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TESTS OF REALITY Ric(g) = 0

1 RIGIDITY. Does the Kerr family K(a,m), 0 ≤ a ≤ m,
exhaust all possible vacuum black holes ?

2 STABILITY. Is the Kerr family stable under arbitrary
small perturbations ?

3 COLLAPSE. Can black holes form starting from
reasonable initial data configurations ? Formation of
trapped surfaces.

INITIAL VALUE PROBLEM: J. Leray, Y. C. Bruhat(1952)

Ric(g)=0
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II. STABILITY

CONJECTURE[Stability of (external) Kerr].

Small perturbations of a given exterior Kerr (K(a,m), |a| < m)
initial conditions have max. future developments converging to
another Kerr solution K(af ,mf ).



GENERAL STABILITY PROBLEM N [φ] = 0.

NONLINEAR EQUATIONS. N [φ0 + ψ] = 0, N [Φ0] = 0.

1 ORBITAL STABILITY(OS). ψ bounded for all time.

2 ASYMPT STABILITY(AS). ψ −→ 0 as t →∞.

LINEARIZED EQUATIONS. N ′[φ0]ψ = 0.

1 MODE STABILITY (MS). No growing modes.

2 BOUNDEDNESS.

3 QUANTITATIVE DECAY.



GENERAL STABILITY PROBLEM N [φ0] = 0

STATIONARY CASE. Possible instabilities for N ′[φ0]ψ = 0:

Family of stationary solutions φλ, λ ∈ (−ε, ε),

N [φλ] = 0 =⇒ N ′[φ0](
d

dλ
Φλ)|λ=0 = 0.

Mappings Ψλ : R1+n → R1+n, Ψ0 = I taking solutions to
solutions.

N [φ0 ◦Ψλ] = 0 =⇒ N ′[φ0]
d

dλ
(φ0 ◦Ψλ)|λ=0 = 0.

Intrinsic instability of φ0. Negative eigenvalues of N ′(φ0).



GENERAL STABILITY PROBLEM N [φ0] = 0

STATIONARY CASE. Expected linear instabilities due to
non-decaying states in the kernel of N ′[φ0]:

1 Presence of continuous family of stationary solutions φλ
implies that the final state φf may differ from initial state φ0

2 Presence of a continuous family of invariant diffeomorphism
requires us to track dynamically the gauge condition to insure
decay of solutions towards the final state.

QUANTITATIVE LINEAR STABILITY. After accounting for
(1) and (2), all solutions of N ′[φ0]ψ = 0 decay sufficiently fast.

MODULATION. Method of constructing solutions to the
nonlinear problem by tracking (1) and (2).



STABILITY OF SIMPLEST SOLUTIONS- NWE

�Φ = (∂tΦ)2, Φ|t=0 = φ0, ∂tΦ|t=0 = φ1

ENERGY NORM. E0[Φ](t) :=
∫

Σt
|∂Φ|2,

HIGHER ENERGY. Es [Φ](t).

To bound Es [Φ] we need to control
∫ t

0 ‖∂tΦ‖L∞(Σ(τ))dτ.

DECAY. Need integrable decay rates for ‖∂tΦ‖L∞

FACT �Φ = 0 we have ‖∂tΦ‖L∞(Σ(t)) . t−
n−1

2



STABILITY OF SIMPLEST SOLUTIONS- NWE

GENERALIZED ENERGY. REDEFINE

Es [Φ](t) :=
∑

0≤i≤s

∑
X1,...Xi

E0[X1 . . .Xiφ](t)

vectorfields X1, . . .Xs are Killing or conformal Killing.

GLOBAL SOBOLEV. If s > n
2 and Es [Φ](t) is bounded for t ≥ 0

|∂φ(t, x)| . (1 + t + |x |)−
n−1

2 (1 +
∣∣|t| − |x |∣∣)− 1

2

PEELING. Relative to the null frame

L = ∂t + ∂r , L = ∂t − ∂r , eA

every successive derivative of Φ in L, eA improves the rate of decay
in the wave zone t ∼ |x |.



STABILITY OF SIMPLEST SOLUTIONS- NWE

�φ = F (φ, ∂φ, ∂2φ) in R1+3.

FACT. The trivial solution Φ = 0,

is unstable for most equations �Φ = (∂tΦ)2

is stable if a structural condition on F , null condition, is
verified.

NULL CONDITION. Typically, nonlinear wave equations
derived from a geometric Lagrangian, verify some version (gauge
dependent) of the null condition.



VECTORFIELD METHOD

Use of well adapted vectorfields, related to

1 Symmetries,

2 Approximate, symmetries,

3 Other geometric features

of specific linear and nonlinear wave equations to derive generalized
energy bounds (L2) and quantitative decay (L∞) for its solutions.

