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Overview

General topic: diophantine problems

But: some will involve non-algebraic sets

With: applications to classical diophantine problems around
the André-Oort conjecture

Leads to: functional transcendence questions



“Geometry governs arithmetic”

Conjecture (Mordell 1922; Faltings 1983)

A curve of genus at least 2 has only finitely many rational points.

E.g. A non-singular plane quartic (or higher) curve.

Conjecture (Lang’s General Conjecture)

An algebraic variety V is “mordellic” outside its “special set”.

E.g. Expect no non-trivial solutions in positive integers to

w5 + x5 = y5 + z5.

Browning–Heath-Brown: trivial solutions (� T 2 up to height T )
outnumber non-trivial �ε T

13/8+ε (improving Hooley 5/3 + ε).



Rational points on non-algebraic sets

Non-algebraic function f , analytic on U ⊃ [0, 1], graph

Z : y = f (x), x ∈ [0, 1]

Possible (Weierstrass. . . van der Poorten): f (Q) ⊂ Q.

But (Bombieri-P, 1989):
In a height density sense there are “few” rational points.

With Alex Wilkie (2005): Extension to higher dimensional sets
Z ⊂ Rn “definable in an o-minimal structure”.

Umberto Zannier: Strategy to reprove Manin-Mumford conjecture
(Raynaud’s theorem),



The non-algebraic/algebraic connection

Via: the arithmetic properties of classical special functions.

Under the exponential function

e : C→ C×, e(z) = exp(2πiz),

rational numbers map to roots of unity.

Studying rational points on

Z = {(z ,w) ∈ C2 : F
(
e(z), e(w)

)
= 0}, F ∈ C[X ,Y ]

a possible route to study torsion points (root-of-unity coords) on

V : F (x , y) = 0.



The non-algebraic/algebraic connection: André-Oort

The modular function (a.k.a. the j function)

j : H→ C, H = {z ∈ C : Im(z) > 0}

maps quadratic points (over Q) to singular moduli, algebraic
numbers with rich arithmetic properties.

Studying quadratic points on

Z = {(z ,w) ∈ H2 : F
(
j(z), j(w)

)
= 0}, F ∈ C[X ,Y ]

a possible route to “special points” (singular moduli coords) on

V : F (x , y) = 0.



The counting function

Let Z ⊂ Rn,T ≥ 1 set

Z (Q,T ) = {z ∈ Z : zi ∈ Q,H(zi ) ≤ T , i = 1, . . . , n},

where height H(a/b) = max(|a|, b), gcd(a, b) = 1, b ≥ 1, and

N(Z ,T ) = #Z (Q,T ).

Extend H to number fields (Weil height); then count points of
degree (up to) d ≥ 1:

Z (d ,T ) = {z ∈ Z : [Q(zi ) : Q] ≤ d ,H(zi ) ≤ T , i = 1, . . . , n}

N(Z , d ,T ) = #Z (d ,T ).



Analytic curves

Consider f : [0, 1]→ R, f real analytic on a nbd, graph Z .

Methods of Bombieri-P 1989 yield: Z has “few” rational points.

Theorem

For ε > 0, N(Z ,T ) ≤ c(f , ε)T ε.

Lemma (H. A. Schwarz, 1880)

Let φ1, . . . , φD ∈ CD−1(I ), x1, . . . , xD ∈ I , ∆ = det
(
φi (xj)

)
. Then

∆ = V (x1, . . . , xD) det
(
φ
(j−1
i (ξij)

)
where V is Vandermonde and ξij suitable points. Hence

|∆| ≤ c(max
k<D
{|φki |}) |I |D(D−1)/2.



Proof of Theorem

Combines: The “fundamental theorem of transcendence theory”
(Z ∩ (0, 1) = ∅) with a “zero-estimate”.

Proof. Fix d , let D = (d + 1)(d + 2)/2 and apply Lemma with
the D monomial functions φij = x i f (x)j , i + j ≤ d .
Suppose xk ∈ J with (xk , f (xk)) ∈ Z (Q,T ), J subinterval.

Then ∆ has denominator ≤ T dD/3 but |∆| �f ,d |J|D(D−1)/2.

Now dD � d3 but D(D − 1)/2) � d4.

So if |J|D(D−1)/2 �f ,d T−dD/3 then ∆ = 0.

So all (xk , yk) ∈ Z , xk ∈ J lie on one algebraic curve deg(Y ) ≤ d .

Now [0, 1] can be covered by �f ,d T
3

d+3 such subintervals.

(So: Given ε, choose d : 3/(d + 3) ≤ ε.)

