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According to inSpire, I’ve written 18 papers with Nati – possibly
his second most frequent co-author, after Michael Dine.

Three particularly memorable topics might be

(*) Worldsheet instantons, with Dine and X.-G. Wen (1986-7)

(**) Effective action of N = 2 Super Yang-Mills Theory (1994)

(***) String Theory And Noncommutative Geometry (1999)



Rather than reminiscences, it seemed more appropriate today to
talk about something current. Nat and I have written two papers
this year:

(*) Gapped Boundary States Of Topological Insulators via Weak
Coupling, arXiv:1602.04251

(**) A Duality Web In 2 + 1 Dimensions And Condensed Matter
Physics, with T. Senthil and C. Wang, arXiv:1606.01989.



Nati has given many talks on the second paper and does it much
better than I could, so I wouldn’t seriously consider talking about
that one. I considered talking about the first paper. It would make
a nice talk, which I haven’t really given so it would be new. But
there was one problem – I couldn’t see how to make such a talk
interesting for Nati.



So instead I will describe more recent work that in a sense deals
with the same problem that we studied in that paper, but for
bosons rather than fermions. The idea was described in an
abstract way in my paper arXiv:1605.02391, and I am currently
working with Juven Wang and Xiao-Gang Wen to understand it
better and make it more concrete.



First of all, in very general terms, the problem is as follows. One
has a material of some kind – possibly a topological insulator –
which has a certain global symmetry group. In the case of the
topological insulator, the relevant symmetries are time-reversal
symmetry T and conservation of electric charge.



The bulk of the system is gapped

but it is not a “trivial” gapped phase. What is nontrivial about it is
that it responds in an unusual way to some external perturbation.



In the case of a topological insulator, what is unusual is that an
external magnetic monopole, if it is moved from vacuum into the
material, has its electric charge shifted by 1/2. Here the monopole
is outside the topological insulator:



In the case of a topological insulator, what is unusual is that an
external magnetic monopole, if it is moved from vacuum into the
material, has its electric charge shifted by 1/2. And here it is
inside:



Obviously, when the magnetic monopole is moved inside the
material, an electric charge ±e/2 is deposited on the surface. But
what kind of material can support boundary excitations of electric
charge ±e/2?



One option – realized in the lab – is that the boundary supports
gapless fermions. When there is a net magnetic flux passing
through the surface, those gapless fermions have zero-modes.
Quantization of the zero-modes leads to states of electric charge
±e/2, as shown long ago by Jackiw and Rebbi in another context.



It is also possible for the symmetry to be explicitly or
spontaneously broken on the boundary. For example, in the case of
the topological insulator, if we did not have electric charge
conservation, there would be no issue. (It is also true that if we did
not have time-reversal symmetry, there would be no issue, but this
takes longer to explain.)

These phases are said to be “symmetry-protected” – they have
subtle properties but the subtlety disappears if one is allowed to
violate the symmetries.



Keeping the symmetries, it is also possible for the boundary to be
gapped. But in this case, when the magnetic monopole passes
through the surface, a quasiparticle of electric charge ±e/2 is
created. It turns out that in a theory that microscopically has
integer charges only, to have a gapped phase with fractionally
charged quasiparticles, that phase must actually be described by a
nontrivial topological field theory.



Very roughly, that is because otherwise, one cannot make sense of
an amplitude in which a charge e/2 quasiparticle goes around a
noncontractible loop:



The problem that Nati and I treated in the first of our recent
papers was to describe gapped and symmetry-preserving but
topologically nontrivial boundary states of a topological insulator
or superconductor. (There were a number of previous papers, e.g.
Metlitski, Kane, and Fisher (2013), Chen, Fidkowski, and
Vishwanath (2013), Wang, Potter, and Senthil (2013), Mross,
Essin, and Alicea (2014).)



Instead, today I will talk about analogous boundary states for
gapped phases of bosons that are “symmetry-protected topological
(SPT),” meaning that the bulk theory realizes some global
symmetry group G in an unusual fashion that forces unusual
boundary behavior. There is a systematic approach to such phases
(Chen, Gu, Liu and Wen (2013)) using group cohomology as in the
study of Chern-Simons theory of a finite group (Dijkgraaf and EW
(1990)). However, the formulas are a little abstract and it is
difficult to make them understandable on the fly.



