_0$. Let G_N be a matrix with i.i.d. standard Gaussians. For $\gamma > 1/2$. $\|N^{-\gamma}G_N\| \to 0$, almost surely.

Regularization by noise

Consider the nilpotent N-by-N matrix

$$T_N = \left(egin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{array} \right)$$

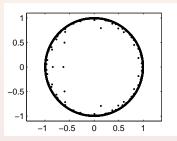
Eigenvalues $\lambda_i=0$, empirical measure $n^{-1}\sum \delta_{\lambda_i}=\delta_0$. Let G_N be a matrix with i.i.d. standard Gaussians. For $\gamma>1/2$, $\|N^{-\gamma}G_N\|\to 0$, almost surely.

Regularization by noise II

Theorem (Guionnet-Wood-Z. '11)

Set $A_N = T_N + N^{-\gamma}G_N$, eigenvalues η_i , empirical measure $L_N^A = n^{-1} \sum \delta_{\eta_i}$. $\gamma > 1/2$. Then L_N^A converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L_N^T = \delta_0$ but for a vanishing perturbation, L_N^A has different limit. (Generalization to i.i.d. G_N : Wood '13.)



3/16

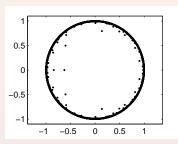
Ofer Zeitouni Noise Stability

Regularization by noise II

Theorem (Guionnet-Wood-Z. '11)

Set $A_N = T_N + N^{-\gamma}G_N$, eigenvalues η_i , empirical measure $L_N^A = n^{-1} \sum \delta_{\eta_i}$. $\gamma > 1/2$. Then L_N^A converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L_N^T = \delta_0$ but for a vanishing perturbation, L_N^A has different limit. (Generalization to i.i.d. G_N : Wood '13.)



A_N - $N \times N$ matrix, uniformly bounded in operator norm.

Definitions: A_N converges in *-moments toward an element a in a W^* probability space $(\mathcal{A}, \|\cdot\|, *, \phi)$ (faithful trace ϕ) if for any non-commutative polynomial P,

$$\frac{1}{N} \operatorname{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*))$$

Fuglede–Kadison Determinant $\det(a) = \exp(\phi(\log |a|))$. Brown measure ν_a of $a \in \mathcal{A}$:

$$\log \det(z-a) = \int \log |z-z'| d\nu_a(z'), \quad z \in \mathbb{C}.$$

Given by

$$\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a-z)).$$

 A_N - $N \times N$ matrix, uniformly bounded in operator norm. Definitions: A_N converges in *-moments toward an element a in a W^* probability space $(A, \|\cdot\|, *, \phi)$ (faithful trace ϕ) if for any non-commutative polynomial P,

$$\frac{1}{N} \operatorname{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)).$$

Fuglede–Kadison Determinant $\det(a) = \exp(\phi(\log |a|))$. Brown measure ν_a of $a \in A$:

$$\log \det(z-a) = \int \log |z-z'| d\nu_a(z'), \quad z \in \mathbb{C}.$$

Given by

$$\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a-z)).$$

 A_N - $N \times N$ matrix, uniformly bounded in operator norm. Definitions: A_N converges in *-moments toward an element a in a W^* probability space $(A, \|\cdot\|, *, \phi)$ (faithful trace ϕ) if for any non-commutative polynomial P,

$$\frac{1}{N} \operatorname{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)).$$

Fuglede–Kadison Determinant $det(a) = exp(\phi(log |a|))$.

Brown measure ν_a of $a \in A$:

$$\log \det(z-a) = \int \log |z-z'| d\nu_a(z'), \quad z \in \mathbb{C}.$$

Given by

$$u_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a-z)).$$

polynomial P,

 A_N - $N \times N$ matrix, uniformly bounded in operator norm. Definitions: A_N converges in *-moments toward an element a in a W^* probability space $(A, \|\cdot\|, *, \phi)$ (faithful trace ϕ) if for any non-commutative

$$\frac{1}{N} \mathrm{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)).$$

Fuglede–Kadison Determinant $\det(a) = \exp(\phi(\log |a|))$. Brown measure ν_a of $a \in \mathcal{A}$:

$$\log \det(z-a) = \int \log |z-z'| d\nu_a(z'), \quad z \in \mathbb{C}.$$

Given by

$$\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a-z))$$

 $A_N - N \times N$ matrix, uniformly bounded in operator norm.