But #Z ∩ Y , degY ≤ d , uniformly bounded.

Observe: we did not really need f to be analytic.



Higher dimensional sets

Try to count rational points on Z ⊂ Rn.

Z should be “tame”: “definable in an o-minimal structure”
e.g. image Z of φ : [0, 1]k → [0, 1]n real analytic on nbd.

A non-algebraic, Z might still contain positive-dimensional
semi-algebraic subsets, which could have “many” rational
points. E.g. Z : z = xy , x , y ∈ [2, 3].

Definition

The algebraic part Z alg ⊂ Z is the union of all connected
positive-dimensional semi-algebraic sets A ⊂ Z .



The Counting Theorem

Theorem (P-Wilkie, 2006)

Let Z ⊂ Rn be “definable in an o-minimal structure”, ε > 0. Then

N(Z − Z alg,T ) ≤ c(Z , ε)T ε.

Remarks

A crude analogue of Lang’s General Conjecture.

(But can do better than just exclude all of Z alg.)

Implies one-dimensional result for more curves.

Similarly, N(Z − Z alg, d ,T ) ≤ c(Z , d , ε)T ε.

Result is uniform in “definable families” Z ⊂ Rn × Rm.



Multiplicative Manin-Mumford (MMM)

Theorem (Lang 1965: Ihara, Serre, Tate)

Let V ⊂
(
C×
)2

be a curve defined by F (x , y) = 0. Then V has
only finitely many torsion points unless F is of form X nYm = ζ
where n,m ∈ Z not both zero and ζ root of unity.

Torsion coset: the translate of a subtorus by a torion point.
Eqvtly, a component of an algebraic subgroup, i.e. cpt of some
system of multiplicative equations:

xa = xa11 . . . xann = 1 , xb = 1, . . ..

Theorem (Laurent, Mann, Sarnak)

Let V ⊂
(
C×
)n

. Then V contains only finitely many maximal
torsion cosets.

Classical MM (Raynaud, 1983): replace
(
C×
)n

by an abelian vty.



Sketch proof of MMM. First step: Opposing bounds

Let e : Cn →
(
C×
)n

. Identify C = R2. Let F = [0, 1)× iR
fundamental domain for Zn action.

Theorem

Let V ⊂
(
C×
)n

. Then e−1(V ) ∩ Qn consists of the Zn translates
of finitely many rational linear subvarieties contained in e−1(V ).

Sketch proof. Can assume V is defined over a number field. Let

Z = e−1(V ) ∩ F n.

Then Z is a “definable set” in R2n (full e−1(V ) isn’t).

A torsion point ζ ∈ V of order N has nearly N conjugates, so get:
� N1/2 rational points on Z of height � N on Z .

So (CT with e.g. ε = 1/4) large N gives: semi-algebraic A ⊂ Z .



Second step: Functional transcendence

Have positive dimensional semi-algebraic A ⊂ Z , by analytic
continuation get positive dimensional complex algebraic

W ⊂ e−1(V ).

Theorem (Ax, 1971; “Ax-Schanuel”; implies “Ax-Lindemann”)

Functional version of Schanuel’s Conjecture (next lecture). Implies:
e(W ) is Zariski-dense in (C×)n unless W ⊂ L a translate of a
proper Q subspace

Translate of Q-subspace L a weakly special subvariety.

If now e(W ) is Zariski dense in e(L) we get e(L) ⊂ V . Else W is
contained in a further proper L′ ⊂ L.

Theorem (“Ax-Lindemann”)

A maximal W ⊂ e−1(V ) is weakly special.



Conclusion

Weakly special L ⊂ e−1(V ) give cosets of subtori T ⊂ V , which is
essentially the exceptional case: only torsion cosets 3 torsion pts.

Need: the maximal weakly special subvarieties in e−1(V ) are
translates of finitely many Q subspaces.

This can be proved in (at least) 3 ways:

Explicit, effective argument of Bombieri-Masser-Zannier

O-minimality (the set of such Q subspaces is “definable”; L2)

Model-theoretic compactness on Ax-Schanuel theorem.

For each such Q-subspace, the torsion cosets of it contained in V
gives a lower dimensional MMM problem.

Conclude by induction.



Modular André-Oort

The André-Oort conjecture is an analogue of Manin-Mumford.
The simplest cases are obtained by replacing:
the (cartesian product of the) exponential function

e : Cn →
(
C×
)n

by the (cartesian product of the) modular function

j : Hn → Cn.

j : H→ C, j(z) =
1

q
+
∞∑
n=0

cnq
n, q = e(z),

holomorphic in H = {z ∈ C : Im(z) > 0}.



