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STABILITY

CONJECTURE[Stability of (external) Kerr].

Small perturbations of a given exterior Kerr (K(a,m), |a| < m)
initial conditions have max. future developments converging to
another Kerr solution K(af ,mf ).



GENERAL STABILITY PROBLEM N [φ0] = 0.

NONLINEAR EQUATIONS. N [φ0 + ψ] = 0

1 ORBITAL STABILITY(OS). ψ bounded for all time.

2 ASYMPT STABILITY(AS). ψ −→ 0 as t →∞.

LINEARIZED EQUATIONS. N ′[φ0]ψ = 0.

1 MODE STABILITY (MS). No growing modes.

2 BOUNDEDNESS.

3 QUANTITATIVE DECAY.



GENERAL STABILITY PROBLEM N [φ0] = 0

STATIONARY CASE. Expect linear instabilities due to
non-decaying states in the kernel N ′[φ0]. Due to

1 Presence of continuous family of stationary solutions. φλ
Implies that the final state φf may differ from initial state φ0

2 Presence of a continuous family of invariant diffeomorphisms.
Requires us to track dynamically the gauge condition to
insure decay of solutions towards the final state.

QUANTITATIVE LINEAR STABILITY. After accounting for
(1) and (2), all solutions of N ′[φ0]ψ = 0 decay sufficiently fast.

MODULATION. Method of constructing solutions to the
nonlinear problem by tracking (1) and (2).



GEOMETRIC FRAMEWORK FOR STABILITY

1 Principal Null Directions e3, e4.

2 Horizontal Structure. Null Frames.

3 Null decompositions

Connection Γ = {χ, ξ, η, ζ, η, ω, ξ, ω}
Curvature R = {α, β, ρ, ?ρ, β, α}

4 O(ε) -Perturbations

5 O(ε) -Frame Transformations. Invariant quantities.

6 Main Equations



O(ε) - PERTURBATIONS OF KERR

ASSUME. There exists an null frame e3, e4, e1, e2 such that

ξ, ξ, χ̂, χ̂, α, α, β, β = O(ε)

FRAME TRANSFORMATIONS, (fa)a=1,2, (f a)a=1,2 = O(ε)

e ′4 = e4 + faea + O(ε2)

e ′3 = e3 + f aea + O(ε2)

e ′a = ea +
1

2
f ae4 +

1

2
fae3 + O(ε2)

The curvature components α, α are O(ε2) invariant with
respect to O(ε)− gauge transformations

For O(ε)-perturbations of Minkowski all null components of
R are O(ε2)-invariant.



BASIC EQUATIONS

NULL STRUCTURE EQTS. (Transport)

∇4Γ = R + Γ · Γ,
∇3Γ = R + Γ · Γ

NULL STRUCTURE EQTS. (Codazzi)

∇Γ = R + Γ · Γ

NULL BIANCHI.

∇4R = ∇R + Γ · R, ∇3R = ∇R + Γ · R



KERR STABILITY-MAIN DIFFICULTIES

UNLIKE STABILITY OF MINKOWSKI

1 Some null curvature components (middle components) are
nontrivial. Bianchi system admits non-decaying states.

2 The null decomposition of the curvature tensor is sensitive
to frame transformations.

3 Principal null directions are not integrable.

4 Have to track the parameters (af ,mf ) of the final Ker and the
correct gauge condition. Have to emerge dynamically !

5 Obstacles to prove decay for the simplest linear equations
�gΦ = 0 on a fixed Kerr.



MAIN RECENT ADVANCES

1 TEUKOLSKI EQTS.

2 CHANDRASKHAR TRANSFORMATION

3 CLASSICAL AND NEW VF. METHOD

4 LINEAR STABILITY OF SCHWARZSCHILD



SUMMARY

WHAT WE UNDERSTAND. In light of the recent advances we
now have tools to control, in principle, α, α. This replaces the
methods used in the stability of Minkowski based on the analysis
of the Bianchi system.

WHAT REMAINS TO DO.

Find quantities that track the mass and angular momentum.

Find an effective, dynamical method to fix the gauge
problem.

Determine the decay properties of all important quantities and
close the estimates for the full nonlinear problem.



AXIAL SYMMETRIC POLARIZED SPACETIMES

g = e2Φdϕ2 + gabdx
adxb

SIMPLIFICATIONS.

Final State must be Schwarzschild.

