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Local statistics, localization and delocalization

One of the key physical parameter of models is the localization length,
which describes the typical length scale of the eigenvectors of random
matrices. The system is called delocalized if the localization length ` is
comparable with the matrix size, and it is called localized otherwise.

Localized eigenvectors: lack of transport (insulators), and Poisson
local spectral statistics (typically strong disorder)
Delocalization: diffusion (electric conductors), and GUE/GOE
local statistics (typically weak disorder).

The questions of the order of the localization length are closely related
to the universality conjecture of the bulk local regime of the random
matrix theory.
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From the RMT point of view, the main objects of the local regime are
k-point correlation functions Rk (k = 1, 2, . . .), which can be defined by
the equalities:

E

 ∑
j1 6=... 6=jk

ϕk(λ
(N)
j1 , . . . , λ

(N)
jk )


=

∫
Rk
ϕk(λ

(N)
1 , . . . , λ

(N)
k )Rk(λ

(N)
1 , . . . , λ

(N)
k )dλ(N)

1 . . . dλ(N)
k ,

where ϕk : Rk → C is bounded, continuous and symmetric in its
arguments.

Universality conjecture in the bulk of the spectrum (hermitian
case, deloc.eg.s.) (Wigner – Dyson):

(Nρ(E))−kRk
(
{E + ξj/Nρ(E)}

) N→∞−→ det
{sinπ(ξi − ξj)

π(ξi − ξj)

}k

i,j=1
.
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Wigner matrices, β-ensembles with β = 1, 2, sample covariance
matrices, etc.: delocalization, GUE/GOE local spectral statistics
Anderson model (Random Schrödinger operators):

HRS = −4+ V,

where 4 is the discrete Laplacian in lattice box Λ = [1, n]d ∩ Zd, V
is a random potential (i.e. a diagonal matrix with i.i.d. entries).
In d = 1: narrow band matrix with i.i.d. diagonal

HRS =



V1 1 0 0 . . . 0
1 V2 1 0 . . . 0
0 1 V3 1 . . . 0
...

...
...

. . .
...

...
0 . . . 0 1 Vn−1 1
0 . . . 0 0 1 Vn


.

Localization, Poisson local spectral statistics (Fröhlich, Spencer,
Aizenman, Molchanov, . . . )
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Random band matrices

Intermediate model that interpolates between random Schrödinger
operator and Wigner matrices.

Λ = [1, n]d ∩ Zd is a lattice box, N = nd.

H = {Hjk}j,k∈Λ, H = H∗, E{Hjk} = 0.

Entries are independent (up to the symmetry) but not identically
distributed. Variance is given by some function J (even, compact
support or rapid decay)

E{|Hjk|2} =
1

Wd J
( |j− k|

W

)
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1d case

H =



· · · · · 0 0 0 0 0 0 0 0 0 0
· · · · · · 0 0 0 0 0 0 0 0 0
· · · · · · · 0 0 0 0 0 0 0 0
· · · · · · · · 0 0 0 0 0 0 0
· · · · · · · · · 0 0 0 0 0 0
0 · · · · · · · · · 0 0 0 0 0
0 0 · · · · · · · · · 0 0 0 0
0 0 0 · · · · · · · · · 0 0 0
0 0 0 0 · · · · · · · · · 0 0
0 0 0 0 0 · · · · · · · · · 0
0 0 0 0 0 0 · · · · · · · · ·
0 0 0 0 0 0 0 · · · · · · · ·
0 0 0 0 0 0 0 0 · · · · · · ·


Main parameter: band width W ∈ [1;N].

It also has non-trivial spatial structure (like random Schrödinger).
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Anderson transition in random band matrices

W = O(1) [∼ random Schrödinger] ←→ W = N [Wigner matrices]

Varying W, we can see the transition between localization and
delocalization

Conjecture (in the bulk of the spectrum):

d = 1 : ` ∼W2 W�
√
N Delocalization, GUE statistics

W�
√
N Localization, Poisson statistics

d = 2 : ` ∼ eW2 W�
√
log N Delocalization, GUE statistics

W�
√
log N Localization, Poisson statistics

d ≥ 3 : ` ∼ N W ≥W0 Delocalization, GUE statistics
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At the present time only some upper and lower bounds on the order of
localization length are proved rigorously (d = 1).