The j function

Background: elliptic curves and their moduli:

Lattice Λ = Z + Zτ , τ ∈ H = {τ ∈ C : Imτ > 0}
Elliptic curve: Eτ = Λ\C, has structure of an algebraic curve.
The j-invariant j(E ) determines E up to isomorphism over C.

The modular function a.k.a. j-invariant, j-function:

j : H→ C, j(τ) = j(Eτ ).

Basic arithmetic properties: SL2(Z) invariance:

j(gτ) = j(τ), g =

(
a b
c d

)
∈ SL2(Z),

(
a b
c d

)
τ =

aτ + b

cτ + d
.

For g ∈ GL+
2 (Q), ΦN(j(τ), j(gτ)) = 0, modular polynomial ΦN .



Fundamental domain for the j-function

The classical fundamental domain F for the SL2(Z) action.

E.g. X = j(z) and Y = j(2z) = j(

(
2 0
0 1

)
z) are related by

0 = Φ2(X ,Y ) = −X 2Y 2 + 1488(X 2Y + XY 2) + Y 3

−162.103(X 2+Y 2)+40773375XY +8748.103(X+Y )−157464.109.



Singular Moduli

Singular moduli are the “special values” of the j-function.

Definition

A singular modulus is a complex number j(τ) where j : H→ C is
the modular function, and τ ∈ H is quadratic ([Q(τ) : Q] = 2).

Σ = {σ = j(τ) : τ ∈ H, [Q(τ) : Q] = 2}

Schneider: These are precisely the points with τ, j(τ) ∈ Q.

These are the elliptic curves with “complex multiplication” (CM):
there are non-integer µ : µΛτ ⊂ Λτ .

They are algebraic integers.

E.g. j(1+
√
−163
2 ) = −2183353233293, j(

√
−5) = (50 + 26

√
5)3.



Theorem of André

Theorem (André 1998)

Let V ⊂ C2. Then V contains only finitely many special points
unless V is a special subvariety, that is

A modular curve

a vertical or horizontal line on a singular modulus

Also proved by Edixhoven 1998 under GRH, which led to further
cases of AO under GRH, such as Cn, 2005, and full proof of AO
under GRH by Klingler-Ullmo-Yafaev.

André’s thm is the analogue of the Lang/Ihara/Serre/Tate thm:

Theorem

Let V ⊂
(
C×
)2

. Then V contains only finitely many torsion
points unless V is a torsion coset.



Special subvarieties and AO in Cn

Special points in Cn: n-tuples of singular moduli.

Special subvarieties of Cn:

1. The hypersurface ΦN(xi , xj) = 0 is special;
2. Also hypersurfaces xk = σ, where σ a singular modulus;
3. Irreducible cmpnnts of intersections of special subvts are special.

Equivalently: the images of maps of the form

H 3 z 7→ (g1z , . . . , gkz) ∈ Ck , gi ∈ GL+
2 (Q),

and cartesian products of such images and special points.

Weakly special subvs: same but any point is weakly special.

Theorem (P 2011; Edixhoven 2005 on GRH)

A subvariety V ⊂ Cn contains only finitely many maximal special
subvarieties.



Sketch proof

Since special points are algebraic we can assume V defined over a
number field. We consider

j : Hn → Cn

and take the “definable set” (the full j−1(V ) isn’t)

Z = j−1(V ) ∩ F n ⊂ R2n.

A special point σ ∈ V has a pre-image τ ∈ Z which is a quadratic
point. We will apply the Counting Theorem to quadratic points.
A quadratic point τi ∈ H has a minimal polynomial

aτ2i + bτi + c = 0, a, b, c ∈ Z, gcd(a, b, c) = 1,

and discriminant

D(τi ) = b2 − 4ac < 0, D(τ) = max
(
D(τi )

)



First step: Opposing bounds

The discriminant measures “complexity” of the special point.
For j(τ) = σ with τ ∈ F have:

H(τ)� |D(τ)|.

The theory of CM gives that

[Q(σi ) : Q] = h
(
D(τi )

)
,

the class number of the corresponding quadratic order. One has

h(D) ≥ c(ε)|D|1/2−ε,

for ε > 0, by a classical (ineffective) theorem of Siegel.

A positive proportion (depending on field of definition of V ) of the
conjugates land back on V and by Counting (with some ε < 1/2)
we see that one special point of large complexity gives too many
quadratic points in Z , unless we have “algebraic” W ⊂ j−1(V ).