Definitions: A_N converges in *-moments toward an element a in a W^* probability space $(A, \|\cdot\|, *, \phi)$ (faithful trace ϕ) if for any non-commutative polynomial P,

$$\frac{1}{N} \operatorname{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)).$$

Fuglede–Kadison Determinant $\det(a) = \exp(\phi(\log |a|))$. Brown measure ν_a of $a \in \mathcal{A}$:

$$\log \det(z-a) = \int \log |z-z'| d\nu_a(z'), \quad z \in \mathbb{C}.$$

Given by

$$\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a-z)).$$

 A_N - $N \times N$ matrix, uniformly bounded in operator norm.

Definitions: A_N converges in *-moments toward an element a in a W^* probability space $(A, \|\cdot\|, *, \phi)$ (faithful trace ϕ) if for any non-commutative polynomial P,

$$\frac{1}{N} \operatorname{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)).$$

Fuglede–Kadison Determinant $\det(a) = \exp(\phi(\log |a|))$. Brown measure ν_a of $a \in \mathcal{A}$:

$$\log \det(z-a) = \int \log |z-z'| d\nu_a(z'), \quad z \in \mathbb{C}.$$

Given by

$$u_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a-z)).$$

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

$$\lim_{t\to 0} \lim_{N\to\infty} L_N^{A_N(t)} = \nu_a$$
.

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \dots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \dots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ , Σ_A , for t coordinate-wise increasing,

$$N^{-1}\operatorname{tr}(f(\Sigma_{\mathcal{A}}(t)) \geq N^{-1}\operatorname{tr}(f(\Sigma_{0}(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t=t_N o 0$?

<□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5/16

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

$$\lim_{t\to 0}\lim_{N\to\infty}L_N^{A_N(t)}=\nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \dots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \dots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A , for f coordinate-wise increasing,

$$N^{-1}\operatorname{tr}(f(\Sigma_A(t)) \geq N^{-1}\operatorname{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t=t_N o 0$?

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

$$\lim_{t\to 0} \lim_{N\to\infty} L_N^{A_N(t)} = \nu_a$$
.

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \dots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \dots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ , Σ_A , for t coordinate-wise increasing,

$$N^{-1}\operatorname{tr}(f(\Sigma_A(t)) \geq N^{-1}\operatorname{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t=t_N \to 0$?

<□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5/16

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

 $\lim_{t\to 0} \lim_{N\to\infty} L_N^{A_N(t)} = \nu_a$.

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \dots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \dots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A , for f coordinate-wise increasing,

$$N^{-1}\operatorname{tr}(f(\Sigma_A(t)) \geq N^{-1}\operatorname{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t=t_N o 0$?

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

 $\lim_{t\to 0}\lim_{N\to\infty}L_N^{A_N(t)}=\nu_a.$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \dots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \dots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ , Σ_A , for t coordinate-wise increasing,

$$N^{-1}\operatorname{tr}(f(\Sigma_A(t)) \geq N^{-1}\operatorname{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \rightarrow 0$?

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

 $\lim_{t\to 0} \lim_{N\to\infty} L_N^{A_N(t)} = \nu_a$.

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \dots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \dots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A , for f coordinate-wise increasing,

$$N^{-1}\operatorname{tr}(f(\Sigma_{\mathcal{A}}(t)) \geq N^{-1}\operatorname{tr}(f(\Sigma_{0}(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \rightarrow 0$?

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

 $\lim_{t\to 0}\lim_{N\to\infty}L_N^{A_N(t)}=\nu_a.$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \dots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \dots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A , for f coordinate-wise increasing,

$$N^{-1}\operatorname{tr}(f(\Sigma_A(t)) \geq N^{-1}\operatorname{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t=t_{N}
ightarrow 0$?

Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

 $\lim_{t\to 0}\lim_{N\to\infty}L_N^{A_N(t)}=\nu_a.$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \dots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \dots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A , for f coordinate-wise increasing,

$$N^{-1}\operatorname{tr}(f(\Sigma_{\mathcal{A}}(t)) \geq N^{-1}\operatorname{tr}(f(\Sigma_{0}(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \rightarrow 0$?

4□ > 4回 > 4 豆 > 4 豆 > 豆 め Q ()

 $a \in A$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_a^z(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N o^*$ a, regular. $L_N^A o
u_a$ weakly. $\gamma > 1/2$. Then $L_N^{A_N+N^{-\gamma}G_N} o
u_a$ weakly, in probability.

 $a \in A$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_a^z(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular. $L_N^A \to \nu_a$ weakly. $\gamma > 1/2$. Then, $L_N^{A_N + N - \gamma} G_N \to \nu_a$ weakly, in probability.

 $a \in A$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_a^z(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular. $L_N^A \to \nu_a$ weakly. $\gamma > 1/2$. Then, $L_N^{A_N + N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.

 $a \in A$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_a^z(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular. $L_N^A \to \nu_a$ weakly. $\gamma > 1/2$. Then, $L_N^{A_N + N - \gamma} G_N \to \nu_a$ weakly, in probability.

 $a \in A$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_a^z(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular. $L_N^A \to \nu_a$ weakly. $\gamma > 1/2$. Then, $L_N^{A_N + N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.

 $a \in A$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_a^z(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular. $L_N^A \to \nu_a$ weakly. $\gamma > 1/2$. Then, $L_N^{A_N + N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.

 $a \in A$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_a^z(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular. $L_N^A \to \nu_a$ weakly. $\gamma > 1/2$. Then, $L_N^{A_N + N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular, $||E_N|| \to 0$ polynomially. $L_N^{A_N + E_N} \to \nu_a$ weakly. Then $L_N^{A_N + N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular, $||E_N|| \to 0$ polynomially. $L_N^{A_N+E_N} \to \nu_a$ weakly. Then $L_N^{A_N+N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.

Theorem (Guionnet-Wood-Z. '11)

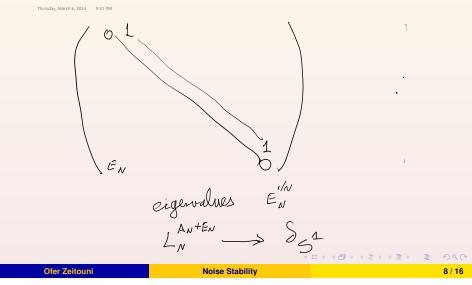
Assume: $A_N \to^* a$, regular, $||E_N|| \to 0$ polynomially. $L_N^{A_N+E_N} \to \nu_a$ weakly. Then $L_N^{A_N+N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular, $||E_N|| \to 0$ polynomially. $L_N^{A_N+E_N} \to \nu_a$ weakly. Then $L_N^{A_N+N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.

Theorem (Guionnet-Wood-Z. '11)

Assume: $A_N \to^* a$, regular, $||E_N|| \to 0$ polynomially. $L_N^{A_N+E_N} \to \nu_a$ weakly. Then $L_N^{A_N+N^{-\gamma}G_N} \to \nu_a$ weakly, in probability.



Noise Stability-Nilpotent matrices

Maybe this always works?

$$T_{b,N} = \begin{bmatrix} T_b & & & & \\ & T_b & & & \\ & & \ddots & & \\ & & & T_b \end{bmatrix}$$

$$L_N^{I_{a\log N,N}+N^{-\gamma}G_N} \not\to \delta_{S}$$

Noise Stability-Nilpotent matrices

Maybe this always works?

$$T_{b,N} = egin{bmatrix} T_b & & & & & \ & T_b & & & & \ & & \ddots & & & \ & & & T_b \end{bmatrix}$$

where T_b is maximally nilpotent of dimension b.

Theorem (Guionnet-Wood-Z '11)

If $b = a \log N$ and γ is large enough, then the spectral radius of $T_{b,N} + N^{-\gamma}G_N$ is uniformly strictly smaller than 1. In particular,

$$L_N^{T_{a\log N,N}+N^{-\gamma}G_N}
ightarrow \delta_{S^n}$$

even though $T_{a \log N, N}$ converges in * moments to random unitary!