In some simple cases there are very concrete constructions of these
phases, and in particular today I will follow the approach of Chen,
Liu, and Wen arXiv:1106.4752 of a very simple model (the “CZX
model”) with global symmetry Z2. This actually comes at a certain
cost, because we will be in dimension 2 + 1 and some things of
importance in condensed matter really only behave generically in
dimension ≥ 3 + 1. In the long run, the general approach is more
powerful, but it is nice to have an expiicit intuitive example. (In
my work with J. Wang and X.-G. Wen, we use the abstract general
approach as well as the concrete one that I follow today. An
example of a gapped boundary state for bosons was described by
Chen, Burnell, Vishwanath, and Fidkowski (2014).)



The model is on a 2d square lattice. Each lattice site (represented
below by a large disc) contains 4 qubits (corresponding to the
small darker discs)
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projective representation as in the bond state. We can
add small perturbation to the system which satisfies the
symmetry and the system is going to remain gapped and
the ground state short range entangled and symmetric.
It seems that the system is quite trivial and boring. How-
ever, we are going to show that surprising things happen
if the system has a boundary and because of these special
features the system cannot be smoothly connected to a
trivial phase even if translation symmetry is not required.

IV. CZX MODEL BOUNDARY

The non-trivialness of this model shows up on the
boundary. Suppose that we take a simply connected disk
from the lattice, as shown in Fig.4(a).

FIG. 4. (a)CZX model on a disk with boundary (b) boundary
e↵ective degrees of freedom form a 1D chain which cannot
have a SRE symmetric state (c) two boundaries together can
have a SRE symmetric state which is a product of entangled
pairs between e↵ective spins connected by a dashed line.

The reduced density matrix of spins in this region is
invariant under on-site symmetry in this region. The
reduced density matrix is a tensor product of individual
terms on each full plaquette, half plaquette and corner of
plaquette respectively. On a full plaquette

⇢4 = (|0000i+ |1111i)(h0000| + h1111|) (9)

On a half plaquette

⇢2 = |00ih00| + |11ih11| (10)

On a corner of a plaquette

⇢1 = |0ih0| + |1ih1| (11)

The state of spins on the plaquettes totally inside this
region is completely fixed. But on the boundary there
are free degrees of freedom. However, unlike in the bond
state, only part of the total Hilbert space of the spins
on the boundary is free. In particular, two spins in a
half plaquette on the boundary are constrained to the
two-dimensional subspace |00ih00| + |11ih11| and form
an e↵ective spin degree of freedom if we map |00i to |0̃i
and |11i to |1̃i.

In Fig. 4(b), we show the e↵ective degrees of freedom
on the boundary as diamonds on a line. Projecting the

total symmetry operation on the disk to the space sup-
porting reduced density matrix, we find that the e↵ec-
tive symmetry operation on the boundary e↵ective spins

is ŨCZX =
QN

i=1 X̃i

QN
i=1 C̃Zi,i+1, with Pauli X̃ on each

e↵ect spin and C̃Z operation between neighboring e↵ec-
tive spins. The boundary is periodic and C̃ZN,N+1 acts
on e↵ective spin N and 1. This operator generates a Z2

symmetry group.
This is a very special symmetry on a 1D system. First

it is not an on-site symmetry. In fact, no matter how
we locally group sites and take projections, the sym-
metry operations are not going to break down into an
on-site form. Moreover, no matter what interactions we
add to the boundary, as long as it preserves the sym-
metry, the boundary cannot have a gapped symmetric
ground state. We can start by considering some simple
cases. The simplest interaction term preserving this sym-
metry is ZiZi+1. This is an Ising interaction term and
its ground state breaks the Z2 symmetry. In the trans-
verse Ising model, the system goes to a symmetric phase
if magnetic field in the x direction is increased. However,
Xi breaks the Z2 symmetry ŨCZX on the boundary and
therefore cannot be added to the Hamiltonian. In fact,
we are going to prove that the boundary cannot have
SRE symmetric ground state (actually a more general-
ized version of it) in the next section. This is one special
property that di↵ers the CZX model from the bond state
in Fig.2. In the bond state, the symmetry operations on
the boundary are just projective representations on each
site. Without translational invariance, there can always
be a SRE symmetric state with this symmetry.

