I

 Point-counting

 Point-counting and and diophantine applications

 diophantine applications}

Jonathan Pila

Hermann Weyl Lecture, IAS, 23 October 2018

Overview

General topic: diophantine problems

- But: some will involve non-algebraic sets

■ With: applications to classical diophantine problems around the André-Oort conjecture
■ Leads to: functional transcendence questions

"Geometry governs arithmetic"

Conjecture (Mordell 1922; Faltings 1983)

A curve of genus at least 2 has only finitely many rational points.
E.g. A non-singular plane quartic (or higher) curve.

Conjecture (Lang's General Conjecture)

An algebraic variety V is "mordellic" outside its "special set".
E.g. Expect no non-trivial solutions in positive integers to

$$
w^{5}+x^{5}=y^{5}+z^{5} .
$$

Browning-Heath-Brown: trivial solutions ($\asymp T^{2}$ up to height T) outnumber non-trivial $<_{\epsilon} T^{13 / 8+\epsilon}$ (improving Hooley $5 / 3+\epsilon$).

Rational points on non-algebraic sets

Non-algebraic function f, analytic on $U \supset[0,1]$, graph

$$
Z: y=f(x), \quad x \in[0,1]
$$

Possible (Weierstrass. . . van der Poorten): $f(\mathbb{Q}) \subset \mathbb{Q}$.
But (Bombieri-P, 1989):
In a height density sense there are "few" rational points.
With Alex Wilkie (2005): Extension to higher dimensional sets
$Z \subset \mathbb{R}^{n}$ "definable in an o-minimal structure".
Umberto Zannier: Strategy to reprove Manin-Mumford conjecture (Raynaud's theorem),

The non-algebraic/algebraic connection

Via: the arithmetic properties of classical special functions.
Under the exponential function

$$
e: \mathbb{C} \rightarrow \mathbb{C}^{\times}, \quad e(z)=\exp (2 \pi i z)
$$

rational numbers map to roots of unity.
Studying rational points on

$$
\mathcal{Z}=\left\{(z, w) \in \mathbb{C}^{2}: F(e(z), e(w))=0\right\}, \quad F \in \mathbb{C}[X, Y]
$$

a possible route to study torsion points (root-of-unity coords) on

$$
V: F(x, y)=0
$$

The non-algebraic/algebraic connection: André-Oort

The modular function (a.k.a. the j function)

$$
j: \mathbb{H} \rightarrow \mathbb{C}, \quad \mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}
$$

maps quadratic points (over \mathbb{Q}) to singular moduli, algebraic numbers with rich arithmetic properties.

Studying quadratic points on

$$
\mathcal{Z}=\left\{(z, w) \in \mathbb{H}^{2}: F(j(z), j(w))=0\right\}, \quad F \in \mathbb{C}[X, Y]
$$

a possible route to "special points" (singular moduli coords) on

$$
V: F(x, y)=0
$$

The counting function

Let $Z \subset \mathbb{R}^{n}, T \geq 1$ set

$$
Z(\mathbb{Q}, T)=\left\{z \in Z: z_{i} \in \mathbb{Q}, H\left(z_{i}\right) \leq T, i=1, \ldots, n\right\}
$$

where height $H(a / b)=\max (|a|, b), \operatorname{gcd}(a, b)=1, b \geq 1$, and

$$
N(Z, T)=\# Z(\mathbb{Q}, T)
$$

Extend H to number fields (Weil height); then count points of degree (up to) $d \geq 1$:

$$
\begin{gathered}
Z(d, T)=\left\{z \in Z:\left[\mathbb{Q}\left(z_{i}\right): \mathbb{Q}\right] \leq d, H\left(z_{i}\right) \leq T, i=1, \ldots, n\right\} \\
N(Z, d, T)=\# Z(d, T)
\end{gathered}
$$

Analytic curves

Consider $f:[0,1] \rightarrow \mathbb{R}, f$ real analytic on a nbd, graph Z.
Methods of Bombieri-P 1989 yield: Z has "few" rational points.

