Classification Fact:

Simply connected homogeneous 3 -manifolds \mathbf{X} are either isometric to $\mathbf{S}^{2}(\kappa) \times \mathbb{R}$ or to a metric Lie group

Classification Fact:

Simply connected homogeneous 3 -manifolds \mathbf{X} are either isometric to $\mathbf{S}^{2}(\kappa) \times \mathbb{R}$ or to a metric Lie group $=$ Lie group with a left-invariant metric.

Classification Fact:

Simply connected homogeneous 3 -manifolds \mathbf{X} are either isometric to $\mathbf{S}^{2}(\kappa) \times \mathbb{R}$ or to a metric Lie group $=$ Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups \mathbf{X}

- If \mathbf{X} is diffeomorphic to \mathbb{S}^{3}, then \mathbf{X} is isomorphic to $\mathbf{S U}(\mathbf{2})$; otherwise, \mathbf{X} is diffeomorphic to $\mathbf{R}^{\mathbf{3}}$.

Classification Fact:

Simply connected homogeneous 3 -manifolds \mathbf{X} are either isometric to $\mathbf{S}^{2}(\kappa) \times \mathbb{R}$ or to a metric Lie group $=$ Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups \mathbf{X}

- If \mathbf{X} is diffeomorphic to \mathbb{S}^{3}, then \mathbf{X} is isomorphic to $\mathbf{S U}(\mathbf{2})$; otherwise, \mathbf{X} is diffeomorphic to \mathbf{R}^{3}.
- If \mathbf{X} is diffeomorphic to \mathbf{R}^{3}, then \mathbf{X} is isomorphic to a semidirect product $\mathbb{R}^{2} \rtimes_{\mathbf{A}} \mathbb{R}$ with its canonical metric, where \mathbf{A} is a 2×2 real matrix, or \mathbf{X} is isomorphic to $\mathrm{SL}(2, \mathbb{R})$.

Classification Fact:

Simply connected homogeneous 3 -manifolds \mathbf{X} are either isometric to $\mathbf{S}^{2}(\kappa) \times \mathbb{R}$ or to a metric Lie group $=$ Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups \mathbf{X}

- If \mathbf{X} is diffeomorphic to \mathbb{S}^{3}, then \mathbf{X} is isomorphic to $\mathbf{S U}(\mathbf{2})$; otherwise, \mathbf{X} is diffeomorphic to \mathbf{R}^{3}.
- If \mathbf{X} is diffeomorphic to $\mathbf{R}^{\mathbf{3}}$, then \mathbf{X} is isomorphic to a semidirect product $\mathbb{R}^{2} \rtimes_{\mathbf{A}} \mathbb{R}$ with its canonical metric, where \mathbf{A} is a 2×2 real matrix, or \mathbf{X} is isomorphic to $\operatorname{SL}(2, \mathbb{R})$.
- The group operation \star of the semidirect product $\mathbb{R}^{2} \rtimes_{\mathrm{A}} \mathbb{R}$, where + is the group operation of \mathbb{R}^{2} and \mathbb{R}, is given by

$$
\left(\mathbf{p}_{1}, z_{1}\right) \star\left(\mathbf{p}_{2}, z_{2}\right)=\left(\mathbf{p}_{1}+\left(e^{z_{1} \mathbf{A}} \mathbf{p}_{2}\right), z_{1}+z_{2}\right) .
$$

Classification Fact:

Simply connected homogeneous 3 -manifolds \mathbf{X} are either isometric to $\mathbf{S}^{2}(\kappa) \times \mathbb{R}$ or to a metric Lie group $=$ Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups \mathbf{X}

- If \mathbf{X} is diffeomorphic to \mathbb{S}^{3}, then \mathbf{X} is isomorphic to $\mathbf{S U (2) ;}$ otherwise, \mathbf{X} is diffeomorphic to \mathbf{R}^{3}.
- If \mathbf{X} is diffeomorphic to $\mathbf{R}^{\mathbf{3}}$, then \mathbf{X} is isomorphic to a semidirect product $\mathbb{R}^{2} \rtimes_{\mathbf{A}} \mathbb{R}$ with its canonical metric, where \mathbf{A} is a 2×2 real matrix, or \mathbf{X} is isomorphic to $\mathrm{SL}(2, \mathbb{R})$.
- The group operation \star of the semidirect product $\mathbb{R}^{2} \rtimes_{\mathbf{A}} \mathbb{R}$, where + is the group operation of \mathbb{R}^{2} and \mathbb{R}, is given by

$$
\left(\mathbf{p}_{1}, z_{1}\right) \star\left(\mathbf{p}_{2}, z_{2}\right)=\left(\mathbf{p}_{1}+\left(e^{z_{1} \mathbf{A}} \mathbf{p}_{2}\right), z_{1}+z_{2}\right) .
$$

- The intrinsically flat horizontal planes $\mathbb{R}^{2} \rtimes_{A}\{t\}$ in $\mathbb{R}^{2} \rtimes_{A} \mathbb{R}$ have constant mean curvature trace(A)/2.

Notation and language:

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $\mathbf{H}(\mathbf{Y})=\operatorname{Inf}\left\{\max \left|\mathbf{H}_{\mathbf{M}}\right|: \mathbf{M}=\right.$ immersed closed surface in $\left.\mathbf{Y}\right\}$, where $\max \left|\mathrm{H}_{\mathrm{M}}\right|$ denotes the max of the absolute mean curvature function H_{M} of M .

Notation and language:

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $\mathbf{H}(\mathbf{Y})=\operatorname{Inf}\left\{\max \left|\mathbf{H}_{\mathbf{M}}\right|: \mathbf{M}=\right.$ immersed closed surface in $\left.\mathbf{Y}\right\}$, where $\max \left|\mathrm{H}_{\mathrm{M}}\right|$ denotes the max of the absolute mean curvature function H_{M} of M .

The number $\mathbf{H}(\mathbf{Y})$ is called the critical mean curvature of Y .

Notation and language:

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $\mathbf{H}(\mathbf{Y})=\operatorname{Inf}\left\{\max \left|\mathbf{H}_{\mathbf{M}}\right|: \mathbf{M}=\right.$ immersed closed surface in $\left.\mathbf{Y}\right\}$, where $\max \left|\mathrm{H}_{\mathrm{M}}\right|$ denotes the max of the absolute mean curvature function H_{M} of M .

The number $\mathrm{H}(\mathrm{Y})$ is called the critical mean curvature of Y .

Remark

- If \mathbf{Y} is diffeomorphic to \mathbb{S}^{3}, then $\mathbf{H}(\mathbf{Y})=0$ since there exist closed minimal surfaces in such a space Y.

Notation and language:

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $\mathbf{H}(\mathbf{Y})=\operatorname{Inf}\left\{\max \left|\mathrm{H}_{\mathrm{M}}\right|: \mathbf{M}=\right.$ immersed closed surface in Y$\}$, where $\max \left|\mathrm{H}_{\mathrm{M}}\right|$ denotes the max of the absolute mean curvature function H_{M} of M .

The number $\mathbf{H}(\mathbf{Y})$ is called the critical mean curvature of Y .

Remark

- If \mathbf{Y} is diffeomorphic to \mathbb{S}^{3}, then $\mathbf{H}(\mathbf{Y})=0$ since there exist closed minimal surfaces in such a space Y.
- Meeks, Mira, Perez and Ros proved that if \mathbf{Y} is a non-compact, simply connected homogeneous 3-manifold, then:

$$
2 H(Y)=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y} .
$$

Notation and language:

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $\mathbf{H}(\mathbf{Y})=\operatorname{Inf}\left\{\max \left|\mathrm{H}_{\mathrm{M}}\right|: \mathbf{M}=\right.$ immersed closed surface in $\left.\mathbf{Y}\right\}$, where $\max \left|\mathrm{H}_{\mathrm{M}}\right|$ denotes the max of the absolute mean curvature function H_{M} of M .