The special property on the boundary only shows up
when there is an isolated single boundary. If we put two
such boundaries together and allow interactions between
them, everything is back to normal. As shown in Fig.4(c),
if we have two boundaries together, there is indeed a SRE
symmetric state on the two boundaries. The state is a
product of entangled pairs of e↵ective spins connected
by a dashed line. The entangled pair can be chosen as
|0̃0̃i + |1̃1̃i. In contrast to the single boundary case, we
can locally project the two e↵ective spins connected by
a dashed line to the subspace |0̃0̃ih0̃0̃| + |1̃1̃ih1̃1̃| and on
this subspace, the symmetry acts in an on-site fashion.

This result should be expected because if we have two
pieces of sheet with boundary and glue them back into
a surface without boundary, we should have the origi-
nal SRE 2D state back. Indeed if we map the e↵ective
spins back to the original degrees of freedom |0̃i ! |00i
and |1̃i ! |11i, we see that the SRE state between two
boundaries is just the a chain of plaquettes |0000i+|1111i
in the original state.

This model serves as an example of non-trivial SPT or-
der in 2D SRE states that only needs to be protected by
on-site symmetry. In order to prove the special property
on the boundary of CZX model and have a more com-
plete understanding of possible SPT orders in 2D SRE
states with on-site symmetry, we are going to introduce
a mathematical tool called Matrix Product Unitary Op-



We denote the states of a qubit as |0〉 and |1〉. There is a Z2

symmetry that acts on the four qubits on a site, but the way that it
acts is a little subtle. Let Xi be the operator that flips the i th qubit:

Xi =

(
0 1
1 0

)
.

The obvious Z2 symmetry for four qubits on a site is

X ∗ = X1X2X3X4.

However in the CZX model, this is combined with signs.



We define the operator

Z =

(
1 0
0 −1

)

for any qubit (in the basis |1〉, |0〉). If i and j are any two qubits,
we define the “controlled Z” operator as

CZij |1 1〉 = −|1 1〉, CZij |a b〉 = +|a, b〉 if |a, b〉 6= |1, 1〉.

In other words if the first spin is |1〉, we measure −Z of the second
spin, and otherwise we do nothing.



For four spins in cyclic order

we define the “total CZ” as

CZ ∗ = CZ12CZ23CZ34CZ41.

Thus CZ ∗ gives a minus sign for every pair of adjacent spins that
are both in state |11〉.



The Z2 generator for four qubits on a site is now defined as the
“total CZX”:

CZX ∗ = X ∗CZ ∗.

To check that (CZX ∗)2 = 1 on all states, one has to look at a few
special cases, for example acting with X ∗ exchanges

(
1 0
0 0

)
←→

(
0 1
1 1

)

and these states both have CZ ∗ = +1. Another example is

(
1 1
0 0

)
←→

(
0 0
1 1

)

where both have CZ ∗ = −1.

In all cases (CZX ∗)2 = (X ∗CZ ∗)2 = +1 because X ∗ exchanges
two states with the same eigenvalues of CZ ∗.



What we have done so far is not useful by itself. By making a
unitary transformation of the 4 qubits, we could put the Z2 action
in a standard form. But this would make it hard to describe the
entanglement pattern of the ground state, which we will come to
shortly.



Before going on, I want to mention the following. Although the Z2

action was described in a slightly nonstandard fashion, it was
“on-site,” meaning that the qubits at any one lattice site
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transform separately under their
own Z2 symmetry. Any on-site global symmetry of a lattice system
is anomaly-free, in the sense that it can be gauged – that is, any
lattice system with the symmetry that I have described can be
coupled to Z2 lattice gauge fields. Non-on-site symmetries can be
anomalous and ungaugeable.



Now, the CZX model of Chen, Liu and Wen has short-range
entanglement and in particular is gapped. But the entanglement is
naturally described in terms of “plaquettes,” drawn in the figure as
squares, rather than “sites” (the large shaded discs):
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It is easiest to first describe the ground state wavefunction before
describing the Z2-invariant Hamiltonian that has this ground state.
The ground state wavefunction is

Ψ =
∏

plaquettes

1√
2

(|0000〉+ |1111〉) .

Thus the four qubits in any one plaquette are in a highly entangled
state, but there is no entanglement between spins that are not in
the same plaquette.