Theorem

For $\epsilon>0, \quad N(Z, T) \leq c(f, \epsilon) T^{\epsilon}$.
Lemma (H. A. Schwarz, 1880)
Let $\phi_{1}, \ldots, \phi_{D} \in C^{D-1}(I), x_{1}, \ldots, x_{D} \in I, \Delta=\operatorname{det}\left(\phi_{i}\left(x_{j}\right)\right)$. Then

$$
\Delta=V\left(x_{1}, \ldots, x_{D}\right) \operatorname{det}\left(\phi_{i}^{(j-1}\left(\xi_{i j}\right)\right)
$$

where V is Vandermonde and $\xi_{i j}$ suitable points. Hence

$$
|\Delta| \leq c\left(\max _{k<D}\left\{\left|\phi_{i}^{k}\right|\right\}\right)|I|^{D(D-1) / 2} .
$$

Proof of Theorem

Combines: The "fundamental theorem of transcendence theory" $(\mathbb{Z} \cap(0,1)=\emptyset)$ with a "zero-estimate".

Proof. Fix d, let $D=(d+1)(d+2) / 2$ and apply Lemma with the D monomial functions $\phi_{i j}=x^{i} f(x)^{j}, i+j \leq d$.
Suppose $x_{k} \in J$ with $\left(x_{k}, f\left(x_{k}\right)\right) \in Z(\mathbb{Q}, T)$, J subinterval.
Then Δ has denominator $\leq T^{d D / 3}$ but $|\Delta| \ll_{f, d}|J|^{D(D-1) / 2}$.
Now $d D \asymp d^{3}$ but $\left.D(D-1) / 2\right) \asymp d^{4}$.
So if $|J|^{D(D-1) / 2}<_{f, d} T^{-d D / 3}$ then $\Delta=0$.
So all $\left(x_{k}, y_{k}\right) \in Z, x_{k} \in J$ lie on one algebraic curve $\operatorname{deg}(Y) \leq d$.
Now [0,1] can be covered by $<_{f, d} T^{\frac{3}{d+3}}$ such subintervals.
(So: Given ϵ, choose $d: 3 /(d+3) \leq \epsilon$.)
But $\# Z \cap Y$, $\operatorname{deg} Y \leq d$, uniformly bounded.
Observe: we did not really need f to be analytic.

Higher dimensional sets

Try to count rational points on $Z \subset \mathbb{R}^{n}$.
■ Z should be "tame": "definable in an o-minimal structure" e.g. image Z of $\phi:[0,1]^{k} \rightarrow[0,1]^{n}$ real analytic on nbd.

■ A non-algebraic, Z might still contain positive-dimensional semi-algebraic subsets, which could have "many" rational points. E.g. $Z: z=x^{y}, x, y \in[2,3]$.

Definition

The algebraic part $Z^{\text {alg }} \subset Z$ is the union of all connected positive-dimensional semi-algebraic sets $A \subset Z$.

The Counting Theorem

Theorem (P-Wilkie, 2006)
Let $Z \subset \mathbb{R}^{n}$ be "definable in an o-minimal structure", $\epsilon>0$. Then

$$
N\left(Z-Z^{\text {alg }}, T\right) \leq c(Z, \epsilon) T^{\epsilon}
$$

Remarks
■ A crude analogue of Lang's General Conjecture.

- (But can do better than just exclude all of $Z^{\text {alg }}$.)
- Implies one-dimensional result for more curves.
\square Similarly, $N\left(Z-Z^{\text {alg }}, d, T\right) \leq c(Z, d, \epsilon) T^{\epsilon}$.
■ Result is uniform in "definable families" $Z \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$.