The number $\mathbf{H}(\mathrm{Y})$ is called the critical mean curvature of Y .

Remark

- If \mathbf{Y} is diffeomorphic to \mathbb{S}^{3}, then $\mathbf{H}(\mathbf{Y})=0$ since there exist closed minimal surfaces in such a space Y.
- Meeks, Mira, Perez and Ros proved that if \mathbf{Y} is a non-compact, simply connected homogeneous 3-manifold, then:

$$
2 H(Y)=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y} .
$$

- In particular, $\mathbf{H}(\mathbf{Y})=1$ if $\mathbf{Y}=\mathbb{H}^{3}$ and $\mathbf{H}(\mathbf{Y})=1 / 2$ if $\mathbf{Y}=\mathbb{H}^{2} \times \mathbb{R}$.

Remark

The proof of

$$
2 H(Y)=\operatorname{lnf}_{K \subset Y \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathrm{H}(\mathrm{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

Remark

The proof of

$$
2 \mathbf{H}(\mathbf{Y})=\operatorname{lnf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

Remark

The proof of

$$
2 \mathbf{H}(\mathbf{Y})=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

- $\lim _{n \rightarrow \infty} \operatorname{Radius}(\Omega(n))=\infty$

Remark

The proof of

$$
2 \mathbf{H}(\mathbf{Y})=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

- $\lim _{n \rightarrow \infty} \operatorname{Radius}(\Omega(n))=\infty \Longrightarrow k \gg 0, \mathbf{H}(\mathbf{Y})<\mathbf{H}_{\partial \Omega(n+k)}<\mathbf{H}_{\partial \Omega(n)}$.

Remark

The proof of

$$
2 H(Y)=\operatorname{lnf}_{K \subset Y \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

- $\lim _{n \rightarrow \infty} \operatorname{Radius}(\Omega(n))=\infty \Longrightarrow k \gg 0, \mathbf{H}(\mathbf{Y})<\mathbf{H}_{\partial \Omega(n+k)}<\mathbf{H}_{\partial \Omega(n)}$.
- $\lim _{n \rightarrow \infty} H_{\partial \Omega(n)}=\mathbf{H}(\mathbf{Y})$

Remark

The proof of

$$
2 \mathbf{H}(\mathbf{Y})=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

- $\lim _{n \rightarrow \infty} \operatorname{Radius}(\Omega(n))=\infty \Longrightarrow k \gg 0, \mathbf{H}(\mathbf{Y})<\mathbf{H}_{\partial \Omega(n+k)}<\mathbf{H}_{\partial \Omega(n)}$.
- $\lim _{n \rightarrow \infty} H_{\partial \Omega(n)}=\mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile \mathbf{P} of \mathbf{Y}.)

Remark

The proof of

$$
2 \mathbf{H}(\mathbf{Y})=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

- $\lim _{n \rightarrow \infty} \operatorname{Radius}(\Omega(n))=\infty \Longrightarrow k \gg 0, \mathbf{H}(\mathbf{Y})<\mathbf{H}_{\partial \Omega(n+k)}<\mathbf{H}_{\partial \Omega(n)}$.
- $\lim _{n \rightarrow \infty} \mathbf{H}_{\partial \Omega(n)}=\mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile \mathbf{P} of \mathbf{Y}.)
- $\lim _{n \rightarrow \infty} 2 \cdot \mathrm{H}_{\partial \Omega(n)}=\mathrm{Ch}(\mathrm{Y})$

Remark

The proof of

$$
2 \mathbf{H}(\mathbf{Y})=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

- $\lim _{n \rightarrow \infty} \operatorname{Radius}(\Omega(n))=\infty \Longrightarrow k \gg 0, \mathbf{H}(\mathbf{Y})<\mathbf{H}_{\partial \Omega(n+k)}<\mathbf{H}_{\partial \Omega(n)}$.
- $\lim _{n \rightarrow \infty} H_{\partial \Omega(n)}=\mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile \mathbf{P} of \mathbf{Y}.)
- $\lim _{n \rightarrow \infty} 2 \cdot \mathbf{H}_{\partial \Omega(n)}=\mathrm{Ch}(\mathbf{Y})$ (Prove \mathbf{P} has asymptotic slope $\mathrm{Ch}(\mathbf{Y})$).

Remark

The proof of

$$
2 \mathbf{H}(\mathbf{Y})=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

- $\lim _{n \rightarrow \infty} \operatorname{Radius}(\Omega(n))=\infty \Longrightarrow k \gg 0, \mathbf{H}(\mathbf{Y})<\mathbf{H}_{\partial \Omega(n+k)}<\mathbf{H}_{\partial \Omega(n)}$.
- $\lim _{n \rightarrow \infty} H_{\partial \Omega(n)}=\mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile \mathbf{P} of \mathbf{Y}.)
- $\lim _{n \rightarrow \infty}^{\infty} 2 \cdot \mathbf{H}_{\partial \Omega(n)}=\mathrm{Ch}(\mathbf{Y})$ (Prove \mathbf{P} has asymptotic slope $\mathrm{Ch}(\mathbf{Y})$).

2. In this case where \mathbf{Y} is diffeomorphic to \mathbf{R}^{3},

- The leaves of the foliation \mathcal{F} of Y are invariant under a 1-parameter group of isometries of \mathbf{Y}.

Remark

The proof of

$$
2 \mathbf{H}(\mathbf{Y})=\operatorname{Inf}_{\mathbf{K} \subset \mathbf{Y} \text { compact }} \frac{\operatorname{Area}(\partial \mathbf{K})}{\operatorname{Volume}(\mathbf{K})}=\text { Cheeger constant of } \mathbf{Y}
$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^{3} uses the existence of a $\mathbf{H}(\mathbf{Y})$-foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\operatorname{Volume}(\Omega(n)) \rightarrow \infty$, then:

- $\lim _{n \rightarrow \infty} \operatorname{Radius}(\Omega(n))=\infty \Longrightarrow k \gg 0, \mathbf{H}(\mathbf{Y})<\mathbf{H}_{\partial \Omega(n+k)}<\mathbf{H}_{\partial \Omega(n)}$.
- $\lim _{n \rightarrow \infty} H_{\partial \Omega(n)}=\mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile \mathbf{P} of \mathbf{Y}.)
- $\lim _{n \rightarrow \infty} 2 \cdot \mathrm{H}_{\partial \Omega(n)}=\mathrm{Ch}(\mathbf{Y})$ (Prove \mathbf{P} has asymptotic slope $\mathrm{Ch}(\mathbf{Y})$).

2. In this case where \mathbf{Y} is diffeomorphic to \mathbf{R}^{3},

- The leaves of the foliation \mathcal{F} of Y are invariant under a 1-parameter group of isometries of \mathbf{Y}.
- By the maximum principle, there are no closed immersed $\mathrm{H}(\mathrm{Y})$-surfaces in Y .

Let \mathbf{M} be a homogeneous 3-manifold, \mathbf{X} denote its Riemannian universal cover, $\mathrm{Ch}(\mathbf{X})$ denote the Cheeger constant of \mathbf{X}.

The next theorem solves the so called Hopf Uniqueness Problem.

Let \mathbf{M} be a homogeneous 3-manifold, \mathbf{X} denote its Riemannian universal cover, $\mathrm{Ch}(\mathbf{X})$ denote the Cheeger constant of \mathbf{X}.