Principal null directions are integrable in Schwarzschild. We
can use a geometric description based on optical functions.
Geodesic foliations.

Hawking mass is a good candidate to track the final mass.

We control in principle! the extreme components α, α.



AXIAL SYMMETRIC POLARIZED SPACETIMES

THEOREM[K-Szeftel] Small axial polarized perturbations of given
initial conditions of an exterior Schwarzschild gm0 (m0 > 0) have
maximal future developments converging to another exterior Schw.
solution gm∞ , m∞ > 0.
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KEY FEATURES OF THE CONSTRUCTION

(1) Use optical functions u, u initialized on T .

(2) The timelike hypersurface T is foliated by a special class of
2-surfaces; generally covariant modulated spheres GCMS.

(3) GCMS makes use of the full number of degrees of freedom of
the diffeomorphism group to set to zero three key quantities

trχ− trχ = trχ− trχ = µ− µ = 0.

(4) The GCMS foliation on T defines
An outgoing geodesic foliation in (int)M - Optical function u.
An ingoing geodesic foliation in (int)M - Optical function u.
Null frames in (int)M∪ (ext)M.

(5) Together with the knowledge of α, α the GCMS determine all
other connection and curvature components on T .



KEY FEATURES OF THE CONSTRUCTION

(6) Hawking mass 2mH(u,r)
r = 1 + 1

16π

∫
S trχtrχ.

(7) The final mass is determined, in principle, by

m∞ = lim
u→∞

lim
r→∞

mH(u, r).

(8) All connection and curvature components are determined by
transport equations from their initial values on T and α, α.

(9) The spacetime M, timelike hypersurface T and the two
geodesic foliations are constructed by a continuity argument
starting with an initial data layer L0 ∪ L0.

(10) GSMS admissible spacetimes.



COMPLETE STATEMENT OF THEOREM

INITIAL LAYER ASSUMPTION. Iklarge+5 ≤ ε0

CONCLUSIONS. There exists a future globally hyperbolic GCMS
development with complete future null infinity I+ and future
horizon H+ which verifies

N (En)
klarge

+N (Dec)
ksmall

≤ Cε0, ksmall =

⌊
1

2
klarge

⌋
+ 1.

In particular,

On (ext)M, we have,

|α|, |β| . ε0 min
{ 1

r3(u + 2r)
1
2

+δdec
,

1

r2(u + 2r)1+δdec

}
,

|β| . ε0

r2u1+δdec
, |α| . ε0

ru1+δdec
,

|χ̂|, |ζ| . ε0 min
{ 1

r2u
1
2

+δdec
,

1

ru1+δdec

}
, |χ̂| . ε0

ru1+δdec
.



On (int)M,

|α|, |β|, |β|, |α|, |χ̂|, |ζ|, |χ̂| . ε0

u1+δdec
.

m∞ = limu→∞ limr→∞mH(u, r), |m∞ −m0| . ε0.

On the future Horizon H+,

r = 2m∞ + O

( √
ε0

u1+
δdec

2

)
on H+

On (ext)M,∣∣∣∣ρ+
2m∞
r3

∣∣∣∣ . ε0 min{ 1

r2u1+δdec
,

1

r3u1/2+δdec
}

∣∣∣∣trχ− 2

r

∣∣∣∣ . ε0

r2u1+δdec
,

∣∣∣∣∣trχ+
2
(
1− 2m∞

r

)
r

∣∣∣∣∣ . ε0

ru1+δdec
.



On (int)M, we have∣∣∣∣ρ+
2m∞
r3

∣∣∣∣ , ∣∣∣∣κ+
2

r

∣∣∣∣ ,
∣∣∣∣∣κ− 2

(
1− 2m∞

r

)
r

∣∣∣∣∣ . ε0

u1+δdec
.

On (ext)M, in u, r , θ, ϕ coordinates

g = gm∞, (ext)M + O
( ε0

u1+δdec

)
gm∞, (ext)M = −2dudr −

(
1− 2m∞

r

)
(du)2 + r2dσ2.

On (int)M, in u, r , θ, ϕ coordinates

g = gm∞, (int)M + O

(
ε0

u1+δdec

)
gm∞, (int)M = 2dudr −

(
1− 2m∞

r

)
(du)2 + r2dσ2



OTHER CONCLUSIONS

BONDI MASS. MB(u) = limr→+∞m(u, r) for all 0 ≤ u < +∞

BONDI MASS LAW FORMULA.

