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FINAL STATE CONJECTURE

The long time behavior of generic, asymptotically flat, solutions

to the Einstein vacuum equations is given by the superposition

of a finite number of diverging Kerr black holes plus a radiative

decaying term.



FINAL STATE CONJECTURE.

1 Small solutions don’t concentrate !
Stability of Minkowski space.

2 Large data may concentrate into stationary states-BHs.
Collapse.

3 All stationary states are Kerr solutions.
Rigidity.

4 Kerr solutions are stable.
Stability.

5 There can be no singularities outside BHs.
Cosmic Censorship Conjecture.

6 Two (and more) body problem.
Collision and merging of Black Holes.



GRAVITATIONAL COLLAPSE

Large energy concentrations may
lead to the formation of a dynam-
ical black hole settling down, by
gravitational radiation, to a Kerr
black hole.

BHs can form dynamically from regular configurations.
Collapse

All stationary states are Kerr black holes.
Rigidity

Stable under general perturbations.
Stability
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II. WHAT IS A BLACK HOLE ?

Stationary, asymptotically flat, solutions of EVE,

Ric(g) = 0.

EXTERNAL BLACK HOLE

(M, g) Asymptoticaly flat, globally hyperbolic, diffeomorphic
to the complement of a cylinder ⊂ R1+3.

Has an asymptotically time-like, Killing vectorfield T

LTg = 0.

Completeness (of Null Infinity)

EVENT HORIZON. {Past of future null infinity} ∪ { Future of
past null infinity.}



KERR FAMILY K(a,m)

COORDINATES (t, r , θ, ϕ).

−ρ
2∆

Σ2
(dt)2 +

Σ2(sin θ)2

ρ2

(
dϕ− 2amr

Σ2
dt
)2

+
ρ2

∆
(dr)2 + ρ2(dθ)2,


∆ = r2 + a2 − 2mr ;

ρ2 = r2 + a2(cos θ)2;

Σ2 = (r2 + a2)2 − a2(sin θ)2∆.

STATIONARY T = ∂t
AXISYMMETRIC Z = ∂ϕ

SCHWARZSCHILD a = 0,m > 0, static, sph. symmetric.

−∆

r2
(dt)2 +

r2

∆
(dr)2 + r2dσS2 ,

∆

r2
= 1− 2m

r



KERR SPACETIME K(a,m), |a| ≤ m

MAXIMAL G.H. EXTENSION. ∆(r−) = ∆(r+) = 0

EXTERNAL REGION r > r+

EVENT HORIZON r = r+

BLACK HOLE r < r+

NULL INFINITY r =∞



EXTERNAL KERR

HORIZON N ∪N

ERGOREGION g(T,T) < 0

TRAPPED NULL GEODESICS

ASYMPTOTIC REGION



OTHER PROPERTIES OF KERR

Besides T,Z there exists a non-trivial Killing tensor C(Carter).

Possesses two distinct principal null directions which
diagonalize the curvature tensor.

Kerr is distinguished, among all stationary solutions of EVE by
the vanishing of a complex 4-covariant tensorfield called the
Mars-Simon tensor S.



TESTS OF REALITY Ric(g) = 0

1 RIGIDITY. Does the Kerr family K(a,m), 0 ≤ a ≤ m,
exhaust all possible vacuum black holes ?

2 STABILITY. Is the Kerr family stable under arbitrary
small perturbations ?

3 COLLAPSE. Can black holes form starting from
reasonable initial data configurations ? Formation of
trapped surfaces.

INITIAL VALUE PROBLEM: J. Leray, Y. C. Bruhat(1952)

Ric(g)=0



RIGIDITY

RIGIDITY CONJECTURE. Kerr family K(a,m), 0 ≤ a ≤ m,
exhaust all stationary, asymptotically flat, regular vacuum black
holes.

True in the axially symmetric case [Carter-Robinson]

True in general, under an analyticity assumption [Hawking]

ANALYTICITY - NOT A REASONABLE ASSUMPTION !
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RIGIDITY. MAIN NEW RESULTS

RIGIDITY CONJECTURE. Kerr family K(a,m), 0 ≤ a ≤ m,
exhaust all stationary, asymptotically flat, regular vacuum black
holes.

True if coincides with Kerr on N ∩N [Ionescu-Kl]

True if close to a Kerr space-time [Alexakis-Ionescu-Kl]

CONJECTURE. [Alexakis-Ionescu-Kl]. Rigidity conjecture holds
true provided that there are no T-trapped null geodesics.
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LOCAL EXTENSION

DEFINITION. O ⊂M is (T) null-convex at p ∈ ∂O if, for any
defining function f,
D2f (X ,X )(p) < 0, ∀X ∈ Tp(O), g(X ,X ) = 0, (g(X ,T ) = 0)

THEOREM (Ionescu-Kl ) (M, g) Ricci flat, pdo-riemannian
manifold. (O ⊂M, Z ) verify:

Z Killing v-field in O,

∂O is strongly null-convex at p ∈ ∂O

⇒ Z extends as a Killing vector-field to a neighborhood of p.
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LOCAL EXTENSION

THEOREM (Ionescu-Kl ) ∃ smooth, stationary, extensions of
K(a,m), 0 < a < m, locally defined in a neighb. of a point on the
horizon p ∈ N ∪N \ N ∩N , which posesses no additional
Killing v-fields.