Schenker (2009) ` ≤W8 – localization techniques; (improved
recently to W7)
Erdős, Yau, Yin (2011) ` ≥W – RM methods;
Bourgade, Erdős, Yau, Yin (2016) gap universality for W ∼ N.

Main problem: to control the resolvent G(z) = (H− z)−1 for
ε := Im z ∼ 1/N (more precisely, to obtain the bounds for
E{|G(E + iε)|2}). The techniques allows to obtain the control only for
ε ∼ 1/W. Such control can give a bounds for the localization length,
but only in a weak sense, i.e. the estimates hold for “most”
eigenfunctions only:

Erdős, Knowles (2011): `�W7/6;
Erdős, Knowles, Yau, Yin (2012): `�W5/4 (not uniform in N).
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Another method, which allows to work with random operators with
non-trivial spatial structures, is supersymmetry techniques (SUSY),
which based on the representation of the determinant as an integral
over the Grassmann (anticommuting) variables.

The method allows to obtain an integral representation for the main
spectral characteristic (such as density of states, second correlation
functions, or the average of an elements of the resolvent) as the
averages of certain observables in some SUSY statistical mechanics
models (so-called dual representation in terms of SUSY). This is
basically an algebraic step, and usually can be done by the standard
algebraic manipulations. The real mathematical challenge is a rigour
analysis of the obtained integral representation.
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The method has some restrictions. First of all, up to this point it was
mainly applied to the matrices with Gaussian element’s distribution
(except the case of characteristic polynomials that we will discuss later).
Besides, it is much simpler to consider covariance of a special form.

We consider the following two models:

Random band matrices: specific covariance

Jij =
(
−W2∆ + 1

)−1
ij ≈ C1W−1 exp{−C2|i− j|/W}
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Block band matrices
Assign to every site j ∈ Λ one copy Kj ' CW of an W-dimensional
complex vector space, and set K = ⊕Kj ' C|Λ|W. From the
physical point of view, we are assigning W valence electron orbitals
to every atom of a solid with hypercubic lattice structure.

Such models were first introduced and studied by Wegner.

Mathematically, we obtain a Hermitian random matrix constructed
of W ×W blocks numerate by j, k ∈ Λ, and the variance in each
block is a fixed number Jjk, where we take

J = 1/W + α∆/W, α < 1/4d.

This model is one of the possible realizations of the Gaussian
random band matrices.
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1d case:

Only 3 block diagonals are non zero.

H =



A1 B1 0 0 0 . . . 0
B∗1 A2 B2 0 0 . . . 0
0 B∗2 A3 B3 0 . . . 0
. . B∗3 . . . .
. . . . . An−1 Bn−1
0 . . . 0 B∗n−1 An


Aj – independent W ×W GUE-matrices with entry’s variance
(1− 2α)/W, α < 1

4

Bj -independent W ×W Ginibre matrices with entry’s variance α/W
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"Generalised" correlation functions

R1(z1, z′1) := E
{det(H− z′1)

det(H− z1)

}
R2(z1, z′1; z2, z′2) := E

{det(H− z′1) det(H− z′2))

det(H− z1) det(H− z2))

}
We study these functions for z1,2 = E + ξ1,2/ρ(E)N,
z′1,2 = E + ξ′1,2/ρ(E)N, E ∈ (−2, 2).

Link with the spectral correlation functions:

E{Tr(H− z1)−1Tr(H− z2)−1} =
d2

dz′1dz
′
2
R(z1, z′1; z2, z′2)

∣∣∣
z′1=z1,z′2=z2

Correlation function of the characteristic polynomials:

R0(λ1, λ2) = E
{
det(H− λ1) det(H− λ2)

}
, λ1,2 = E± ξ/ρ(E)N.
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Integral representation for characteristic polynomials

R0(λ1, λ2) = CN

∫
HN

2

exp
{
− 1

2

∑
j,k

J−1
jk TrXjXk

}∏
j

det
(
Xj − iΛ/2

)
dX,

where {Xj} are hermitian 2× 2 matrices, Λ = diag{λ1, λ2} ,and
ξ̂ = diag{ξ,−ξ}.