It applies to tensorfield equations such as Maxwell and Bianchi
type equations,

dF = 0, δF = 0.

and nonlinear versions such as Yang-Mills, EVE etc..



STABILITY OF MINKOWSKI SPACE

THEOREM[Global Stability of Minkowski] Any asymptotically flat
initial data set which is sufficiently close to the trivial one has a
regular, complete, maximal development. Christodoulou-K

(I) BIANCHI IDENTITIES.
Effective, invariant, way to treat the hyperbolic character of
the equations.

(II) DECAY OF PERTURBATIONS.
Perturbations radiate and decay sufficiently fast (just fast
enough !) to insure convergence.

(III) VECTORFIELD METHOD. Construct approximate Killing
and conformal Killing fields based on two foliations induced by

optical function u
time function t.



GEOMETRIC FRAMEWORK

1 Principal Null Directions e3, e4.

2 Horizontal Structure. Null Frames.

3 Null decompositions

Connection Γ = {χ, ξ, η, ζ, η, ω, ξ, ω}

Curvature R = {α, β, ρ, ?ρ, β, α}

4 O(ε) -Perturbations

5 O(ε) -Frame Transformations. Invariant quantities.

6 Main Equations



KERR FAMILY K(a,m)

BOYER-LINDQUIST (t, r , θ, ϕ).

−ρ
2∆

Σ2
(dt)2 +

Σ2(sin θ)2

ρ2

(
dϕ− 2amr

Σ2
dt
)2

+
ρ2

∆
(dr)2 + ρ2(dθ)2,

∆ = r2 + a2 − 2mr ;

ρ2 = r2 + a2(cos θ)2;

Σ2 = (r2 + a2)2 − a2(sin θ)2∆.

STATIONARY, AXISYMMETRIC. T = ∂t , Z = ∂ϕ

PRINCIPAL NULL DIRECTIONS.

e3 =
r2 + a2

q
√

∆
∂t −

√
∆

q
∂r +

a

q
√

∆
∂ϕ

e4 =
r2 + a2

q
√

∆
∂t +

√
∆

q
∂r +

a

q
√

∆
∂ϕ.



BASIC QUANTITIES

NULL FRAME e3, e4, (ea)a=1,2, S = span{e1, e2}

CONNECTION COEFFICIENTS. χ, ξ, η, ζ, η, ω, ξ, ω

χab = g(Dae4, eb), ξa =
1

2
g(D4e4, ea), ηa =

1

2
g(ea,D3e4),

ζa =
1

2
g(Dae4, e3), ω =

1

4
g(D4e4, e3) . . .

CURVATURE COMPONENTS. α, β, ρ, ?ρ, β, α

αab = R(ea, e4, eb, e4), βa =
1

2
R(ea, e4, e3, e4),

ρ =
1

4
R(e4, e3, e4, e3), . . .



CRUCIAL FACT.

In Kerr relative to a principal null frame we have

α, β, β, α = 0, ρ+ i ?ρ = − 2m

(r + ia cos θ)3

ξ, ξ, χ̂, χ̂ = 0.

In Schwarzschild we have in addition

?ρ = 0, η, η, ζ = 0

The only nonvanishing components of Γ are

trχ, trχ, ω, ω

In Minkowski we also have ω, ω, ρ = 0.



O(ε) - PERTURBATIONS

ASSUME. There exists a null frame e3, e4, e1, e2 such that

ξ, ξ, χ̂, χ̂, α, α, β, β = O(ε)

FRAME TRANSFORMATIONS, (fa)a=1,2, (f a)a=1,2 = O(ε)

e ′4 = e4 + faea + O(ε2)

e ′3 = e3 + f aea + O(ε2)

e ′a = ea +
1

2
f ae4 +

1

2
fae3 + O(ε2)

FACT.

The curvature components α, α are O(ε2) invariant with
respect to O(ε)− gauge transformations

For O(ε)-perturbations of Minkowski all null components of
R are O(ε2)-invariant.



BASIC EQUATIONS

NULL STRUCTURE EQTS. (Transport)

∇4Γ = R + Γ · Γ, ∇3Γ = R + Γ · Γ

NULL STRUCTURE EQTS. (Codazzi)

∇Γ = R + Γ · Γ,

NULL BIANCHI.