∂uMB(u) = − 1

16

∫
S∞(u)

Θ2(u, ·) for all 0 ≤ u < +∞.

with

Θ(u, ·) = lim
r→+∞

r χ̂(r , u, ·) for all 0 ≤ u < +∞.

FINAL BONDI MASS.

MB(+∞) = lim
u→+∞

MB(u) = m∞



MAIN INTERMEDIATE STEPS

THM 0. There exists a GCMS S0 ⊂ L0, r = 2m0(1 + δ)
generating C0 ∪ C0,

N (En)
klarge

(0) + sup
C0∪C0

|m −m0| . ε0

BOOTSTRAP ASSUMPTION (BA).
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MAIN INTERMEDIATE STEPS

THM 1. Given a GCM admissible spacetime verifying

N (En)
klarge

(0) . ε0 and BA, we deduce, for �q + V q = Err,

N (dec)
ksmall+20[q] . ε0.

THM 2-3. Under the same assumptions we have in
(int)M∪ (ext)M,

N (dec)
ksmall+15[α, α] . ε0.

THM 4, 5. Under the same assumptions, we have in
(int)M∪ (ext)M,

N (dec)
ksmall+5[Ř, Γ̌] . ε0.

THM 6. Under the same assumptions as above we have in M,

N (En)
klarge

+N (Dec)
ksmall+5 . ε0.



MAIN INTERMEDIATE STEPS

DEFINITION. Let U ⊂ R+ the set all values of u∗ such an
admissible spacetime exists for u ∈ [0, u∗] verifying BA.

THM 7. There exists δ0 > 0 small enough such that for
sufficiently small ε0 > 0, ε > 0, [0, δ0] ⊂ U .

THM 8. Given a GCM admissible spacetime with 0 < u∗ < +∞
such that

N (En)
klarge

+N (Dec)
ksmall

. ε0,

we can find u′∗ > u∗ such that u′∗ ∈ U .



CONSTRUCTION OF GCMS

METRIC.

g = −2duds + Ωdu2 + γ

(
dθ − 1

2
bdu

)2

+ e2Φdϕ2.

FRAME TRANSFORMATIONS. f , f , a = O(ε),

e ′3 = ea(e3 + f eθ +
1

4
f 2e4)

e ′θ = (1 +
1

2
f f )eθ +

1

2
(fe3 + f e4) + l.o.t.

e ′4 = e−a
(

(1 +
1

2
f f )e4 + feθ +

1

4
f 2e3

)
+ l.o.t.

DEFORMATIONS. Ψ :
◦
S −→ S

u =
◦
u + U(θ), s =

◦
s + S(θ), θ ∈ [0, π].



CONSTRUCTION OF GCMS

PROPOSITION. Given
◦
S with

◦
r = 2m0(1 + δH) there exists a

nearby deformed sphere S of area radius rS =
◦
r + O(ε), and a

compatible frame

(e ′3 = eS3 , e
′
4 = eS4 , e

′
θ = eSθ )

which verifies the GCM conditions

κS =
2

rS
, κ̌S = µ̌S = 0.



CONSTRUCTION OF GCMS

ADAPTED FRAME TRANSFORMATIONS

Ψ∗(eθ) = eSθ

COMPATIBILITY. U, S : [0, π] −→ [0, π], U(0) = S(0) = 0,
uniquely determined in terms of a, f , f by transport type
equations.

GCMS- CONDITION. Leads to a nonlinear elliptic Hodge system

on S for a, f , f which has trivial kernel if
◦
S is sufficiently close to

r = 2m0.



CONSTRUCTION OF GCMS

ITERATION. Define iteratively quintets
Q(n) = (U(n),S (n), a(n), f (n), f (n)) starting with Q(0).

Q(0) represents the trivial deformation.

(U(n), S (n)) defines the map Ψ(n) :
◦
S −→ S(n). Define the

triplet (a(n+1), f (n+1), f (n+1)) by solving the nonlinear elliptic
system on S(n),

D(n)(f (n+1), f (n+1), a(n+1)) = 0

Construct the pair U(n+1),S (n+1)by solving a transport
equation defined by the triplet (a(n+1), f (n+1), f (n+1)).

Contraction Argument. Need to compare the pull backs to
◦
S.