The most obvious Hamiltonian that has Ψ for a ground state is

H0 = −
∑

plaquettes

(|0000〉〈1111|+ |1111〉〈0000|) ,

in other words the sum over plaquettes of the projector onto the
state 1√

2
(|0000〉+ |1111〉) on each plaquette. The Hamiltonian H0

would have the obvious Z2 symmetry X ∗, but it does not have the
more subtle CZX ∗ symmetry.



That is because if we flip the four spins in a plaquette, we can
change the sign of an odd number of the CZ operators of adjacent
spins in a site:
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der in 2D SRE states that only needs to be protected by
on-site symmetry. In order to prove the special property
on the boundary of CZX model and have a more com-
plete understanding of possible SPT orders in 2D SRE
states with on-site symmetry, we are going to introduce
a mathematical tool called Matrix Product Unitary Op-



What will save the day will be if we only flip the spins in a given
plaquette if pairs of spins in the next plaquette are equal:

For each
plaquette P, let ΠP be the projector onto states that obey that
condition. Then the Hamiltonian

H = −
∑

P
(|0000〉〈1111|+ |1111〉〈0000|)P ΠP

commutes with CZX ∗ and has Ψ for its ground state.



This is the CZX model. The symmetry action is trivial in the sense
that it is on-site, and the entanglement pattern of the ground state
(or any other eigenstate of this Hamiltonian) is also trivial in the
sense that it has a very short range. In fact, if we ignore the Z2

global symmetry, we could declare the four qubits in a plaquette
(rather than in a disc) to represent a single site and then the
wavefunction would be a trivial product wavefunction – that is, a
product of one-site wavefunctions.



But there is a mismatch between the symmetry pattern and the
entanglement pattern. They cannot be both made trivial at once
and in fact the model is in a topologically nontrivial phase of
gapped systems with Z2 global symmetry.



We see what is nontrivial most directly if we look at the behavior
near the boundary. Here we have to face the fact that there are
different possible boundary states. I will first consider the original
boundary state of Chen, Liu, and Wen (CLW) and then I will
describe an alternative that I’ve been looking at with Wang and
Wen.



If we consider a system with an integer number of sites, all of the
type I’ve described, we run into the fact that near the boundary we
have some incomplete plaquettes:
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projective representation as in the bond state. We can
add small perturbation to the system which satisfies the
symmetry and the system is going to remain gapped and
the ground state short range entangled and symmetric.
It seems that the system is quite trivial and boring. How-
ever, we are going to show that surprising things happen
if the system has a boundary and because of these special
features the system cannot be smoothly connected to a
trivial phase even if translation symmetry is not required.

IV. CZX MODEL BOUNDARY

The non-trivialness of this model shows up on the
boundary. Suppose that we take a simply connected disk
from the lattice, as shown in Fig.4(a).

FIG. 4. (a)CZX model on a disk with boundary (b) boundary
e↵ective degrees of freedom form a 1D chain which cannot
have a SRE symmetric state (c) two boundaries together can
have a SRE symmetric state which is a product of entangled
pairs between e↵ective spins connected by a dashed line.

The reduced density matrix of spins in this region is
invariant under on-site symmetry in this region. The
reduced density matrix is a tensor product of individual
terms on each full plaquette, half plaquette and corner of
plaquette respectively. On a full plaquette

⇢4 = (|0000i+ |1111i)(h0000| + h1111|) (9)

On a half plaquette

⇢2 = |00ih00| + |11ih11| (10)

On a corner of a plaquette

⇢1 = |0ih0| + |1ih1| (11)

The state of spins on the plaquettes totally inside this
region is completely fixed. But on the boundary there
are free degrees of freedom. However, unlike in the bond
state, only part of the total Hilbert space of the spins
on the boundary is free. In particular, two spins in a
half plaquette on the boundary are constrained to the
two-dimensional subspace |00ih00| + |11ih11| and form
an e↵ective spin degree of freedom if we map |00i to |0̃i
and |11i to |1̃i.