For the density of states Xj will be super-matrices

Xj =

(
aj ρj
τj bj

)
with real variables aj, bj and Grassmann variables ρj, τj.
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The formulas can be obtain in any dimension and for any band
profile J, although the specific J =

(
−W2∆ + 1

)−1 gives a nearest
neighbour model which is easier to analyze.
If we do the change of variables Xj = U∗j AjUj, where Uj is a 2× 2
unitary matrix and Aj = diag {aj, bj}, and integrate out aj, bj (i.e.
put them to be equal to their saddle-point values, so write the
sigma-model approximation), we obtain a classical Heisenberg
model:

∫
exp

{
π2ρ(λ0)2W2

N∑
j=2

(SjSj−1 − 1) +
iπξ
2N

N∑
j=1

Sjσ3

} N∏
j=1

dSj

−→
∫

eiπξS0σ3/2dS0 =
sin(πξ)

πξ
, W2 � N
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SUSY results for the characteristic polynomials:

Let D2 = R0(E,E), R̄0(E, ξ) = D−1
2 · R0

(
E + ξ̂/2Nρ(E)

)
.

lim
n→∞

R̄0(E, ξ) =


sinπξ
πξ

, W ≥ N1/2+θ;

(e−C∗t∗∆U−iξν̂ · 1, 1), N = C∗W2

1, 1�W ≤
√

N
C∗ log N

,

where t∗ = (2πρ(E))2,

∆U = − d
dx

x(1− x)
d
dx
, ν(U) = π(1− 2x), x = |U12|2.

Delocalization part: S., 2013 – saddle-point analysis; (the case of orthogonal
symmetry is also done, S., 2015)

Localization part: M. Shcherbina, S., 2016 – transfer matrix approach.

Near the crossover: S., 2018 – in progress
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SUSY results for the density of states:
Let g(z) = N−1E{Tr (H− z)−1}, gsc is a Stieltjes transform of
semi-circle.

Disertori, Pinson, Spencer, 2002: The smoothness and the local
semicircle for averaged density for RBM in 3d, i.e.

|g(z)− gsc(z)| ≤ C/W2

uniformly in Im z, W ≥W0.
Disertori, Lager, June 2016: the same in 2d.
M. Shcherbina, S., April 2016: local semicircle for averaged density
for RBM in 1d (with an arrow W−1).

First and second results use the cluster expansion, the third one uses
the supersymmetric transfer matrices.
All other result about the density for RBM deals with Im z�W−1

(but allows to control Gij, which implies delocalization at this scale).
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Other SUSY results for the full model:

S., 2014: Gaussian case, three diagonal block band matrices with

J =
α

W
4+

1
W

. If W ∼ N, then

1
(Nρ(λ0))2 R2

(
λ0+x/Nρ(λ0), λ0+y/Nρ(λ0)

) N→∞−→ 1−sin2(π(x− y))

π2(x− y)2

in any dimension.

Erdős, Bao, 2015: Combining this techniques with Green’s
function comparison strategy (Erdős-Yau), they proved

` ≥W7/6

in a strong sense for the block band matrices with more or less
general element’s distribution (subexponential tails, four Gaussian
moments).

T. Shcherbina (PU) Local regime of RBM 02/28/2018 18 / 28



Other SUSY results for the full model:

S., 2014: Gaussian case, three diagonal block band matrices with

J =
α

W
4+

1
W

. If W ∼ N, then

1
(Nρ(λ0))2 R2

(
λ0+x/Nρ(λ0), λ0+y/Nρ(λ0)

) N→∞−→ 1−sin2(π(x− y))

π2(x− y)2

in any dimension.
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Sigma-model R(σ)
2

The model can be obtained by some scaling limit (α = β/W, W→∞,
β,n-fixed) from the expression for R2.
The crossover is expected for β ∼ n.