Multiplicative Manin-Mumford (MMM)

Theorem (Lang 1965: Ihara, Serre, Tate)

Let $V \subset\left(\mathbb{C}^{\times}\right)^{2}$ be a curve defined by $F(x, y)=0$. Then V has only finitely many torsion points unless F is of form $X^{n} Y^{m}=\zeta$ where $n, m \in \mathbb{Z}$ not both zero and ζ root of unity.

Torsion coset: the translate of a subtorus by a torion point. Eqvtly, a component of an algebraic subgroup, i.e. cpt of some system of multiplicative equations:

$$
x^{a}=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}=1 \quad, x^{b}=1, \ldots
$$

Theorem (Laurent, Mann, Sarnak)

Let $V \subset\left(\mathbb{C}^{\times}\right)^{n}$. Then V contains only finitely many maximal torsion cosets.

Classical MM (Raynaud, 1983): replace $\left(\mathbb{C}^{\times}\right)^{n}$ by an abelian vty.

Sketch proof of MMM. First step: Opposing bounds

Let $e: \mathbb{C}^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$. Identify $\mathbb{C}=\mathbb{R}^{2}$. Let $F=[0,1) \times i \mathbb{R}$ fundamental domain for \mathbb{Z}^{n} action.

Theorem

Let $V \subset\left(\mathbb{C}^{\times}\right)^{n}$. Then $e^{-1}(V) \cap \mathbb{Q}^{n}$ consists of the \mathbb{Z}^{n} translates of finitely many rational linear subvarieties contained in $e^{-1}(V)$.

Sketch proof. Can assume V is defined over a number field. Let

$$
Z=e^{-1}(V) \cap F^{n}
$$

Then Z is a "definable set" in $\mathbb{R}^{2 n}$ (full $e^{-1}(V)$ isn't).
A torsion point $\zeta \in V$ of order N has nearly N conjugates, so get:
$\gg N^{1 / 2}$ rational points on Z of height $\ll N$ on Z.
So (CT with e.g. $\epsilon=1 / 4$) large N gives: semi-algebraic $A \subset Z$.

Second step: Functional transcendence

Have positive dimensional semi-algebraic $A \subset Z$, by analytic continuation get positive dimensional complex algebraic

$$
W \subset e^{-1}(V)
$$

Theorem (Ax, 1971; "Ax-Schanuel"; implies "Ax-Lindemann")

Functional version of Schanuel's Conjecture (next lecture). Implies: $e(W)$ is Zariski-dense in $\left(\mathbb{C}^{\times}\right)^{n}$ unless $W \subset L$ a translate of a proper \mathbb{Q} subspace

Translate of \mathbb{Q}-subspace L a weakly special subvariety.
If now $e(W)$ is Zariski dense in $e(L)$ we get $e(L) \subset V$. Else W is contained in a further proper $L^{\prime} \subset L$.

Theorem ("Ax-Lindemann")

A maximal $W \subset e^{-1}(V)$ is weakly special.

Conclusion

Weakly special $L \subset e^{-1}(V)$ give cosets of subtori $T \subset V$, which is essentially the exceptional case: only torsion cosets \ni torsion pts.
Need: the maximal weakly special subvarieties in $e^{-1}(V)$ are translates of finitely many \mathbb{Q} subspaces.

This can be proved in (at least) 3 ways:
■ Explicit, effective argument of Bombieri-Masser-Zannier
■ O-minimality (the set of such \mathbb{Q} subspaces is "definable"; L2)

- Model-theoretic compactness on Ax-Schanuel theorem.

For each such \mathbb{Q}-subspace, the torsion cosets of it contained in V gives a lower dimensional MMM problem.

Conclude by induction.

Modular André-Oort

The André-Oort conjecture is an analogue of Manin-Mumford.
The simplest cases are obtained by replacing: the (cartesian product of the) exponential function

$$
e: \mathbb{C}^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}
$$

by the (cartesian product of the) modular function

$$
\begin{gathered}
j: \mathbb{H}^{n} \rightarrow \mathbb{C}^{n} \\
j: \mathbb{H} \rightarrow \mathbb{C}, \quad j(z)=\frac{1}{q}+\sum_{n=0}^{\infty} c_{n} q^{n}, \quad q=e(z),
\end{gathered}
$$

holomorphic in $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.