In Fig. 4(b), we show the e↵ective degrees of freedom
on the boundary as diamonds on a line. Projecting the

total symmetry operation on the disk to the space sup-
porting reduced density matrix, we find that the e↵ec-
tive symmetry operation on the boundary e↵ective spins

is ŨCZX =
QN

i=1 X̃i

QN
i=1 C̃Zi,i+1, with Pauli X̃ on each

e↵ect spin and C̃Z operation between neighboring e↵ec-
tive spins. The boundary is periodic and C̃ZN,N+1 acts
on e↵ective spin N and 1. This operator generates a Z2

symmetry group.
This is a very special symmetry on a 1D system. First

it is not an on-site symmetry. In fact, no matter how
we locally group sites and take projections, the sym-
metry operations are not going to break down into an
on-site form. Moreover, no matter what interactions we
add to the boundary, as long as it preserves the sym-
metry, the boundary cannot have a gapped symmetric
ground state. We can start by considering some simple
cases. The simplest interaction term preserving this sym-
metry is ZiZi+1. This is an Ising interaction term and
its ground state breaks the Z2 symmetry. In the trans-
verse Ising model, the system goes to a symmetric phase
if magnetic field in the x direction is increased. However,
Xi breaks the Z2 symmetry ŨCZX on the boundary and
therefore cannot be added to the Hamiltonian. In fact,
we are going to prove that the boundary cannot have
SRE symmetric ground state (actually a more general-
ized version of it) in the next section. This is one special
property that di↵ers the CZX model from the bond state
in Fig.2. In the bond state, the symmetry operations on
the boundary are just projective representations on each
site. Without translational invariance, there can always
be a SRE symmetric state with this symmetry.

The special property on the boundary only shows up
when there is an isolated single boundary. If we put two
such boundaries together and allow interactions between
them, everything is back to normal. As shown in Fig.4(c),
if we have two boundaries together, there is indeed a SRE
symmetric state on the two boundaries. The state is a
product of entangled pairs of e↵ective spins connected
by a dashed line. The entangled pair can be chosen as
|0̃0̃i + |1̃1̃i. In contrast to the single boundary case, we
can locally project the two e↵ective spins connected by
a dashed line to the subspace |0̃0̃ih0̃0̃| + |1̃1̃ih1̃1̃| and on
this subspace, the symmetry acts in an on-site fashion.

This result should be expected because if we have two
pieces of sheet with boundary and glue them back into
a surface without boundary, we should have the origi-
nal SRE 2D state back. Indeed if we map the e↵ective
spins back to the original degrees of freedom |0̃i ! |00i
and |1̃i ! |11i, we see that the SRE state between two
boundaries is just the a chain of plaquettes |0000i+|1111i
in the original state.

This model serves as an example of non-trivial SPT or-
der in 2D SRE states that only needs to be protected by
on-site symmetry. In order to prove the special property
on the boundary of CZX model and have a more com-
plete understanding of possible SPT orders in 2D SRE
states with on-site symmetry, we are going to introduce
a mathematical tool called Matrix Product Unitary Op-

What CLW did was to define
the Hamiltonian as a sum over complete plaquettes

H = −
∑

P−complete

(|0000〉〈1111|+ |1111〉〈0000|)P ΠP

This makes sense and is Z2-invariant, but it does not give a gapped
system because the spins on the boundary are not fully constrained.



The low energy physics is interesting. Let us look at the bottom
row consisting of qubits that are not in complete plaquettes:
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metry operations are not going to break down into an
on-site form. Moreover, no matter what interactions we
add to the boundary, as long as it preserves the sym-
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ground state. We can start by considering some simple
cases. The simplest interaction term preserving this sym-
metry is ZiZi+1. This is an Ising interaction term and
its ground state breaks the Z2 symmetry. In the trans-
verse Ising model, the system goes to a symmetric phase
if magnetic field in the x direction is increased. However,
Xi breaks the Z2 symmetry ŨCZX on the boundary and
therefore cannot be added to the Hamiltonian. In fact,
we are going to prove that the boundary cannot have
SRE symmetric ground state (actually a more general-
ized version of it) in the next section. This is one special
property that di↵ers the CZX model from the bond state
in Fig.2. In the bond state, the symmetry operations on
the boundary are just projective representations on each
site. Without translational invariance, there can always
be a SRE symmetric state with this symmetry.