The next theorem solves the so called Hopf Uniqueness Problem.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)
Any two spheres in \mathbf{M} of the same absolute constant mean curvature differ by an isometry of M .

Let \mathbf{M} be a homogeneous 3-manifold, \mathbf{X} denote its Riemannian universal cover, $\mathrm{Ch}(\mathbf{X})$ denote the Cheeger constant of \mathbf{X}.

The next theorem solves the so called Hopf Uniqueness Problem.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)
Any two spheres in \mathbf{M} of the same absolute constant mean curvature differ by an isometry of M . Moreover:
(1) If \mathbf{X} is not diffeomorphic to \mathbf{R}^{3}, then, for every $\mathbf{H} \in \mathbb{R}$, there exists a sphere of constant mean curvature H in M .

Let \mathbf{M} be a homogeneous 3-manifold, \mathbf{X} denote its Riemannian universal cover, $\mathrm{Ch}(\mathbf{X})$ denote the Cheeger constant of \mathbf{X}.

The next theorem solves the so called Hopf Uniqueness Problem.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)

Any two spheres in \mathbf{M} of the same absolute constant mean curvature differ by an isometry of M . Moreover:
(1) If \mathbf{X} is not diffeomorphic to \mathbf{R}^{3}, then, for every $\mathbf{H} \in \mathbb{R}$, there exists a sphere of constant mean curvature H in M .
(2) If \mathbf{X} is diffeomorphic to $\mathbf{R}^{\mathbf{3}}$, then the values $\mathbf{H} \in \mathbb{R}$ for which there exists a sphere of constant mean curvature \mathbf{H} in M are exactly those with $|\mathbf{H}|>\operatorname{Ch}(\mathbf{X}) / 2$.

Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)
Let \mathbf{S} be an H -sphere in \mathbf{M}.
(1) If $\mathbf{H}=0$ and \mathbf{X} is a product $\mathbf{S}^{\mathbf{2}} \times \mathbb{R}$, where $\mathbf{S}^{\mathbf{2}}$ is a sphere of constant curvature, then \mathbf{S} is totally geodesic, stable and has nullity 1 for its Jacobi operator.

Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let \mathbf{S} be an H -sphere in \mathbf{M}.
(1) If $\mathbf{H}=0$ and \mathbf{X} is a product $\mathbf{S}^{\mathbf{2}} \times \mathbb{R}$, where $\mathbf{S}^{\mathbf{2}}$ is a sphere of constant curvature, then \mathbf{S} is totally geodesic, stable and has nullity 1 for its Jacobi operator.
(2) Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of \mathbf{S} into \mathbf{M} extends as the boundary of an isometric immersion $\mathbf{F}: \mathbf{B} \rightarrow \mathbf{M}$ of a Riemannian 3 -ball \mathbf{B} which is mean convex. (When \mathbf{X} is $\mathbf{S}^{2} \times \mathbb{R}$, this follows by work of Abresch, Rosenberg and Souam.)

Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let \mathbf{S} be an H -sphere in \mathbf{M}.
(1) If $\mathbf{H}=0$ and \mathbf{X} is a product $\mathbf{S}^{2} \times \mathbb{R}$, where $\mathbf{S}^{\mathbf{2}}$ is a sphere of constant curvature, then \mathbf{S} is totally geodesic, stable and has nullity 1 for its Jacobi operator.
(2) Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of \mathbf{S} into \mathbf{M} extends as the boundary of an isometric immersion $\mathbf{F}: \mathbf{B} \rightarrow \mathbf{M}$ of a Riemannian 3 -ball \mathbf{B} which is mean convex. (When \mathbf{X} is $\mathbf{S}^{\mathbf{2}} \times \mathbb{R}$, this follows by work of Abresch, Rosenberg and Souam.)
(3) There is a point $p_{S} \in M$, called the center of symmetry of S, such that every isometry of \mathbf{M} that fixes p_{S} also leaves invariant \mathbf{S}.

Previous influential results on the Hopf Uniqueness Problem:

Theorem (Hopf, 1951)
 H-spheres in \mathbf{R}^{3} are round.

Previous influential results on the Hopf Uniqueness Problem:

Theorem (Hopf, 1951)
 H-spheres in \mathbf{R}^{3} are round.

Theorem (Abresch-Rosenberg, 2004)

If \mathbf{M} has a 4 -dimensional isometry group, then H -spheres in \mathbf{M} are surfaces of revolution and they are unique.

Previous influential results on the Hopf Uniqueness Problem:

Theorem (Hopf, 1951)

H-spheres in \mathbf{R}^{3} are round.

Theorem (Abresch-Rosenberg, 2004)

If \mathbf{M} has a 4 -dimensional isometry group, then H -spheres in M are surfaces of revolution and they are unique.

Theorem (Daniel-Mira (2013), Meeks (2013))

- If \mathbf{X} is the Lie group Sol_{3} with the left invariant metric

$$
e^{2 z} d x^{2}+e^{-2 z} d y^{2}+d z^{2},
$$

then H -spheres in X are unique, embedded and have index 1 .

- After left translation, these spheres have ambient symmetry group generated by reflections in the (x, z) and (y, z)-planes and rotations by π around the two lines $y= \pm x$ in the (x, y)-plane.

Theorem (Classification Theorem for H-spheres, Meeks-Mira-Pérez-Ros)

Suppose \mathbf{X} is a simply connected 3 -dimensional homogeneous manifold different from $\mathbf{S}^{2}(\kappa) \times \mathbb{R}$, where $\mathbf{S}^{2}(\kappa)$ is a sphere of curvature κ.

- \mathbf{X} diffeomorphic to $\mathbf{S}^{\mathbf{3}} \Longrightarrow$ the moduli space of \mathbf{H}-spheres in \mathbf{X} is parameterized by the mean curvature values $\mathrm{H} \in \mathbb{R}$.
- X diffeomorphic to $\mathbf{R}^{\mathbf{3}} \Longrightarrow$ moduli space of \mathbf{H}-spheres in \mathbf{X} is parameterized by the $H \in \mathbb{R}$ values, where $|\mathbf{H}| \in(\mathbf{H}(\mathbf{X}), \infty)$.
- X diffeomorphic to $\mathbf{S}^{\mathbf{3}} \Longrightarrow$ the areas of all H -spheres form a half-open interval ($0, \mathbf{A}(\mathbf{X})$].
- H-spheres in X are Alexandrov embedded with index 1, nullity 3.

Theorem (Classification Theorem for \mathbf{H}-spheres, Meeks-Mira-Pérez-Ros)

Suppose \mathbf{X} is a simply connected 3-dimensional homogeneous manifold different from $\mathbf{S}^{2}(\kappa) \times \mathbb{R}$, where $\mathbf{S}^{2}(\kappa)$ is a sphere of curvature κ.

- \mathbf{X} diffeomorphic to $\mathbf{S}^{\mathbf{3}} \Longrightarrow$ the moduli space of \mathbf{H}-spheres in \mathbf{X} is parameterized by the mean curvature values $\mathrm{H} \in \mathbb{R}$.
- \mathbf{X} diffeomorphic to $\mathbf{R}^{\mathbf{3}} \Longrightarrow$ moduli space of \mathbf{H}-spheres in \mathbf{X} is parameterized by the $H \in \mathbb{R}$ values, where $|H| \in(H(X), \infty)$.
- X diffeomorphic to $\mathbf{S}^{\mathbf{3}} \Longrightarrow$ the areas of all \mathbf{H}-spheres form a half-open interval ($0, \mathbf{A}(\mathbf{X})$].
- H-spheres in X are Alexandrov embedded with index 1, nullity 3.