R(σ)
2 =

∫
exp

{β
4

∑
StrQjQj+1 +

ε+ iξ
4n

∑
StrQjΛ

}∏
dQj

Here Qj is a 4× 4 super matrix of the block form:

Qj =

(
U∗j 0
0 S−1

j

)(
(I + 2ρ̂jτ̂j)L 2τ̂j

2ρ̂j −(I− 2ρ̂jτ̂j)L

)(
Uj 0
0 Sj

)
,

dQ =
∏

dQj, dQj = (1− 2ρj1τj1ρj2τj2) dρj1dτj1 dρj2dτj2 dUj dSj

with

ρ̂j = diag{ρj1, ρj2}, τ̂j = diag{τj1, ρj2}, L = diag{1,−1}.

Here {Uj} are unitary matrices, {Sj} are hyperbolic matrices, Q2
j = I.
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Result for R(σ)
2 [M. Shcherbina, S., 2018]

In the dimension d = 1 the behavior of the sigma-model approximation
R(σ)

2 of the second order correlation function, as β � n, in the bulk of
the spectrum coincides with those for the GUE. More precisely, if
Λ = [1, n] ∩ Z and HN, N = Wn are block RBM with
J = 1/W + β∆/W2, then for any |E| <

√
2

(Nρ(E))−2R2

(
E +

ξ1
ρ(E)N

,E +
ξ2

ρ(E)N

)
−→ 1− sin2(π(ξ1 − ξ2))

π2(ξ1 − ξ2)2 ,

in the limit first W→∞, and then β, n→∞, β ≥ Cn log2 n.

"Right" limit: β = αW, α is fixed, W, n→∞, W� n.
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Transfer matrix approach
Let K(X,Y) be the p-dimensional matrix kernel of the compact integral
operator in ⊕p

i=1L2[X, dµ(X)]. Then∫
g(X1)K(X1,X2) . . .K(Xn−1,Xn)f(Xn)

∏
dµ(Xi) = (Kn−1f, ḡ)

=
∞∑
j=0

λn−1
j (K)cj, with cj = (f, ψj)(g, ψ̃j) (1)

Here {λj(K)}∞j=0 are the eigenvalues of K ( |λ0| ≥ |λ1| ≥ . . . ), ψj are
corresponding eigenvectors and ψ̃j are the eigenvectors of K∗

Characteristic polynomials with J =
(
−W2∆ + 1

)−1:

K0(X,Y) =
W4

2π2 F(X) exp
{
− W2

2
Tr (X−Y)2

}
F(Y) with

F(X) = exp
{
− 1
4
Tr
(
X+

iE · I
2

+
iξ̂

Nρ(E)

)2
+
1
2
Tr log

(
X− iE ·I/2

)
−C

}
.
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The main difficulties:

1 the transfer operator is not self-adjoint, and thus the perturbation
theory is not easily applied in a rigorous way;

2 the transfer operator has a complicated structure including a part
that acts on unitary and hyperbolic groups, hence we need to work
with corresponding special functions;

3 the kernel of the transfer operator for the density of states and for
the second correlation function contains not only only the complex,
but also some Grassmann variables. Therefore, for the density of
states K1 is a 2× 2 matrix kernel, containing the Jordan cell, and
for the second correlation function K2 is a 28 × 28 matrix kernel,
containing 4× 4 Jordan cell in the main block.
Using the symmetry of the problem, K2 could be replaced by
70× 70 matrix kernel, but it is still very complicated.
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Resolvent version of the transfer operator approach

(Knf, ḡ) = − 1
2πi

∮
L
zn(G(z)f, ḡ)dz, G(z) = (K − z)−1

where L is any closed contour which contains all eigenvalues of K. It is
sufficient to take L = L0 = {|z| = 1 + Cn−1},

We choose L = L1 ∪ L2 where L2 = {z : |z| = 1− log2 n/n}, and L1 is some
special contour, containing all eigenvalues between L0 and L2. Then