Second step: “Ax-Lindemann” for the modular function

Theorem (Modular “Ax-Lindemann”; P 2011)

A maximal W ⊂ j−1(V ) is weakly special.

Equivalently: j(W ) is Zariski dense in Cn unless some
coordinate on W is constant, or zi = gzk on W for some
g ∈ GL+

2 (Q).

Implies: The “bi-algebraic” varieties are precisely the weakly
specials subvarieties.

Observe: If j(W ) is not Zariski dense, i.e. the j(zi ) restricted
to z ∈W are algebraically dependent over C, then already
either one of them is (i.e. constant) or two are (modular
relation).



Sketch proof of Modular Ax-Lindemann

Sketch proof. Say W ⊂ j−1(V ) with W ∩ F n 6= ∅.
Each “translate” gW of W by g ∈ SL2(Z) has gW ⊂ j−1(V ),
and “many” of these also intersect F n and so Z .

The full space of SL2(R) translates is definable, as is its
intersections with Z , and we get a definable set which intersects Z
locally in its full dimension, with “many” rational (SL2(Z)) points.

Counting: get a positive-dimensional semi-algebraic set of such
translates, hence complex algebraic family.

Try to enlarge W by taking a union over the family. If W is
maximal, it must be stable under a lot of translations, and prove it
is weakly special.



Conclusion of proof of Modular AO

Show: the maximal weakly special subvarieties of V come in
finitely many families i.e the GL+

2 (Q) relations (the “translates”
are the constant coordinates).

Proof: By o-minimality, as the set of them is “definable”.

Conclude by induction.

Ineffective due to: (1) Siegel lower bound and (2) The counting
and (3) this finiteness step (now effective).

Kühne, Bilu-Masser-Zannier: Effective proof of André’s theorem
(C2), and Bilu-Kühne: effective AO for linear subvarieties of Cn.

A lot of progress towards effective counting (or better bounds:
Wilkie’s conjecture) by Butler, Jones-(Miller-)Thomas,
Binyamini-Novikov, Cluckers-P-Wilkie.



The André-Oort conjecture

André (1989), Oort (1994): the “same” statement for a Shimura
variety X , certain kind of arithmetic quotient

u : Ω→ X , Γ\Ω = X

for a suitable Hermitian symmetric domain Ω, and arithmetic
group Γ. E.g. Siegel modular varieties Ag .

Such X has special subvarieties, which are “Shimura
subvarieties” in a compatible way, the zero-dimensional ones being
the special points. Also weakly special subvarieties, which are
precisely the “bi-algebraic” varieties (Ullmo-Yafaev).

Conjecture (André-Oort)

Let V ⊂ X . Then V contains only finitely many maximal special
subvarieties.



Ingredients for AO via point-counting

Ullmo showed: point-counting proves AO given:

1. Definability of u : Ω→ X on a fundamental domain F . This
holds by Peterzil-Starchenko (Ag ), Klingler-Ullmo-Yafaev for
arithmetic quotients.
Also: Klingler, Bakker-Tsimerman: period mappings and new
proof of Cattani-Deligne-Kaplan.

2. Height bound for pre-image in F of a special point.
Tsimerman (Ag ); Daw-Orr in general.

3. Ax-Lindemann: P, UY, P-Tsimerman (Ag ), KUY in general.
All use point-counting (also monodromy, Hwang-To, . . .)

4. Lower bound for Galois orbits of special points.
Tsimerman, for Ag , required the “Averaged Colmez
conjecture” (Andreatta-Goren- Howard- Madapusi Pera;
Yuan-Zhang, 2015) and isogeny estimates (Masser-Wustholz).



The André-Oort Conjecture

Theorem

The André-Oort conjecture holds. . .

1. unconditionally for C2 (André,1998)

2. under GRH (Edixhoven, Klingler-Ullmo-Yafaev, 1998-2014)

3. unconditionally Cn, . . . ,Ag (P . . . Tsimerman 2015; ineffctive)

4. in general assuming lower bounds for Galois orbits (see prev)

5. for the corresponding mixed Shimura varieties (Gao)

6. effectively for C2 (Kühne, Bilu-Masser-Zannier)

7. effectively for linear subvars of Cn (Bilu-Kühne)

8. “nearly effective” for Cn (Binyamini)

With items 3, 4, 5, 8 via point-counting.
Item 6: Linear forms in logarithms, item 7, 8. Class field theory.
Item 8: also, Duke+Siegel-Tatuzawa (Kowalski)



Next lectures

Next lectures

L2: O-minimality and point-counting; Ax-Schanuel properties

L3: The Zilber-Pink conjecture

THANK YOU!