Remark

In the following proof, choose a metric Lie group structure on \mathbf{X}.

Definition (Left invariant Gauss map)

- Let \mathbf{X} be a 3-dimensional metric Lie group.
- Given an oriented immersed surface $f: \mathbf{M} \rightarrow \mathbf{X}$ with unit normal vector field ξ, the left invariant Gauss map of \mathbf{M} is the map $\mathbf{G}: \mathbf{M} \rightarrow \mathbf{S}^{\mathbf{2}} \subset T_{\mathrm{e}} \mathbf{X}$ that assigns to each $\mathbf{p} \in \mathbf{M}$, the unit tangent vector to \mathbf{X} at the identity element \mathbf{e} given by left translation:

$$
\left(d l_{f(\mathbf{p})}\right)_{\mathbf{e}}(\mathbf{G}(\mathbf{p}))=\xi_{\mathbf{p}} .
$$

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

- Step 0: Σ has nullity 3: Cheng's theorem.

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

- Step 0: $\boldsymbol{\Sigma}$ has nullity 3: Cheng's theorem.
- Step 1: The moduli space $\mathcal{M}(\mathbf{X})$ of non-congruent index-1 H -spheres in X is an analytic $\mathbf{1}$-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space $\mathcal{M}(\mathbf{X})$ of non-congruent index-1 H -spheres in X is an analytic $\mathbf{1}$-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $\mathbf{G}: \boldsymbol{\Sigma} \rightarrow \mathbf{S}^{\mathbf{2}} \subset \mathbf{T}_{e}(\mathbf{X})$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

- Step 0: $\boldsymbol{\Sigma}$ has nullity 3: Cheng's theorem.
- Step 1: The moduli space $\mathcal{M}(\mathbf{X})$ of non-congruent index-1 H -spheres in X is an analytic $\mathbf{1}$-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $\mathbf{G}: \boldsymbol{\Sigma} \rightarrow \mathbf{S}^{\mathbf{2}} \subset \mathbf{T}_{e}(\mathbf{X})$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for $\boldsymbol{\Sigma}$ (given any fixed upper bound \mathbf{H}_{1} of H_{0}): Use that Gauss map is a degree-1 diffeo.

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

- Step 0: $\boldsymbol{\Sigma}$ has nullity 3: Cheng's theorem.
- Step 1: The moduli space $\mathcal{M}(\mathbf{X})$ of non-congruent index-1 H -spheres in X is an analytic $\mathbf{1}$-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $\mathbf{G}: \boldsymbol{\Sigma} \rightarrow \mathbf{S}^{\mathbf{2}} \subset \mathbf{T}_{e}(\mathbf{X})$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for $\boldsymbol{\Sigma}$ (given any fixed upper bound \mathbf{H}_{1} of H_{0}): Use that Gauss map is a degree-1 diffeo.
- Step 4: Area estimates for $\boldsymbol{\Sigma}$.

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

- Step 0: $\boldsymbol{\Sigma}$ has nullity 3: Cheng's theorem.
- Step 1: The moduli space $\mathcal{M}(\mathbf{X})$ of non-congruent index-1 H -spheres in X is an analytic $\mathbf{1}$-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $\mathbf{G}: \boldsymbol{\Sigma} \rightarrow \mathbf{S}^{\mathbf{2}} \subset \mathbf{T}_{e}(\mathbf{X})$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for $\boldsymbol{\Sigma}$ (given any fixed upper bound \mathbf{H}_{1} of H_{0}): Use that Gauss map is a degree-1 diffeo.
- Step 4: Area estimates for $\boldsymbol{\Sigma}$. This means:
(A) If \mathbf{X} is isomorphic to $\mathbf{S U}(\mathbf{2})$, areas of spheres in $\mathcal{M}(\mathbf{X})$ are uniformly bounded.

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

- Step 0: $\boldsymbol{\Sigma}$ has nullity 3: Cheng's theorem.
- Step 1: The moduli space $\mathcal{M}(\mathbf{X})$ of non-congruent index-1 H -spheres in X is an analytic $\mathbf{1}$-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $\mathbf{G}: \boldsymbol{\Sigma} \rightarrow \mathbf{S}^{\mathbf{2}} \subset \mathbf{T}_{e}(\mathbf{X})$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for $\boldsymbol{\Sigma}$ (given any fixed upper bound \mathbf{H}_{1} of H_{0}): Use that Gauss map is a degree-1 diffeo.
- Step 4: Area estimates for $\boldsymbol{\Sigma}$. This means:
(A) If \mathbf{X} is isomorphic to $\mathbf{S U}(\mathbf{2})$, areas of spheres in $\mathcal{M}(\mathbf{X})$ are uniformly bounded.
(B) If X is not isomorphic to $\mathrm{SU}(2)$, then for any $\boldsymbol{\Delta}>0$ the areas of spheres in $\mathcal{M}(\mathbf{X})$ with $\mathbf{H}_{0} \in[\mathbf{H}(\mathbf{X})+\Delta, \infty)$ are uniformly bounded.

Steps of the proof of the Classification Theorem for \mathbf{H}-spheres.

Throughout $\boldsymbol{\Sigma}$ denotes a fixed \mathbf{H}_{0}-sphere in \mathbf{X} of index $\mathbf{1}$.

- Step 0: $\boldsymbol{\Sigma}$ has nullity 3: Cheng's theorem.
- Step 1: The moduli space $\mathcal{M}(\mathbf{X})$ of non-congruent index-1 H -spheres in X is an analytic $\mathbf{1}$-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $\mathbf{G}: \boldsymbol{\Sigma} \rightarrow \mathbf{S}^{\mathbf{2}} \subset \mathbf{T}_{e}(\mathbf{X})$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for $\boldsymbol{\Sigma}$ (given any fixed upper bound \mathbf{H}_{1} of H_{0}): Use that Gauss map is a degree-1 diffeo.
- Step 4: Area estimates for $\boldsymbol{\Sigma}$. This means:
(A) If \mathbf{X} is isomorphic to $\mathbf{S U}(\mathbf{2})$, areas of spheres in $\mathcal{M}(\mathbf{X})$ are uniformly bounded.
(B) If X is not isomorphic to $\mathrm{SU}(2)$, then for any $\boldsymbol{\Delta}>0$ the areas of spheres in $\mathcal{M}(\mathbf{X})$ with $\mathbf{H}_{0} \in[\mathbf{H}(\mathbf{X})+\Delta, \infty)$ are uniformly bounded. Recall, there are no $\mathbf{H}(\mathbf{X})$-spheres in \mathbf{X}.

Steps of the proof continued.

- Step 5: Components of $\mathcal{M}(\mathbf{X})$ are parameterized by the mean curvature values $[0, \infty)$ if \mathbf{X} is isomorphic to $\mathbf{S U (2)}$ and otherwise by $(H(X), \infty)$.

Steps of the proof continued.

- Step 5: Components of $\mathcal{M}(\mathbf{X})$ are parameterized by the mean curvature values $[0, \infty)$ if \mathbf{X} is isomorphic to $\mathbf{S U}(\mathbf{2})$ and otherwise by ($\mathrm{H}(\mathrm{X}), \infty)$.
- Step 6: On any \mathbf{H}_{0}-sphere \mathbf{M} different from a left translation of $\boldsymbol{\Sigma}$, \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(M)$ with isolated negative index zeroes. Depends on Representation Thm.

Steps of the proof continued.