(Kn
αf, ḡ) = − 1

2πi

∮
L1

zn(Gα(z)f, ḡ)dz− 1
2πi

∮
|z|=1−log2 n/n

zn(Gα(z)f, ḡ)dz

The second integral is small since |z|n ≤ e− log2 n

Definition of asymptotically equivalent operators (n,W→∞)

AWn ∼ BWn ⇔
∮

L1

zn((AWn− z)−1f, ḡ)dz =

∮
L1

zn((BWn− z)−1f, ḡ)dz+ o(1)

for certain L1
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Mechanism of the crossover for R0

Key technical step

K0ξ ∼ K∗ξ ⊗A,
K∗ξ(U1,U2) = e−iξν(U1)/NK∗0(U1U∗2)e−iξν(U2)/N, K∗0 : L2(Ů(2))→ L2(Ů(2)),

A(x1, x2, y1, y2) = A1(x1, x2)A2(y1, y2), L2(R2)→ L2(R2).

Here ξ1 = −ξ2 = ξ, and ν(U) = π(1− 2|U12|2)

Then

R0 = (KN
∗ξ ⊗ANf, ḡ)(1 + o(1)) = (KN

∗ξ · 1, 1)(ANf1, ḡ1)(1 + o(1)).

Here we used that both f, g asymptotically can be replaced by 1⊗ f1(x, y).
After normalization we get:

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=

(KN
∗ξ · 1, 1)

(KN
∗0 · 1, 1)

(1 + o(1))
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Spectral analysis of K∗ξ

A good news is that K∗0 with a kernel

K∗0 = t∗W2e−t∗W2|(U1U∗2)12|2

is a self-adjoint "difference" operator. It is known that his
eigenfunctions are Legendre polynomials Pj. Moreover, it is easy to
check that corresponding eigenvalues have the form:

λj = 1− t∗j(j + 1)/W2 + O((j(j + 1)/W2)2), j = 0, 1 . . . .

Besides,
K∗ξ = K∗0 − 2iξν̂/N + O(N−2)

where ν̂ is the operator of multiplication by ν. Thus the eigenvalues of
K∗ξ are in the N−1-neighbourhood of λj.
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Mechanism of the Poisson behavior for W2 � N
For W−2 � N−1 (the spectral gap is much less then the perturbation
norm)

λ0(K∗ξ) = 1− 2N−1iξ(ν · 1, 1) + o(N−1),

|λ1(K∗ξ)| ≤ 1−O(W−2) ⇒ |λj(K∗ξ)|N → 0, (j = 1, 2, . . . ).

Since
(ν · 1, 1) = 0,

we obtain that
λ0(K∗ξ) = 1 + o(N−1),

and

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=
λN

0 (K∗ξ)
λN

0 (K∗0)
(1 + o(1))→ 1

The relation corresponds to the Poisson local statistics.
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Mechanism of the GUE behavior for W2 � N

In the regime W−2 � N−1 we have KN
∗0 → I in the strong vector

topology, hence one can prove that

K∗ξ ∼ 1 + O(W−2)−N−12iξν ⇒ (KN
∗ξ · 1, 1)→ (e−2iξν̂ · 1, 1)

and

D−1
2 R0

(
E +

ξ

Nρ(E)
,E− ξ

Nρ(E)

)
=

(e−2iξt∗ν̂ · 1, 1)

(1, 1)
(1 + o(1))→ sin(2πξ)

2πξ
.

The expression for D−1
2 R0 coincides with that for GUE.
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In the regime W−2 = C∗N−1 observe that K∗ξ is reduced by the
subspace E0 of the functions depending only on |U12|2.
Recall also that the Laplace operator on Ů(2) is reduced by E0 and
have the form

∆U = − d
dx

x(1− x)
d
dx
, x = |U12|2.

Besides, the eigenvectors of ∆U and K∗0 coincide (they are Legendre’s
polynomials Pj) and corresponding eigenvalues of ∆U are

λ∗j = j(j + 1).

Hence we can write K∗ξ as

K∗ξ ∼ 1−N−1(C∗t∗∆U+2iξν)+o(N−1)⇒ (KN
∗ξ ·1, 1)→ (e−C∆U−2iξν̂ ·1, 1)
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