What is going on?

Noise Stability-Nilpotent matrices

Maybe this always works?

$$T_{b,N} = egin{bmatrix} T_b & & & & & \\ & T_b & & & & \\ & & & \ddots & & \\ & & & T_b \end{bmatrix}$$

where T_b is maximally nilpotent of dimension b.

Theorem (Guionnet-Wood-Z '11)

If $b = a \log N$ and γ is large enough, then the spectral radius of $T_{b,N} + N^{-\gamma}G_N$ is uniformly strictly smaller than 1. In particular,

$$L_N^{T_{a\log N,N}+N^{-\gamma}G_N} \not\to \delta_{S^1}$$

even though $T_{a \log N, N}$ converges in * moments to random unitary!

What is going on?

Ofer Zeitouni Noise Stability

Noise Stability-Nilpotent matrices

Maybe this always works?

where T_b is maximally nilpotent of dimension b.

Theorem (Guionnet-Wood-Z '11)

If $b = a \log N$ and γ is large enough, then the spectral radius of $T_{b,N} + N^{-\gamma}G_N$ is uniformly strictly smaller than 1. In particular,

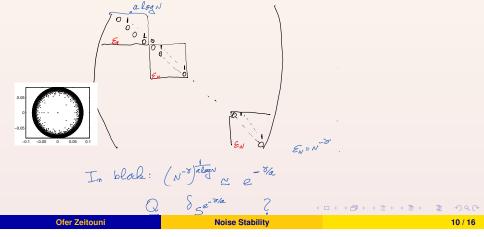
$$L_N^{T_{a\log N,N}+N^{-\gamma}G_N} \not\to \delta_{S^1}$$

even though $T_{a \log N, N}$ converges in * moments to random unitary!

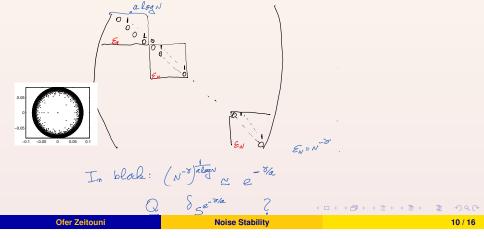
What is going on?

Noise Stability

Simulations inconclusive!



Simulations inconclusive!



Framework: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

Simulations...

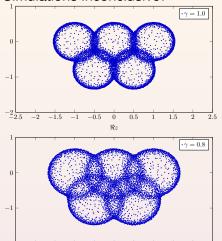
Framework: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

Simulations...

Framework: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

Simulations...

Simulations inconclusive!



-1 -0.5

 A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$$B_N = A_N + N^{-\gamma} G_N.$$

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \le 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. '14)

For
$$\gamma > 1$$
 and $\ell(N) = o(N/\log\log(N))$,

$$d(L_N^{B_N},\mu_N) \to_{N \to \infty} 0$$

A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$$B_N = A_N + N^{-\gamma} G_N$$
.

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \le 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. '14)

For
$$\gamma > 1$$
 and $\ell(N) = o(N/\log\log(N))$,

$$d(L_N^{B_N},\mu_N) \to_{N \to \infty} 0$$

 A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$$B_N = A_N + N^{-\gamma} G_N.$$

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \le 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. '14)

For
$$\gamma > 1$$
 and $\ell(N) = o(N/\log\log(N))$,

$$d(L_N^{B_N}, \mu_N) \rightarrow_{N \rightarrow \infty} 0$$

 A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$$B_N = A_N + N^{-\gamma} G_N.$$

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \le 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. '14)

For
$$\gamma > 1$$
 and $\ell(N) = o(N/\log\log(N))$,

$$d(L_N^{B_N}, \mu_N) \rightarrow_{N\rightarrow\infty} 0$$

 A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$$B_N = A_N + N^{-\gamma} G_N$$
.