The j function

Background: elliptic curves and their moduli:
Lattice $\Lambda=\mathbb{Z}+\mathbb{Z} \tau, \tau \in \mathbb{H}=\{\tau \in \mathbb{C}: \operatorname{Im} \tau>0\}$
Elliptic curve: $E_{\tau}=\Lambda \backslash \mathbb{C}$, has structure of an algebraic curve.
The j-invariant $j(E)$ determines E up to isomorphism over \mathbb{C}.
The modular function a.k.a. j-invariant, j-function:

$$
j: \mathbb{H} \rightarrow \mathbb{C}, \quad j(\tau)=j\left(E_{\tau}\right)
$$

Basic arithmetic properties: $\mathrm{SL}_{2}(\mathbb{Z})$ invariance:

$$
j(g \tau)=j(\tau), \quad g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau=\frac{a \tau+b}{c \tau+d} .
$$

For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q}), \Phi_{N}(j(\tau), j(g \tau))=0$, modular polynomial Φ_{N}.

Fundamental domain for the j-function

The classical fundamental domain F for the $\mathrm{SL}_{2}(\mathbb{Z})$ action.

$$
\begin{aligned}
& \text { E.g. } X=j(z) \text { and } Y=j(2 z)=j\left(\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) z\right) \text { are related by } \\
& 0=\Phi_{2}(X, Y)=-X^{2} Y^{2}+1488\left(X^{2} Y+X Y^{2}\right)+Y^{3} \\
& -162.10^{3}\left(X^{2}+Y^{2}\right)+40773375 X Y+8748.10^{3}(X+Y)-157464.10^{9}
\end{aligned}
$$

Singular Moduli

Singular moduli are the "special values" of the j-function.

Definition

A singular modulus is a complex number $j(\tau)$ where $j: \mathbb{H} \rightarrow \mathbb{C}$ is the modular function, and $\tau \in \mathbb{H}$ is quadratic $([\mathbb{Q}(\tau): \mathbb{Q}]=2)$.

$$
\Sigma=\{\sigma=j(\tau): \tau \in \mathbb{H},[\mathbb{Q}(\tau): \mathbb{Q}]=2\}
$$

Schneider: These are precisely the points with $\tau, j(\tau) \in \overline{\mathbb{Q}}$.
These are the elliptic curves with "complex multiplication" (CM): there are non-integer $\mu: \mu \Lambda_{\tau} \subset \Lambda_{\tau}$.
They are algebraic integers.
E.g. $j\left(\frac{1+\sqrt{-163}}{2}\right)=-2^{18} 3^{3} 5^{3} 23^{3} 29^{3}, \quad j(\sqrt{-5})=(50+26 \sqrt{5})^{3}$.

Theorem of André

Theorem (André 1998)

Let $V \subset \mathbb{C}^{2}$. Then V contains only finitely many special points unless V is a special subvariety, that is

- A modular curve
- a vertical or horizontal line on a singular modulus

Also proved by Edixhoven 1998 under GRH, which led to further cases of AO under GRH, such as $\mathbb{C}^{n}, 2005$, and full proof of AO under GRH by Klingler-Ullmo-Yafaev.

André's thm is the analogue of the Lang/Ihara/Serre/Tate thm:

Theorem

Let $V \subset\left(\mathbb{C}^{\times}\right)^{2}$. Then V contains only finitely many torsion points unless V is a torsion coset.

Special subvarieties and $A O$ in \mathbb{C}^{n}

Special points in \mathbb{C}^{n} : n-tuples of singular moduli.
Special subvarieties of \mathbb{C}^{n} :

1. The hypersurface $\Phi_{N}\left(x_{i}, x_{j}\right)=0$ is special;
2. Also hypersurfaces $x_{k}=\sigma$, where σ a singular modulus;
3. Irreducible cmpnnts of intersections of special subvts are special.