The special property on the boundary only shows up
when there is an isolated single boundary. If we put two
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them, everything is back to normal. As shown in Fig.4(c),
if we have two boundaries together, there is indeed a SRE
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a dashed line to the subspace |0̃0̃ih0̃0̃| + |1̃1̃ih1̃1̃| and on
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This result should be expected because if we have two
pieces of sheet with boundary and glue them back into
a surface without boundary, we should have the origi-
nal SRE 2D state back. Indeed if we map the e↵ective
spins back to the original degrees of freedom |0̃i ! |00i
and |1̃i ! |11i, we see that the SRE state between two
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This model serves as an example of non-trivial SPT or-
der in 2D SRE states that only needs to be protected by
on-site symmetry. In order to prove the special property
on the boundary of CZX model and have a more com-
plete understanding of possible SPT orders in 2D SRE
states with on-site symmetry, we are going to introduce
a mathematical tool called Matrix Product Unitary Op-

Those spins are not
completely free to fluctuate because to minimize the energy, the
projectors ΠP must all equal 1. Each pair of boundary spins that
are in a “partial plaquette” appear in one of those projectors and
they must be equal to minimize the energy. Thus for an effective
description, we can use “composite qubits” with one qubit for
every partial plaquette on the boundary.



There is an effective Z2 symmetry for these composite qubits, but
it is not on-site. The Z2 generator is

CZX ′ =
∏

i

Xi

∏

j

CZj j+1

with a CZ operator for each adjacent pair of composite qubits. It
is not hard to show that (CZX ′)2 = 1, so CZX ′ generates a Z2

symmetry. But it is not onsite because every adjacent pair of
composite qubits is linked by one of the CZ factors. No matter
how we combine composite qubits into sites, the symmetry is not
on-site.



It can be shown that a chain of qubits with this Z2 symmetry
cannot be gapped. However it is possible to remove most of the
2N -fold ground state degeneracy that we have so far (N being the
number of composite qubits) with a suitable perturbation. One
can flow to a c = 1 system with the Z2 acting as a discrete chiral
symmetry, preventing the system from being gappable.



I cannot say more about this boundary state as I want to describe
the alternative boundary state that I’ve been looking at lately, with
Wang and Wen. To construct it, the first step is to just throw
away all of the boundary spins that are not in full plaquettes. Thus
on the boundary we have partial sites, i.e. some sites have only 2
qubits, not 4:
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by breaking translation symmetry. However, in the CZX
model, this is not possible.

III. CZX MODEL

In this section, we construct the CZX model explicitly
which turns out to have nontrivial SPT order protected
only by on-site Z2 symmetry.

FIG. 3. CZX model (a) each site (circle) contains four
spins (dots) and the spins in the same plaquette (square)
are entangled. (b) on-site Z2 symmetry is generated by
UCZX = X1X2X3X4CZ12CZ23CZ34CZ41 (c) a local term
in the Hamiltonian, which is a tensor product of one X4 term
and four P2 terms as defined in the main text.

Consider a square lattice with four two-level spins per
site, as shown in Fig. 3(a) where sites are represented by
circles and spins are represented by dots. We denote the
two levels as |0i and |1i. The system has an on-site Z2

symmetry as given in Fig. 3(b). It is generated by

UCZX = UXUCZ (1)

where

UX = X1 ⌦X2 ⌦X3 ⌦X4 (2)

Xi is Pauli X operator on the ith spin and

UCZ = CZ12CZ23CZ34CZ41 (3)

where CZ is the controlled-Z operator on two spins de-
fined as

CZ = |00ih00| + |01ih01| + |10ih10|� |11ih11| (4)

As defined, CZ does nothing if at least one of the spins is
in state |0i and it adds a minus sign if both spins are in
state |1i. Di↵erent CZ operators overlap with each other.
But because they commute, UCZ is well defined. Note
that UCZ cannot be decomposed into separate operations
on the four spins and the same is true for UCZX . UX and
UCZ both square to I and they commute with each other.
Therefore, UCZX generates a Z2 group.

