
PKI on the Internet

PKI on the Internet

Toni Bluher

2018 Women and Mathematics Program

Disclaimer: The opinions expressed are those of the writer and not
necessarily those of NSA/CSS, the Department of Defense, or the
U.S. Government.



PKI on the Internet

Outline

Goal of this lecture: describe cryptography on the
internet, specifically https.

1 Brief history of internet, http, and internet security
2 Live examples using Wire Shark
3 TLS
4 Cipher suites
5 Internet protocols: envelopes within envelopes



PKI on the Internet

Brief history of internet

1960’s: ARPANET was developed as a research tool
for universities and military or government
laboratories - this was “first internet”.
1987 - NSFnet connected six large mainframes over
phone lines; solicited contracts for higher throughput.
HTTP = Hypertext Transfer Protocol invented at
CERN in 1989.
Browsers using HTTP were widely available by 1996.



PKI on the Internet

Internet security
Mid-1980’s: ATHENA project at MIT – a non-PKI
system of internet security called KERBEROS.
1992: “Pretty Good Privacy” by Phillip Zimmerman
SSL = Secure Socket Layer was developed by
Netscape in 1994 for endpoint-to-endpoint computer
security using PKI. Later superseded by TLS =
Transport Layer Security.
SSL/TLS was first proposed as internet standard in
1999, updated in 2008 and 2011.
HTTPS = HTTP + TLS
IPsec provides security between routers; developed
in mid-1990’s. (Basis for Virtual Private Networks)



PKI on the Internet

Wireshark

Shows IP packets that enter or leave your computer
Shows source and destination IP, current protocol,
and other info
Emily and I sat in cafe and brought up wireshark.
Then did https://www.amazon.com in our browsers.
Filtering on ssl brings up the packets that deal with
PKI.
Next two slides are screenshots of some output that
we got.







PKI on the Internet

TLS Handshake

We see the following interactions:
1 Client Hello
2 Server Hello
3 Certificate, Server Key Exchange, Server Hello Done
4 Client Key Exchange, Change Cipher Spec, Client

Hello Done
5 Application Data

We are witnessing a TLS handshake!



PKI on the Internet

TLS Handshake

During the handshake, the client (my browser) and
server (amazon.com) use public key cryptography to
obtain a secret key that will be used to encrypt our
session.
One-sided authentication: only amazon has a public
key certificate. (But I have a password and a credit
card ... )
Client Hello and Server Hello has main purpose of
agreeing on a cipher suite.



PKI on the Internet

Cipher Suites

Cipher suite is a compatible choice of algorithms
needed to establish a secure, authenticated
connection. There are hundreds of them in the
internet standards, each with its own 2-digit hex label.
The first cipher suite that the client suggests is
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.
Label is 0xc02b.
Cipher suites are fully described by IETF in series of
RFC’s. (You can find them online.)



PKI on the Internet

Cipher Suite example
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.

ECDHE = Elliptic Curve Diffie-Hellman with
Ephemeral key.
ECDSA is elliptic curve digital signature algorithm.
Server has a public key certificate for this.
AES128 is AES with a 128-bit key, encrypts 128-bit
blocks.
GCM means “Galois counter mode”: encrypt j th
128-bit block of the message by XOR-ing it bitwise
with AESK (j).
SHA256 is a hash function with 256-bit output; for
use with the key exchange and signature.



PKI on the Internet

Explanation of TLS Handshake

Client Hello - My browser’s favorite cipher suites
Server Hello - Amazon picks one
Certificate - Amazon sends its public key certificate
Server Key Exchange - half of W/DH key exchange
Client Key Exchange - other half of W/DH key
exchange
Change Cipher Spec - “Start encryption!”
Application data - encrypted http session



PKI on the Internet

What are all those numbers at the bottom?

Wireshark screenshots show bytes at bottom.
Byte = 8 bits = 2 hexadecimal digits, 0–255.
Bytes in line 0a0 of first screenshot are: cc a9 cc a8
c0 13 c0 14 00 9c.
These are the cipher suite codes!