- Step 5: Components of $\mathcal{M}(\mathbf{X})$ are parameterized by the mean curvature values $[0, \infty)$ if \mathbf{X} is isomorphic to $\mathbf{S U}(\mathbf{2})$ and otherwise by $(\mathrm{H}(\mathrm{X}), \infty)$.
- Step 6: On any \mathbf{H}_{0}-sphere \mathbf{M} different from a left translation of $\boldsymbol{\Sigma}$, \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(\mathrm{M})$ with isolated negative index zeroes. Depends on Representation Thm.
- Step 7: Since the Euler characteristic of the sphere is positive, any \mathbf{H}_{0}-sphere in \mathbf{X} is a left translate of the unique \mathbf{H}_{0}-sphere in $\mathcal{M}(\mathbf{X})$.
- Step 5: Components of $\mathcal{M}(\mathbf{X})$ are parameterized by the mean curvature values $[0, \infty)$ if \mathbf{X} is isomorphic to $\mathbf{S U (2)}$ and otherwise by $(\mathbf{H}(\mathbf{X}), \infty)$.
- Step 6: On any H_{0}-sphere M different from a left translation of $\boldsymbol{\Sigma}$, \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(\mathrm{M})$ with isolated negative index zeroes. Depends on Representation Thm.
- Step 7: Since the Euler characteristic of the sphere is positive, any \mathbf{H}_{0}-sphere in \mathbf{X} is a left translate of the unique \mathbf{H}_{0}-sphere in $\mathcal{M}(\mathbf{X})$.
- Conclusions:
- The space of non-congruent \mathbf{H}-spheres in \mathbf{X} equals $\mathcal{M}(\mathbf{X})$ which is an interval parameterized by the mean curvature values in $[0, \infty)$ if \mathbf{X} is isomorphic to $\mathbf{S U (2)}$ and otherwise, in the interval $(\mathbf{H}(\mathbf{X}), \infty)$.
- Each \mathbf{H}-sphere in \mathbf{X} has index $\mathbf{1}$ and nullity 3.
- Each H -sphere in X is the boundary of an immersed 3 -ball $\mathbf{F}: \mathbf{B} \rightarrow \mathbf{X}$ on its mean convex side (Alexandrov embedded).
- If X is isomorphic to $\operatorname{SU}(\mathbf{2})$, then the areas of H -spheres in X form a half-open interval ($0, \mathbf{A}(\mathbf{X})$].

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2018)

Fix $\varepsilon, \mathbf{H}_{0}>0$ and a complete locally homogenous 3-manifold $\mathbf{X} . \exists \mathbf{C}>0$ s.t. for all embedded ($\mathbf{H} \geq \mathbf{H}_{0}$)-disks \mathbf{D} in \mathbf{X} :

$$
\left|\mathbf{A}_{\mathbf{D}}\right|(p) \leq \mathbf{C} \quad \text { for all } p \in \mathbf{D} \text { s.t. } \operatorname{dist}_{\mathbf{D}}(p, \partial \mathbf{D}) \geq \varepsilon
$$ where $\left|\mathbf{A}_{\mathbf{D}}\right|$ denotes the norm of second fundamental form.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2018)

Fix $\varepsilon, \mathrm{H}_{0}>0$ and a complete locally homogenous 3-manifold $\mathbf{X} . \exists \mathbf{C}>0$ s.t. for all embedded $\left(\mathbf{H} \geq \mathbf{H}_{0}\right)$-disks \mathbf{D} in \mathbf{X} :

$$
\left|\mathbf{A}_{\mathbf{D}}\right|(p) \leq \mathbf{C} \quad \text { for all } p \in \mathbf{D} \text { s.t. } \operatorname{dist}_{\mathbf{D}}(p, \partial \mathbf{D}) \geq \varepsilon,
$$

where $\left|\mathbf{A}_{\mathbf{D}}\right|$ denotes the norm of second fundamental form.

Sketch of Proof.

- Suppose theorem fails for \mathbf{X} simply connected for some $\varepsilon, \mathbf{H}_{0}>0$.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2018)

Fix $\varepsilon, \mathbf{H}_{0}>0$ and a complete locally homogenous 3-manifold $\mathbf{X} . \exists \mathbf{C}>0$ s.t. for all embedded $\left(\mathbf{H} \geq \mathbf{H}_{0}\right)$-disks \mathbf{D} in \mathbf{X} :

$$
\left|\mathbf{A}_{\mathbf{D}}\right|(p) \leq \mathbf{C} \quad \text { for all } p \in \mathbf{D} \text { s.t. } \operatorname{dist}_{\mathbf{D}}(p, \partial \mathbf{D}) \geq \varepsilon,
$$

where $\left|\mathbf{A}_{\mathbf{D}}\right|$ denotes the norm of second fundamental form.

Sketch of Proof.

- Suppose theorem fails for \mathbf{X} simply connected for some $\varepsilon, \mathbf{H}_{0}>0$.
- Consider a sequence of embedded $\left(\mathrm{H}_{\mathrm{n}} \geq \mathrm{H}_{0}\right)$-disks $\mathbf{D}(n)$ in \mathbf{X} and points $p_{n} \in \mathbf{D}(n), \operatorname{dist}_{\mathbf{D}}\left(p_{n}, \partial \mathbf{D}\right) \geq \varepsilon$ with $\left|\mathbf{A}_{\mathbf{D}}\right|\left(p_{n}\right)>n$.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2018)

Fix $\varepsilon, \mathrm{H}_{0}>0$ and a complete locally homogenous 3-manifold $\mathbf{X} . \exists \mathbf{C}>0$ s.t. for all embedded $\left(\mathbf{H} \geq \mathbf{H}_{0}\right)$-disks \mathbf{D} in \mathbf{X} :

$$
\left|\mathbf{A}_{\mathbf{D}}\right|(p) \leq \mathbf{C} \quad \text { for all } p \in \mathbf{D} \text { s.t. } \operatorname{dist}_{\mathbf{D}}(p, \partial \mathbf{D}) \geq \varepsilon
$$

where $\left|\mathbf{A}_{\mathbf{D}}\right|$ denotes the norm of second fundamental form.

Sketch of Proof.

- Suppose theorem fails for \mathbf{X} simply connected for some $\varepsilon, \mathbf{H}_{0}>0$.
- Consider a sequence of embedded $\left(\mathrm{H}_{\mathrm{n}} \geq \mathrm{H}_{0}\right)$-disks $\mathbf{D}(n)$ in \mathbf{X} and points $p_{n} \in \mathbf{D}(n), \operatorname{dist}_{\mathbf{D}}\left(p_{n}, \partial \mathbf{D}\right) \geq \varepsilon$ with $\left|\mathbf{A}_{\mathbf{D}}\right|\left(p_{n}\right)>n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" $\overline{\mathbf{H}}$-planar domain $\mathcal{D} \subset \mathbf{R}^{3}$ with bounded second fundamental form.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2018)

Fix $\varepsilon, \mathbf{H}_{0}>0$ and a complete locally homogenous 3-manifold $\mathbf{X} . \exists \mathbf{C}>0$ s.t. for all embedded $\left(\mathbf{H} \geq \mathbf{H}_{0}\right)$-disks \mathbf{D} in \mathbf{X} :

$$
\left|\mathbf{A}_{\mathbf{D}}\right|(p) \leq \mathbf{C} \quad \text { for all } p \in \mathbf{D} \text { s.t. } \operatorname{dist}_{\mathbf{D}}(p, \partial \mathbf{D}) \geq \varepsilon,
$$

where $\left|\mathbf{A}_{\mathbf{D}}\right|$ denotes the norm of second fundamental form.

Sketch of Proof.