The Hamiltonian of the system is defined as a sum of
local terms around each plaquette. Plaquettes are repre-
sented by squares in Fig. 3. H =

P
Hpi

, where the term
around the ith plaquette Hpi

acts not only on the four
spins in the plaquette but also on the eight spins in the
four neighboring half plaquettes as shown in Fig. 3(c)

Hpi = �X4 ⌦ Pu
2 ⌦ P d

2 ⌦ P l
2 ⌦ P r

2 (5)

where X4 acts on the four spins in the middle plaquette
as

X4 = |0000ih1111| + |1111ih0000| (6)

and P2 acts on the two spins in every neighboring half
plaquette as

P2 = |00ih00| + |11ih11| (7)

Pu
2 , P d

2 , P l
2, P r

2 acts on the up, down, left and right
neighboring half plaquettes respectively. For the remain-
ing four spins at the corner, Hpi

acts as identity on them.
The P2 factors ensure that each term in the Hamiltonian
satisfies the on-site Z2 symmetry defined before.

All the local terms in the Hamiltonian commute with
each other, therefore it is easy to solve for the ground
state. If the system is defined on a closed surface, it has
a unique ground state which is gapped. In the ground
state, every four spins around a plaquette are entangled
in the state

| pi
i = |0000i+ |1111i (8)

and the total wavefunction is a product of all plaquette
wavefunction. If we allow any local unitary transforma-
tion, it is easy to see that the ground state can be disen-
tangled into a product state, just by disentangling each
plaquette separately into individual spin states. There-
fore, the ground state is short range entangled. However,
no matter what local unitary transformations we apply
to disentangle the plaquettes, they necessarily violate the
on-site symmetry and in fact, the plaquettes cannot be
disentangled if the Z2 symmetry is preserved, due to the
nontrivial SPT order of this model which we will show in
the next sections.

It can be checked that this ground state is indeed in-
variant under the on-site Z2 symmetry. Obviously this
state is invariant under UX applied to every site. It is
also invariant under UCZ applied to every site. To see
this note that between every two neighboring plaquettes,
CZ is applied twice, at the two ends of the link along
which they meet. Because the spins within each plaque-
tte are perfectly correlated (they are all |0i or all |1i),
the e↵ect of the two CZ’s cancel each other, leaving the
total state invariant.

Therefore, we have introduced a 2D model with on-
site Z2 symmetry whose ground state does not break the
symmetry and is short-range entangled. In particular,
this on-site symmetry is inseparable as discussed in the
introduction and therefore cannot be characterized by



With the same Hamiltonian as before, the system is now gapped.
Moreover, it has the symmetry CZX ∗ if we define this symmetry in
a fairly obvious way for partial sites. For a boundary site i with two
spins a, b, we define

CZX ∗i = XaXbCZab.

Provided we include the CZab factor here, the total CZX ∗ (defined
as a product over all bulk and boundary sites) commutes with the
Hamiltonian and generates a global symmetry.



So what goes wrong? The Hamiltonian is gapped and has CZX ∗

symmetry. But it is no longer true that (CZX ∗)2 = 1. For a
boundary site i containing two qubits a, b, it turns out that
Wi = (CZX ∗i )2 is equal to +1 if qubits a, b are opposite (|01〉 or
|10〉) and −1 if they are equal. Thus W 2

i = 1. Set W ∗ =
∏

i Wi ,
where the product is over all boundary sites. The global symmetry
of the system is now Z4, since (CZX ∗)2 = W ∗, where W ∗ 6= 1 but
(W ∗)2 = 1. Here W ∗ is a Z2 symmetry that only acts on the
boundary.



We have found a system with an emergent Z2 global symmetry on
the boundary. The bulk symmetry is Z2 generated by CZX ∗, but
along the boundary the symmetry is enhanced to Z4, with a Z2

subgroup generated by W ∗ = (CZX ∗)2 that only acts on boundary
spins.



Is this physically sensible? It is common in condensed matter
physics to find emergent global symmetries in the infrared, but
they are always approximate symmetries, explicitly broken by
irrelevant interactions. In the present situation, the emergent
symmetry will have to be exact, since it is generated by
W ∗ = (CZX ∗)2, where (by hypothesis) CZX ∗ is an exact,
microscopic Z2 symmetry generator. In other words, we could not
explicitly break the symmetry generated by W ∗ without also
breaking the symmetry generated by CZX ∗.



The only way out is to gauge the Z2 symmetry generated by W ∗.
In other words, the full symmetry group is Z4 generated by CZX ∗,
and we are going to gauge the Z2 subgroup generated by
W ∗ = (CZX ∗)2. Note that in condensed matter physics there is no
problem to have emergent gauge symmetries that are exact – the
canonical example is the fractional quantum Hall effect.