PKI on the Internet

Bytes in wireshark screenshot

Second screenshot shows first 10 lines of the packet,
with 16 bytes per line. What do these numbers
mean?
Note that the highlighted line at the top shows Source
IP address is 13.33.60.247, destination IP address is
192.168.1.46.
In hexadecimal these are 0d.21.3c.f7 and
c0.a8.01.2e.
These numbers can be found on lines 2-3 of the
screenshot!



PKI on the Internet

Bytes in second screenshot

First 14 bytes are a4 db 30 ... 08 00. These probably
belong to the link layer (and I don’t understand them).
Next 20 bytes are the IP header, which follow very
exact specs given by the IP Protocol.
45 00 03 3b b3 fa 40 00 f7 06 b5 d3 0d 21 3c f7 c0 a8
01 2e
To explain these bytes, check “IPV4” article, Section
3.1 on wikipedia.



PKI on the Internet

Bytes in second screenshot
45 00 03 3b be fa 40 00 f7 06 b5 d3 0d 21 3c f7 c0 a8 01 2e

45: 4 is version number, i.e. IPV4. 5 is length of
header, measured in units of 4 bytes. So it says the
header has 20 bytes.
00: Used for VOIP, N/A for this example
03 3b is total length of the packet in bytes.
0x033b = 3 · 162 + 3 · 16 + 11 = 827 bytes. Note that
the highlighted line at the top of wireshark shows 841
bytes, which is 827+14. (Recall we had 14 initial
bytes that we don’t have a full explanation for.)
be fa is an “identification field”



PKI on the Internet

Bytes in second screenshot
45 00 03 3b be fa 40 00 f7 06 b5 d3 0d 21 3c f7 c0 a8 01 2e

40 00 - high bit is always 0; next two bits (10) are
flags; low 13 bits (=0) are fragment offset. This
particular flag setting indicates “don’t fragment”.
f7 is Time To Live (TTL); decrements by 1 each time
packet is forwarded to a router.
06 is the protocol code for TCP (Transmission Control
Protocol). Indicates that TCP will follow the IP header.
b5 d3 is a 16-bit checksum for detecting errors. If
error check fails, packet is discarded.
0d.21.3c.f7 and c0.a8.01.2e are source and
destination IP addresses.



PKI on the Internet

Next 20 bytes: TCP Header

Next 20 bytes are TCP header. (Recall the protocol
field 06 indicated TCP would follow the IP header.)
TCP accepts stream of data, breaks it into chunks,
and adds a TCP header to each chunk. The TCP
header gives enough info (such as sequence
numbers) for recipient to reassemble the data stream.
TCP also keeps track of which packets were
recieved, via ACK messages. Resends if needed.
In our example, the data stream consists of the TLS
handshake, followed by an encrypted HTTP session.
For format of TCP header, look up TCP on wikipedia.



PKI on the Internet

Next 20 bytes: TCP

01 bb d0 c0 19 73 b0 48 51 49 bb 08 50 18 00 77 e5 1b 00 00
01bb is source port (443), standard port for HTTPS.
d0c0 is destination port, randomish.
1973b048 is sequence number, used by recipient to
correctly order all packets that are received.
5149bb08 is ACK number. Indicates next sequence #
expected (if ACK flag is set).
5 is size of TCP header in 4-byte units. I.e. this TCP
header is 20 bytes.



PKI on the Internet

TCP header

01 bb d0 c0 19 73 b0 48 51 49 bb 08 50 18 00 77 e5 1b 00 00
018: Flag bits. In this example, the ACK and PSH
flags are activated. PSH means push buffered data to
receiving application. ACK means an
acknowledgment is being sent using ACK number.
0077 is how many bytes the sender is willing to
receive in a TCP packet.
e51b is a checksum on the TCP header. (Packet will
be discarded if checksum is wrong.)
0000 is urgent pointer (if URG flag is set).



PKI on the Internet

After TCP header

82 01 b5 30 81 9e ...
After the TCP header comes a chunk of the data
stream.
Our data stream contains the TLS handshake. The
bytes shown are probably part of Amazon’s
certificate.
The screenshot indicates that RSA is being used for
signatures and that the signature has 256 bytes =
2048 bits. Thus, the above bytes are likely part of
Amazon’s 2048-bit RSA modulus.