- Suppose theorem fails for \mathbf{X} simply connected for some $\varepsilon, \mathbf{H}_{0}>0$.
- Consider a sequence of embedded $\left(\mathrm{H}_{\mathrm{n}} \geq \mathrm{H}_{0}\right)$-disks $\mathbf{D}(n)$ in \mathbf{X} and points $p_{n} \in \mathbf{D}(n), \operatorname{dist}_{\mathbf{D}}\left(p_{n}, \partial \mathbf{D}\right) \geq \varepsilon$ with $\left|\mathbf{A}_{\mathbf{D}}\right|\left(p_{n}\right)>n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" $\overline{\mathbf{H}}$-planar domain $\mathcal{D} \subset \mathbf{R}^{3}$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit $\overline{\bar{H}}$-surface \mathcal{D}^{\prime} of \mathcal{D}, which is a Delaunay surface or a non-flat minimal planar domain.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2018)

Fix $\varepsilon, \mathbf{H}_{0}>0$ and a complete locally homogenous 3-manifold $\mathbf{X} . \exists \mathbf{C}>0$ s.t. for all embedded $\left(\mathbf{H} \geq \mathbf{H}_{0}\right)$-disks \mathbf{D} in \mathbf{X} :

$$
\left|\mathbf{A}_{\mathbf{D}}\right|(p) \leq \mathbf{C} \quad \text { for all } p \in \mathbf{D} \text { s.t. } \operatorname{dist}_{\mathbf{D}}(p, \partial \mathbf{D}) \geq \varepsilon,
$$

where $\left|\mathbf{A}_{\mathbf{D}}\right|$ denotes the norm of second fundamental form.

Sketch of Proof.

- Suppose theorem fails for \mathbf{X} simply connected for some $\varepsilon, \mathbf{H}_{0}>0$.
- Consider a sequence of embedded $\left(H_{n} \geq H_{0}\right)$-disks $\mathbf{D}(n)$ in \mathbf{X} and points $p_{n} \in \mathbf{D}(n), \operatorname{dist}_{\mathbf{D}}\left(p_{n}, \partial \mathbf{D}\right) \geq \varepsilon$ with $\left|\mathbf{A}_{\mathbf{D}}\right|\left(p_{n}\right)>n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" $\overline{\mathbf{H}}$-planar domain $\mathcal{D} \subset \mathbf{R}^{3}$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit $\overline{\bar{H}}$-surface \mathcal{D}^{\prime} of \mathcal{D}, which is a Delaunay surface or a non-flat minimal planar domain.
- Step 3: But the limit must have 0 CMC flux $\Longrightarrow \mathcal{D}^{\prime}$ is a helicoid.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2018)

Fix $\varepsilon, \mathbf{H}_{0}>0$ and a complete locally homogenous 3-manifold $\mathbf{X} . \exists \mathbf{C}>0$ s.t. for all embedded $\left(\mathbf{H} \geq \mathbf{H}_{0}\right)$-disks \mathbf{D} in \mathbf{X} :

$$
\left|\mathbf{A}_{\mathbf{D}}\right|(p) \leq \mathbf{C} \quad \text { for all } p \in \mathbf{D} \text { s.t. } \operatorname{dist}_{\mathbf{D}}(p, \partial \mathbf{D}) \geq \varepsilon,
$$

where $\left|\mathbf{A}_{\mathbf{D}}\right|$ denotes the norm of second fundamental form.

Sketch of Proof.

- Suppose theorem fails for \mathbf{X} simply connected for some $\varepsilon, \mathbf{H}_{0}>0$.
- Consider a sequence of embedded $\left(H_{n} \geq H_{0}\right)$-disks $\mathbf{D}(n)$ in \mathbf{X} and points $p_{n} \in \mathbf{D}(n), \operatorname{dist}_{\mathbf{D}}\left(p_{n}, \partial \mathbf{D}\right) \geq \varepsilon$ with $\left|\mathbf{A}_{\mathbf{D}}\right|\left(p_{n}\right)>n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" $\overline{\mathbf{H}}$-planar domain $\mathcal{D} \subset \mathbf{R}^{3}$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit $\overline{\bar{H}}$-surface \mathcal{D}^{\prime} of \mathcal{D}, which is a Delaunay surface or a non-flat minimal planar domain.
- Step 3: But the limit must have 0 CMC flux $\Longrightarrow \mathcal{D}^{\prime}$ is a helicoid.
- Step 4: One extends the double multigraph in the forming helicoid near $p_{n} \in \mathbf{D}(n)$ a definite distance for n large, a contradiction.

Theorem (One-sided curvature estimate for H-disks, Meeks-Tinaglia)

 $\exists \mathbf{C}, \varepsilon>0$ s.t. for any embedded \mathbf{H}-disk $\boldsymbol{\Sigma} \subset \mathbf{R}^{\mathbf{3}}$ as in the figure below:$$
\left|\mathbf{A}_{\boldsymbol{\Sigma}}\right| \leq \frac{\mathbf{C}}{R} \text { in } \quad \boldsymbol{\Sigma} \cap \mathbb{B}(\varepsilon R) \cap\left\{x_{3}>0\right\} .
$$

This result generalizes the one-sided curvature estimates for minimal disks by Colding-Minicozzi, and uses their work in its proof.

New uniqueness results for CMC surfaces.

Old Question

Is the round sphere the only complete simply connected surface embedded in R^{3} with non-zero constant mean curvature?

NOT simply connected

- Cylinder

NOT embedded

- Smyth surface conformally \mathbb{C}

New uniqueness results for CMC surfaces.

Old Question

Is the round sphere the only complete simply connected surface embedded in \mathbf{R}^{3} with non-zero constant mean curvature?

NOT simply connected

- Cylinder

NOT embedded

- Smyth surface conformally \mathbb{C}

Answer (Meeks-Tinaglia)

Corollary (Radius Estimates for H-Disks, Meeks-Tinaglia 2017)
 $\exists \mathbf{R}_{\mathbf{0}} \geq \pi$ such that every embedded 1-disk in \mathbf{R}^{3} has radius $<\mathbf{R}_{\mathbf{0}}$.

Corollary (Radius Estimates for H-Disks, Meeks-Tinaglia 2017)

$\exists \mathbf{R}_{\mathbf{0}} \geq \pi$ such that every embedded 1-disk in \mathbf{R}^{3} has radius $<\mathbf{R}_{\mathbf{0}}$.

Proof.

- Let $\mathbf{D}(n) \subset \mathbf{R}^{3}$ be a sequence of embedded 1-disks of radius $R(n)>n$.

Corollary (Radius Estimates for H-Disks, Meeks-Tinaglia 2017)

$\exists \mathbf{R}_{\mathbf{0}} \geq \pi$ such that every embedded 1-disk in \mathbf{R}^{3} has radius $<\mathbf{R}_{\mathbf{0}}$.

Proof.

- Let $\mathbf{D}(n) \subset \mathbf{R}^{3}$ be a sequence of embedded 1-disks of radius $R(n)>n$.
- The homothetically scaled disks $\overline{\mathbf{D}(n)}=\frac{1}{R(n)} \mathbf{D}(n)$ contain points p_{n} of distance 1 from the boundary with mean curvature $R(n)>n$.

Corollary (Radius Estimates for H-Disks, Meeks-Tinaglia 2017)

$\exists \mathbf{R}_{\mathbf{0}} \geq \pi$ such that every embedded 1 -disk in \mathbf{R}^{3} has radius $<\mathbf{R}_{\mathbf{0}}$.

Proof.

- Let $\mathbf{D}(n) \subset \mathbf{R}^{3}$ be a sequence of embedded 1-disks of radius $R(n)>n$.
- The homothetically scaled disks $\overline{\mathbf{D}(n)}=\frac{1}{R(n)} \mathbf{D}(n)$ contain points p_{n} of distance 1 from the boundary with mean curvature $R(n)>n$.
- So, $\left|\mathbf{A}_{\overline{\mathrm{D}(n)}}\right|\left(p_{n}\right)>n$, which contradicts the curvature estimates for $(R(n) \geq 1)$-disks with $\varepsilon=1$.