Equivalently: the images of maps of the form

$$
\mathbb{H} \ni z \mapsto\left(g_{1} z, \ldots, g_{k} z\right) \in \mathbb{C}^{k}, \quad g_{i} \in \mathrm{GL}_{2}^{+}(\mathbb{Q})
$$

and cartesian products of such images and special points.
Weakly special subvs: same but any point is weakly special.

Theorem (P 2011; Edixhoven 2005 on GRH)

A subvariety $V \subset \mathbb{C}^{n}$ contains only finitely many maximal special subvarieties.

Sketch proof

Since special points are algebraic we can assume V defined over a number field. We consider

$$
j: \mathbb{H}^{n} \rightarrow \mathbb{C}^{n}
$$

and take the "definable set" (the full $j^{-1}(V)$ isn't)

$$
Z=j^{-1}(V) \cap F^{n} \subset \mathbb{R}^{2 n}
$$

A special point $\sigma \in V$ has a pre-image $\tau \in Z$ which is a quadratic point. We will apply the Counting Theorem to quadratic points. A quadratic point $\tau_{i} \in \mathbb{H}$ has a minimal polynomial

$$
a \tau_{i}^{2}+b \tau_{i}+c=0, \quad a, b, c \in \mathbb{Z}, \quad \operatorname{gcd}(a, b, c)=1
$$

and discriminant

$$
D\left(\tau_{i}\right)=b^{2}-4 a c<0, \quad D(\tau)=\max \left(D\left(\tau_{i}\right)\right)
$$

First step: Opposing bounds

The discriminant measures "complexity" of the special point. For $j(\tau)=\sigma$ with $\tau \in F$ have:

$$
H(\tau) \ll|D(\tau)| .
$$

The theory of CM gives that

$$
\left[\mathbb{Q}\left(\sigma_{i}\right): \mathbb{Q}\right]=h\left(D\left(\tau_{i}\right)\right),
$$

the class number of the corresponding quadratic order. One has

$$
h(D) \geq c(\epsilon)|D|^{1 / 2-\epsilon}
$$

for $\epsilon>0$, by a classical (ineffective) theorem of Siegel.
A positive proportion (depending on field of definition of V) of the conjugates land back on V and by Counting (with some $\epsilon<1 / 2$) we see that one special point of large complexity gives too many quadratic points in Z, unless we have "algebraic" $W \subset j^{-1}(\underline{\underline{V}})$.

Second step: "Ax-Lindemann" for the modular function

Theorem (Modular "Ax-Lindemann"; P 2011)

A maximal $W \subset j^{-1}(V)$ is weakly special.

■ Equivalently: $j(W)$ is Zariski dense in \mathbb{C}^{n} unless some coordinate on W is constant, or $z_{i}=g z_{k}$ on W for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$.

■ Implies: The "bi-algebraic" varieties are precisely the weakly specials subvarieties.

■ Observe: If $j(W)$ is not Zariski dense, i.e. the $j\left(z_{i}\right)$ restricted to $z \in W$ are algebraically dependent over \mathbb{C}, then already either one of them is (i.e. constant) or two are (modular relation).

Sketch proof of Modular Ax-Lindemann

Sketch proof. Say $W \subset j^{-1}(V)$ with $W \cap F^{n} \neq \emptyset$.
Each "translate" $g W$ of W by $g \in \mathrm{SL}_{2}(\mathbb{Z})$ has $g W \subset j^{-1}(V)$, and "many" of these also intersect F^{n} and so Z.

The full space of $\mathrm{SL}_{2}(\mathbb{R})$ translates is definable, as is its intersections with Z, and we get a definable set which intersects Z locally in its full dimension, with "many" rational $\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ points.

Counting: get a positive-dimensional semi-algebraic set of such translates, hence complex algebraic family.