RIGIDITY - METHODOLOGY

1 Measure closeness to Kerr using the Mars-Simon tensor

2 Turn rigidity, i.e. uniqueness, into an extension problem
using unique continuation arguments.

Killing vectorfields can be extended past null convex
boundaries.
Bifurcate horizons are null convex.
Carleman Estimates

3 Obstruction to extension. Presence of T-trapped null
geodesics.

No such obstruction in Kerr.
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COLLAPSE

GOAL. Investigate the mechanism of formation of black holes
starting with reasonable initial data configurations.

TRAPPED SURFACE. Concept introduced by Penrose in
connection to his incompleteness theorem.

COROLLARY. If WCC holds true the presence of a trapped
surface detects the presence of a black hole.



PENROSE SINGULARITY THEOREM

THEOREM. Space-time (M, g) cannot be future null geodesicaly
complete, if

Ric(g)(L, L) ≥ 0, ∀L null

M contains a non-compact Cauchy hypersurface

M contains a closed trapped surface S

Null expansions trχ, trχ. Raychadhouri equations



QUESTIONS

Can trapped surfaces form in evolution? In vacuum?

Can trapped surfaces form starting with non-isotropic, initial
configurations?

What is the nature of the singularities predicted by Penrose?



MAIN RESULTS

THEOREM[Christ(2008)]. (∃) open set of regular, vacuum, data
whose MGFHD contains a trapped surface.

1 Specify short pulse characteristic data, for which one can
prove a general semi-global result, with detailed control.

2 If, in addition, the data is sufficiently large, uniformly along
all its null geodesic generators, a trapped surface must form.

3 Similar result for data given at past null infinity.



FORMATION OF TRAPPED SURFACES

THEOREM[ Kl-Luk-Rodnianski(2013)] Result holds true for
non-isotropic data concentrated near one null geodesic generator.

1 Combines all ingredients in Christodoulou’s theorem with a
deformation argument along incoming null hypersurfaces.

2 Reduces to a simple differential inequality on S0,0 = H0 ∩ H0.



TESTS OF REALITY Ric(g) = 0

1 RIGIDITY. Does the Kerr family K(a,m), 0 ≤ a ≤ m,
exhaust all possible vacuum black holes ?

2 STABILITY. Is the Kerr family stable under arbitrary
small perturbations ?

3 COLLAPSE. Can black holes form starting from
reasonable initial data configurations ? Formation of
trapped surfaces.



II. STABILITY

CONJECTURE[Stability of (external) Kerr].

Small perturbations of a given exterior Kerr (K(a,m), |a| < m)
initial conditions have max. future developments converging to
another Kerr solution K(af ,mf ).



GENERAL STABILITY PROBLEM N [φ] = 0.

NONLINEAR EQUATIONS. N [φ0 + ψ] = 0, N [Φ0] = 0.

1 ORBITAL STABILITY(OS). ψ bounded for all time.

2 ASYMPT STABILITY(AS). ψ −→ 0 as t →∞.

LINEARIZED EQUATIONS. N ′[φ0]ψ = 0.

1 MODE STABILITY (MS). No growing modes.

2 BOUNDEDNESS.

3 QUANTITATIVE DECAY.



GENERAL STABILITY PROBLEM N [φ0] = 0

STATIONARY CASE. Possible instabilities for N ′[φ0]ψ = 0:

Family of stationary solutions φλ, λ ∈ (−ε, ε),

N [φλ] = 0 =⇒ N ′[φ0](
d

dλ
Φλ)|λ=0 = 0.

Mappings Ψλ : R1+n → R1+n, Ψ0 = I taking solutions to
solutions.

N [φ0 ◦Ψλ] = 0 =⇒ N ′[φ0]
d

dλ
(φ0 ◦Ψλ)|λ=0 = 0.

Intrinsic instability of φ0. Negative eigenvalues of N ′(φ0).



GENERAL STABILITY PROBLEM N [φ0] = 0

STATIONARY CASE. Expected linear instabilities due to
non-decaying states in the kernel of N ′[φ0]:

1 Presence of continuous family of stationary solutions φλ
implies that the final state φf may differ from initial state φ0

2 Presence of a continuous family of invariant diffeomorphism
requires us to track dynamically the gauge condition to insure
decay of solutions towards the final state.

QUANTITATIVE LINEAR STABILITY. After accounting for
(1) and (2), all solutions of N ′[φ0]ψ = 0 decay sufficiently fast.

MODULATION. Method of constructing solutions to the
nonlinear problem by tracking (1) and (2).



STABILITY OF MINKOWSKI SPACE

THEOREM[Global Stability of Minkowski] Any asymptotically flat
initial data set which is sufficiently close to the trivial one has a
regular, complete, maximal development. Christodoulou-K

The result provides detailed information about the decay properties
of the curvature tensor, peeling, and a rigorous derivations of the
laws of gravitational radiation.