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \le 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. '14)

For
$$\gamma > 1$$
 and $\ell(N) = o(N/\log\log(N))$,

$$d(L_N^{B_N},\mu_N) \rightarrow_{N\rightarrow\infty} 0$$

 A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$$B_N = A_N + N^{-\gamma} G_N.$$

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \le 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. '14)

For
$$\gamma > 1$$
 and $\ell(N) = o(N/\log\log(N))$,

$$d(L_N^{B_N},\mu_N) \rightarrow_{N\rightarrow\infty} 0$$

Again, logarithmic potential plays a crucial role in the proof.

By general results, enough to show that for Lebesgue a.e. z,

$$|U_{L_N^B}(z)-U_{\mu_N}(z)| o 0$$

in probability, where $U_{\nu}(z) = \int \log |z - x| \nu(dx)$. For L_N^B , $U_{L_N^B}(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^*$.

Again, logarithmic potential plays a crucial role in the proof. By general results, enough to show that for Lebesgue a.e. z,

$$|\textit{U}_{\textit{L}_{\textit{N}}^{\textit{B}}}(\textit{z}) - \textit{U}_{\mu_{\textit{N}}}(\textit{z})| \rightarrow 0\,,$$

in probability, where $U_{\nu}(z) = \int \log |z - x| \nu(dx)$.

For
$$L_N^B$$
, $U_{L_N^B}(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^*$.

Again, logarithmic potential plays a crucial role in the proof. By general results, enough to show that for Lebesgue a.e. z,

$$|U_{L_N^B}(z)-U_{\mu_N}(z)| o 0$$
,

in probability, where $U_{\nu}(z) = \int \log |z - x| \nu(dx)$. For L_N^B , $U_{L_N^B}(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^*$.

Again, logarithmic potential plays a crucial role in the proof. By general results, enough to show that for Lebesgue a.e. z,

$$|U_{L_N^B}(z)-U_{\mu_N}(z)| o 0$$
,

in probability, where $U_{\nu}(z) = \int \log |z - x| \nu(dx)$. For L_N^B , $U_{L_N^B}(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^*$.

Consider reparalely 121 moll & 121 large.

$$det = \frac{1}{Z^{N}} det = \frac{1}$$

Expand in minars: minar = 1, z' minars:

For 21 small carrelation between main diag & aff diag - latter vino.

121 large - I wins. Cutoff of radius.

$$B_N - zI = \begin{bmatrix} T + G_1 & * \\ * & G_2 \end{bmatrix},$$

We need to fight cancelations between possible contributions to the determinant. Using Schur complement,

$$\det(B_N-zI)=\det(T+G_1)\det(G_2-C)$$

For Gaussian matrices G_2 , easy to bound second determinant from below, independently of C, by height \times area formula. For non-Gaussian noise, no general estimates for minimum singular values if C is arbitrary (i.e. no prior assumption on norm of C!).

$$B_N-zI=\begin{bmatrix}T+G_1 & *\\ * & G_2\end{bmatrix},$$

We need to fight cancelations between possible contributions to the determinant. Using Schur complement,

$$\det(B_N-zI)=\det(T+G_1)\det(G_2-C)$$

For Gaussian matrices G_2 , easy to bound second determinant from below, independently of C, by height \times area formula. For non-Gaussian noise, no general estimates for minimum singular values if C is arbitrary (i.e. no prior assumption on norm of C!).

$$B_N - zI = \begin{bmatrix} T + G_1 & * \\ * & G_2 \end{bmatrix},$$

We need to fight cancelations between possible contributions to the determinant. Using Schur complement,

$$\det(B_N-zI)=\det(T+G_1)\det(G_2-C)$$

For Gaussian matrices G_2 , easy to bound second determinant from below, independently of C, by height \times area formula.

For non-Gaussian noise, no general estimates for minimum singular values if C is arbitrary (i.e. no prior assumption on norm of C!).

$$B_N - zI = \begin{bmatrix} T + G_1 & * \\ * & G_2 \end{bmatrix},$$

We need to fight cancelations between possible contributions to the determinant. Using Schur complement,

$$\det(B_N-zI)=\det(T+G_1)\det(G_2-C)$$

For Gaussian matrices G_2 , easy to bound second determinant from below, independently of C, by height \times area formula.

For non-Gaussian noise, no general estimates for minimum singular values if C is arbitrary (i.e. no prior assumption on norm of C!).