Try to enlarge W by taking a union over the family. If W is maximal, it must be stable under a lot of translations, and prove it is weakly special.

Conclusion of proof of Modular AO

Show: the maximal weakly special subvarieties of V come in finitely many families i.e the $\mathrm{GL}_{2}^{+}(\mathbb{Q})$ relations (the "translates" are the constant coordinates).

Proof: By o-minimality, as the set of them is "definable".
Conclude by induction.
Ineffective due to: (1) Siegel lower bound and (2) The counting and (3) this finiteness step (now effective).

Kühne, Bilu-Masser-Zannier: Effective proof of André's theorem $\left(\mathbb{C}^{2}\right)$, and Bilu-Kühne: effective AO for linear subvarieties of \mathbb{C}^{n}.

A lot of progress towards effective counting (or better bounds: Wilkie's conjecture) by Butler, Jones-(Miller-)Thomas, Binyamini-Novikov, Cluckers-P-Wilkie.

The André-Oort conjecture

André (1989), Oort (1994): the "same" statement for a Shimura variety X, certain kind of arithmetic quotient

$$
u: \Omega \rightarrow X, \quad \Gamma \backslash \Omega=X
$$

for a suitable Hermitian symmetric domain Ω, and arithmetic group Г. E.g. Siegel modular varieties \mathcal{A}_{g}.
Such X has special subvarieties, which are "Shimura subvarieties" in a compatible way, the zero-dimensional ones being the special points. Also weakly special subvarieties, which are precisely the "bi-algebraic" varieties (Ullmo-Yafaev).

Conjecture (André-Oort)

Let $V \subset X$. Then V contains only finitely many maximal special subvarieties.

Ingredients for AO via point-counting

Ullmo showed: point-counting proves AO given:

1. Definability of $u: \Omega \rightarrow X$ on a fundamental domain F. This holds by Peterzil-Starchenko (\mathcal{A}_{g}), Klingler-Ullmo-Yafaev for arithmetic quotients.
Also: Klingler, Bakker-Tsimerman: period mappings and new proof of Cattani-Deligne-Kaplan.
2. Height bound for pre-image in F of a special point. Tsimerman $\left(\mathcal{A}_{g}\right)$; Daw-Orr in general.
3. Ax-Lindemann: $\mathrm{P}, \mathrm{UY}, \mathrm{P}-\mathrm{T}$ simerman $\left(\mathcal{A}_{g}\right)$, KUY in general. All use point-counting (also monodromy, Hwang-To, ...)
4. Lower bound for Galois orbits of special points. Tsimerman, for \mathcal{A}_{g}, required the "Averaged Colmez conjecture" (Andreatta-Goren- Howard- Madapusi Pera; Yuan-Zhang, 2015) and isogeny estimates (Masser-Wustholz).

The André-Oort Conjecture

Theorem
The André-Oort conjecture holds. . .

1. unconditionally for \mathbb{C}^{2} (André,1998)2. under GRH (Edixhoven, Klingler-Ullmo-Yafaev, 1998-2014)
2. unconditionally $\mathbb{C}^{n}, \ldots, \mathcal{A}_{g}$ ($P \ldots$ Tsimerman 2015; ineffctive)
3. in general assuming lower bounds for Galois orbits (see prev)
4. for the corresponding mixed Shimura varieties (Gao)6. effectively for \mathbb{C}^{2} (Kühne, Bilu-Masser-Zannier)
5. effectively for linear subvars of \mathbb{C}^{n} (Bilu-Kühne)
6. "nearly effective" for \mathbb{C}^{n} (Binyamini)

With items 3, 4, 5, 8 via point-counting. Item 6: Linear forms in logarithms, item 7, 8. Class field theory. Item 8: also, Duke+Siegel-Tatuzawa (Kowalski)

Next lectures

Next lectures

■ L2: O-minimality and point-counting; Ax-Schanuel properties
■ L3: The Zilber-Pink conjecture

THANK YOU!