Corollary (Radius Estimates for H-Disks, Meeks-Tinaglia 2017)

$\exists \mathbf{R}_{\mathbf{0}} \geq \pi$ such that every embedded 1-disk in \mathbf{R}^{3} has radius $<\mathbf{R}_{\mathbf{0}}$.

Proof.

- Let $\mathbf{D}(n) \subset \mathbf{R}^{3}$ be a sequence of embedded 1-disks of radius $R(n)>n$.
- The homothetically scaled disks $\overline{\mathbf{D}(n)}=\frac{1}{R(n)} \mathbf{D}(n)$ contain points p_{n} of distance 1 from the boundary with mean curvature $R(n)>n$.
- So, $\left|\mathbf{A}_{\overline{\mathrm{D}(n)}}\right|\left(p_{n}\right)>n$, which contradicts the curvature estimates for $(R(n) \geq 1)$-disks with $\varepsilon=1$.

Corollary (Meeks-Tinaglia 2017)

A complete simply connected \mathbf{H}-surface embedded in \mathbf{R}^{3} with $\mathbf{H}>0$ is a round sphere.

Theorem (Calabi-Yau Holds for Embedded Finite Topology H-surfaces, Meeks-Tinaglia 2017)
 Let $\mathbf{M} \subset \mathbf{R}^{\mathbf{3}}$ be a complete, connected embedded \mathbf{H}-surface.

Theorem (Calabi-Yau Holds for Embedded Finite Topology H-surfaces, Meeks-Tinaglia 2017)

Let $\mathbf{M} \subset \mathbf{R}^{3}$ be a complete, connected embedded \mathbf{H}-surface.
(1) M has positive injectivity radius $\Longrightarrow M$ is properly embedded in R^{3}.

Theorem (Calabi-Yau Holds for Embedded Finite Topology H-surfaces, Meeks-Tinaglia 2017)

Let $\mathbf{M} \subset \mathbf{R}^{3}$ be a complete, connected embedded \mathbf{H}-surface.
(1) M has positive injectivity radius $\Longrightarrow M$ is properly embedded in R^{3}.
(2) M has finite topology $\Longrightarrow M$ has positive injectivity radius.

Theorem (Calabi-Yau Holds for Embedded Finite Topology H-surfaces, Meeks-Tinaglia 2017)

Let $\mathbf{M} \subset \mathbf{R}^{\mathbf{3}}$ be a complete, connected embedded \mathbf{H}-surface.
(1) M has positive injectivity radius $\Longrightarrow M$ is properly embedded in R^{3}.
(2) M has finite topology $\Longrightarrow M$ has positive injectivity radius.
(3) Suppose $\mathbf{H}>0$. Then:
$\left|\mathbf{A}_{\mathbf{M}}\right|$ is bounded $\Longleftrightarrow \mathbf{M}$ has positive injectivity radius.

Theorem (Calabi-Yau Holds for Embedded Finite Topology H-surfaces, Meeks-Tinaglia 2017)

Let $\mathbf{M} \subset \mathbf{R}^{\mathbf{3}}$ be a complete, connected embedded \mathbf{H}-surface.
(1) M has positive injectivity radius $\Longrightarrow M$ is properly embedded in R^{3}.
(2) M has finite topology $\Longrightarrow \mathrm{M}$ has positive injectivity radius.
(3) Suppose $\mathbf{H}>0$. Then:
$\left|\mathbf{A}_{\mathbf{M}}\right|$ is bounded $\Longleftrightarrow \mathbf{M}$ has positive injectivity radius.

When $\mathbf{H}=\mathbf{0}$, items 1 and 2 were proved by Meeks-Rosenberg, based on:
Colding-Minicozzi: M has finite topology and $\mathbf{H}=\mathbf{0} \Longrightarrow \mathbf{M}$ is proper.

Theorem (Calabi-Yau Holds for Embedded Finite Topology H-surfaces, Meeks-Tinaglia 2017)

Let $\mathbf{M} \subset \mathbf{R}^{\mathbf{3}}$ be a complete, connected embedded \mathbf{H}-surface.
(1) M has positive injectivity radius $\Longrightarrow M$ is properly embedded in R^{3}.
(2) M has finite topology $\Longrightarrow \mathrm{M}$ has positive injectivity radius.
(3) Suppose $\mathbf{H}>0$. Then:
$\left|\mathbf{A}_{\mathbf{M}}\right|$ is bounded $\Longleftrightarrow \mathbf{M}$ has positive injectivity radius.

When $\mathbf{H}=\mathbf{0}$, items 1 and 2 were proved by Meeks-Rosenberg, based on:
Colding-Minicozzi: M has finite topology and $\mathbf{H}=\mathbf{0} \Longrightarrow \mathbf{M}$ is proper.

Item 3 in the above theorem holds for 3-manifolds which have bounded absolute sectional curvature; in particular it holds in closed Riemannian 3 -manifolds.

Universal domain for Embedded Calabi-Yau problem?

- $\mathcal{D}_{\infty}=$ above bounded domain, smooth except at \mathbf{p}_{∞} on right.
- Ferrer, Martin and Meeks conjecture: An open surface properly embeds as a complete minimal surface in $\mathcal{D}_{\infty} \Longleftrightarrow$ every end has infinite genus \Longleftrightarrow it admits a complete bounded minimal embedding in \mathbb{R}^{3}.

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\boldsymbol{\Sigma} \subset \mathbf{R}^{3}$ be a complete, connected embedded \mathbf{H}-surface.

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\boldsymbol{\Sigma} \subset \mathbf{R}^{3}$ be a complete, connected embedded \mathbf{H}-surface.

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\boldsymbol{\Sigma} \subset \mathbf{R}^{3}$ be a complete, connected embedded \mathbf{H}-surface.

- $\exists \mathbf{A}_{\Sigma}$ s.t. $\forall \mathbf{r} \geq 1$ and $\mathbf{p} \in \mathbf{R}^{3}$,

$$
\operatorname{Area}(\boldsymbol{\Sigma} \cap \mathbb{B}(\mathbf{p}, \mathbf{r})) \leq \mathbf{A}_{\boldsymbol{\Sigma}} \cdot \mathbf{r}^{3} \quad \text { iff }
$$

$\boldsymbol{\Sigma}$ has uniformly bounded genus in balls of radius 1 .

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\boldsymbol{\Sigma} \subset \mathbf{R}^{\mathbf{3}}$ be a complete, connected embedded \mathbf{H}-surface.

- $\exists \mathbf{A}_{\boldsymbol{\Sigma}}$ s.t. $\forall \mathbf{r} \geq 1$ and $\mathbf{p} \in \mathbf{R}^{3}$,

$$
\operatorname{Area}(\boldsymbol{\Sigma} \cap \mathbb{B}(\mathbf{p}, \mathbf{r})) \leq \mathbf{A}_{\boldsymbol{\Sigma}} \cdot \mathbf{r}^{3} \quad \text { iff }
$$

$\boldsymbol{\Sigma}$ has uniformly bounded genus in balls of radius 1 .

Theorem (Emb Calabi-Yau for Finite Genus, Meeks-Pérez-Ros (2017))

- Let $\boldsymbol{\Sigma} \subset \mathrm{R}^{3}$ be a complete, connected embedded minimal surface of finite genus. Then:

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\boldsymbol{\Sigma} \subset \mathbf{R}^{\mathbf{3}}$ be a complete, connected embedded \mathbf{H}-surface.