∇4R = ∇R + Γ · R, ∇3R = ∇R + Γ · R
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STABILITY OF MINKOWSKI SPACE

THEOREM[Global Stability of Minkowski] Any asymptotically flat
initial data set which is sufficiently close to the trivial one has a
regular, complete, maximal development. Christodoulou-K

(I) BIANCHI IDENTITIES.
Effective, invariant, way to treat the hyperbolic character of
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(II) DECAY OF PERTURBATIONS.
Perturbations radiate and decay sufficiently fast (just fast
enough !) to insure convergence.
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KERR STABILITY-MAIN DIFFICULTIES

UNLIKE STABILITY OF THE MINKOWSKI SPACE

1 Some null curvature components (middle components) are
nontrivial. Bianchi system admits non-decaying states.

2 All other null components of of the curvature tensor are
sensitive to frame transformations.

3 Principal null directions are not integrable.

4 Have to track the parameters (af ,mf ) of the final Ker and the
correct gauge condition. They have to emerge
dynamically !.

5 Obstacles to prove decay for the simplest linear equations
�gΦ = 0 on a fixed Kerr.



KERR STABILITY-MAIN DIFFICULTIES

OBSTACLES TO PROVE DECAY FOR �KerrΦ = 0.

Degeneracy of the horizon.

Trapped null geodesics.

Superradiance - absent in Schw. and (in general) for axially
symmetric solutions.

Superposition problem.



1’ST BREAKTHROUGH. TEUKOLSKI EQTS.

FACT[Teukolski 1973).] Extreme curvature components α, α
verify, up to O(ε2)-errors, decoupled, albeit non-conservative,
linear wave equations.

Whiting(1989). Mode Stability. Teukolski linearized gravity
equations, have no exponentially growing modes.

Y. Schlapentokh Rothman (2014). Quantitative mode
stability for �a,mΦ = 0, |a| < m.

Dafermos-Rondianski-Rothman(2015) Make use of the New
Vectorfield Method and Yacov’s result to deduce quantitative
decay estimates for �a,mΦ = 0, |a| < m.



2’ND BREAKTHROUGH. CHANDRASKHAR TR.

FACT[Chandrasekhar(1975).] There exist a transformation
α −→ P which takes solutions of the Teukolski equation on a
Schwarzschild background to solutions of the Reggee-Wheeler
equation,

�SchwP + VP = 0.

Dafermos-Holzegel-Rodnianski(DHR 2016). Prove
quantitative decay1 for P and therefore also for α, α. They use
this as a first step to prove linear stability of Schwarzschild.

S. Ma(2017.) Can extend the analysis to control the Teukolski
equation for Kerr(a, m), |a| � m.

1Based on the technology developed in the last 15 years., See next slides.



3’RD BREAKTHROUGH. VF. METHOD

CLASSICAL VF. METHOD.

Generalized energy estimates, based on the symmetries of
Minkowski, to derive robust uniform decay. Global existence
results for nonlinear wave equations. Null Condition.

Nonlinear Stability of Minkowski. Uses generalized energy
estimates, based on constructed approximate symmetries, to
get uniform decay estimates for the curvature tensor.



NEW VECTORFIELD METHOD �a,mΦ = 0

Compensates for the lack of enough symmetries of Kerr(a,m) by
introducing new geometric quantities to deal with:

Degeneracy of the horizon.

Trapped null geodesics.

Superradiance

Low decay at null infinity.

The new method has emerged in the last 15 years in connection to
the study of boundedness and decay for the scalar wave equation,

�ga,mφ = 0

Dafermos-Rodnianski-Shlapentokh-Rothman (2014)

Previous Results. Soffer-Blue(2003), Blue-Sterbenz, Daf-Rod,
MMTT, Blue-Anderson, Tataru-Tohaneanu, etc.



LINEAR STABILITY OF SCHWARZSCHILD

Dafermos-Holzegel-Rodnianski(2016). Schwarzschild Space
Kerr(0,m) is linearly stable, once we mod out the unstable modes
related to:

Continuous two parameter family of nearby stationary
solutions.

Linearized gauge transformations

CHANDRASEKHAR TRANSF. Derive sharp decay
bounds for α, α.

RECONSTRUCTION. Find appropriate gauge conditions,
to derive bounds and decay for all other quantities of of the
linearized Einstein equations on Schwarzschild.

Hung-Keller- Wang (2017). Alternative approach based on
Regge-Weeler, Zerilli coordinate approach.



CONCLUSIONS

WHAT WE UNDERSTAND. In light of the recent advances we
now have tools to control, in principle, α, α. This replaces the
methods used in the stability of Minkowski based on the analysis
of the Bianchi system.

WHAT REMAINS TO DO.

Find quantities that track the mass and angular momentum.

Find an effective, dynamical, solution to fix the gauge
problem.

Determine the decay properties of all important quantities and
close the estimates for the full nonlinear problem.