Gauging the boundary symmetry generated by W ∗ is actually no
problem, because this symmetry is on-site. We introduce a Z2

gauge field only on the boundary. On each link connecting two
boundary sites we have a Z2-valued field V = ±1 that represents
the parallel transport between two sites:



We can think of V as an operator that acts on a new qubit:

V =

(
1 0
0 −1

)
, V 2 = 1.

We also need a discrete electric field E that flips V :

E =

(
0 1
1 0

)
, E 2 = 1, EV = −VE .

Now we need to define the Gauss law constraint. A gauge
transformation at boundary site i acts by Wi on the matter fields
at that site, but it also flips the gauge fields at links i − 1/2 and
i + 1/2 (i.e. the links that connect to site i on the left or the right):



So the constraint operator at site i is

Λi = Ei−1/2WiEi+1/2.

A physical state |Ψ〉 has to obey

Λi |Ψ〉 = |Ψ〉

for all i . But the product of all the constraint operators is the
generator W ∗ of the emergent Z2, since E 2 = 1 for all boundary
sites:

∏

i

Λi = . . . (Ei−1/2WiEi+1/2)(Ei+1/2Wi+1Wi+3/2) =
∏

i

Wi = W ∗.

Thus a physical state is invariant under W ∗, as a result of which
the symmetry that acts on physical states collapses from Z4 to the
original Z2.



This is not the end, however, because we need to discuss the origin
of the Z2 gauge symmetry that was an important part of the
construction. In condensed matter physics, there are no
microscopic gauge symmetries other than electromagnetism, and
any other gauge symmetry is “emergent.” The following precise
definition of an emergent gauge symmetry was suggested to me by
Wen. In condensed matter physics, not only are the microscopic
symmetries on-site, but the Hilbert space is on-site, meaning that
the full Hilbert space H is a tensor product

H = ⊗iHi ,

where Hi is a Hilbert space associated to the i th site. (By the way,
the definition of a bosonic system is that this is an ordinary tensor
product rather than a Z2-graded tensor product.) By contrast, in
conventional lattice gauge theory, as I’ve formulated it, the Hilbert
space is not on-site: we introduced a qubit associated to a link
rather than to a point.



An emergent gauge theory is a theory that microscopically has an
on-site Hilbert space but at long distances can be described by a
gauge theory. In 1 + 1 dimensions, the CPn model (D’Adda,
DiVecchia, and Luscher 1978, EW 1978) gives a relatively
well-known model of emergent U(1) gauge symmetry. It can be
easily modified to the RPn model to get an a model of emergent
Z2 gauge symmetry, which one can use in our problem.
(Condensed matter physicists have other tricks to describe lattice
models with emergent gauge symmetry.)



I was originally intending to describe the RPn model in this talk,
but when I planned the talk in detail, I realized that there would
not be time. Instead I want to end by pointing out a recent
development in string theory/quantum gravity that has an obvious
analogy with what I’ve just told you.



This involves the eternal, two-sided black hole in Anti de Sitter
space:

The spacetime is connected, even though the Hilbert space is
supposed to be a simple tensor product H = H` ⊗Hr of spaces
H`, Hr that can be defined on the left or right boundary.



This is puzzling, and the puzzle was recently sharpened by Harlow
(arXiv:1510.07911, also Harlow and Ooguri to appear) who
considered a case in which the AdS radius is large (so effective
field theory can be used) and there is a gauge field in AdS. Then
one can consider gauge-invariant Wilson operators that link the
two sides:



This is a puzzle, because if H = H` ⊗Hr , then any operator on H
is the sum of products of operators on H` and operators on Hr .
To the naked eye, the Wilson operator that connects the two sides
appears not to have this property. To restore factorization, it was
necessary to assume that any gauge field in AdS, i.e. in a world of
negative cosmological constant, is emergent. By extension, one
expects that this is true also if the cosmological constant is zero or
positive.



Thus the factorization of the black hole Hilbert space as
H = H` ⊗Hr leads to the same conclusion in quantum gravity
that the on-site nature of the microscopic Hilbert space plays in
condensed matter: it forces any gauge fields to be emergent. With
the help of an emergent Z2 gauge field, one can, finally, complete
the construction of a gapped symmetry-preserving boundary state
for the CZX model.