- $\exists \mathbf{A}_{\boldsymbol{\Sigma}}$ s.t. $\forall \mathbf{r} \geq 1$ and $\mathbf{p} \in \mathbf{R}^{3}$,

$$
\operatorname{Area}(\boldsymbol{\Sigma} \cap \mathbb{B}(\mathbf{p}, \mathbf{r})) \leq \mathbf{A}_{\boldsymbol{\Sigma}} \cdot \mathbf{r}^{3} \quad \text { iff }
$$

$\boldsymbol{\Sigma}$ has uniformly bounded genus in balls of radius 1 .

Theorem (Emb Calabi-Yau for Finite Genus, Meeks-Pérez-Ros (2017))

- Let $\boldsymbol{\Sigma} \subset \mathbf{R}^{3}$ be a complete, connected embedded minimal surface of finite genus. Then:
- The General Calabi-Yau Conjecture is true for $\boldsymbol{\Sigma} \Longleftrightarrow \boldsymbol{\Sigma}$ has a countable \# of ends $\Longleftrightarrow \boldsymbol{\Sigma}$ has at most 2 limit ends.

Figure: A body-centered cubic interface or Fermi surface in salt crystal.
Next theorem is motivated by the study of 3-periodic H-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus $\mathbf{g}>2$ in any flat 3 -torus (Traizet).

Figure: A body-centered cubic interface or Fermi surface in salt crystal.
Next theorem is motivated by the study of 3-periodic H -surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus $\mathbf{g}>2$ in any flat 3 -torus (Traizet).

Theorem (Meeks-Tinaglia(2016))

Given a flat 3 -torus \mathbb{T}^{3} and $\mathbf{H}>0, \forall \mathbf{g} \in \mathbb{N}, \exists \mathbf{C}(\mathbf{g}, \mathbf{H})$ s.t. a closed H -surface $\boldsymbol{\Sigma}$ embedded in \mathbb{T}^{3} with genus at most \mathbf{g} satisfies

$$
\operatorname{Area}(\Sigma) \leq \mathrm{C}(\mathrm{~g}, \mathrm{H}) .
$$

Closed H-surfaces in a flat 3-torus. By K. Grosse-Brauckmann (top) and N. Schmitt (bottom)

Theorem (Choi-Wang(1983), Choi-Schoen(1985))
Let $\mathbf{N}=$ a closed Riemannian 3-manifold with Ricci curvature >0. Then:
(1) The areas of closed, connected embedded minimal surfaces of fixed genus in \mathbf{N} are bounded
(2) The space of embedded closed minimal surfaces of fixed genus in \mathbf{N} is compact.

Theorem (Choi-Wang(1983), Choi-Schoen(1985))

Let $\mathbf{N}=$ a closed Riemannian 3-manifold with Ricci curvature >0. Then:
(1) The areas of closed, connected embedded minimal surfaces of fixed genus in \mathbf{N} are bounded
(2) The space of embedded closed minimal surfaces of fixed genus in \mathbf{N} is compact.

Theorem (Meeks-Tinaglia(2018))

Let $0<a \leq b$ and $\mathbf{N}=$ closed Riem. 3-manifold with $\mathbb{H}_{2}(\mathbf{N})=0$.

Theorem (Choi-Wang(1983), Choi-Schoen(1985))

Let $\mathbf{N}=$ a closed Riemannian 3-manifold with Ricci curvature >0. Then:
(1) The areas of closed, connected embedded minimal surfaces of fixed genus in \mathbf{N} are bounded
(2) The space of embedded closed minimal surfaces of fixed genus in \mathbf{N} is compact.

Theorem (Meeks-Tinaglia(2018))

Let $0<a \leq b$ and $\mathbf{N}=$ closed Riem. 3-manifold with $\mathbb{H}_{2}(\mathbf{N})=0$. Then:
(1) The areas and indexes of stability of closed, connected embedded \mathbf{H}-surfaces of fixed genus \mathbf{g} in \mathbf{N} with $\mathbf{H} \in[a, b]$ are bounded are uniformly bounded.

Theorem (Choi-Wang(1983), Choi-Schoen(1985))

Let $\mathbf{N}=$ a closed Riemannian 3-manifold with Ricci curvature >0. Then:
(1) The areas of closed, connected embedded minimal surfaces of fixed genus in \mathbf{N} are bounded
(2) The space of embedded closed minimal surfaces of fixed genus in \mathbf{N} is compact.

Theorem (Meeks-Tinaglia(2018))

Let $0<a \leq b$ and $\mathbf{N}=$ closed Riem. 3-manifold with $\mathbb{H}_{2}(\mathbf{N})=0$. Then:
(1) The areas and indexes of stability of closed, connected embedded \mathbf{H}-surfaces of fixed genus \mathbf{g} in \mathbf{N} with $\mathbf{H} \in[a, b]$ are bounded are uniformly bounded.
(2) For every closed Riemannian 3-manifold \mathbf{X} and any non-negative integer \mathbf{g}, the space of strongly Alexandrov embedded closed surfaces in X of genus at most g and constant mean curvature $\mathbf{H} \in[a, b]$ is compact. (Similar compactness result holds for any fixed smooth compact family of metrics on \mathbf{X}.)

Calabi-Yau type problems for embedded H-surfaces

Theorem (Meeks-Tinaglia (2018)

- For $\mathbf{H} \geq 1$, complete embedded finite topology \mathbf{H}-surfaces $\boldsymbol{\Sigma}$ in complete hyperbolic 3 -manifolds are proper.

Calabi-Yau type problems for embedded H -surfaces

Theorem (Meeks-Tinaglia (2018)

- For $\mathbf{H} \geq 1$, complete embedded finite topology \mathbf{H}-surfaces $\boldsymbol{\Sigma}$ in complete hyperbolic 3 -manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case $\mathbf{H}=1$ and of Korevaar, Kusner, Meeks, Solomon in the case $\mathbf{H}>1, \boldsymbol{\Sigma}$ has ends asymptotic to annuli of revolution.

Calabi-Yau type problems for embedded H-surfaces

Theorem (Meeks-Tinaglia (2018)

- For $\mathbf{H} \geq 1$, complete embedded finite topology \mathbf{H}-surfaces $\boldsymbol{\Sigma}$ in complete hyperbolic 3 -manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case $\mathbf{H}=1$ and of Korevaar, Kusner, Meeks, Solomon in the case $\mathbf{H}>1, \boldsymbol{\Sigma}$ has ends asymptotic to annuli of revolution.

Theorem (Coskunuzer-Meeks-Tinaglia(2017))

- For every $\mathbf{H} \in[0,1), \exists$ a complete embedded stable \mathbf{H}-plane that is nonproper in the hyperbolic 3 -space \mathbb{H}^{3}.
- For every $\mathbf{H} \in(0,1 / 2), \exists$ a complete embedded stable \mathbf{H}-plane that is nonproper in the Riemannian product $\mathbb{H}^{2} \times \mathbb{R}$.

Calabi-Yau type problems for embedded H-surfaces

Theorem (Meeks-Tinaglia (2018)

- For $\mathbf{H} \geq 1$, complete embedded finite topology \mathbf{H}-surfaces $\boldsymbol{\Sigma}$ in complete hyperbolic 3 -manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case $\mathbf{H}=1$ and of Korevaar, Kusner, Meeks, Solomon in the case $\mathbf{H}>1, \boldsymbol{\Sigma}$ has ends asymptotic to annuli of revolution.

Theorem (Coskunuzer-Meeks-Tinaglia(2017))

- For every $\mathbf{H} \in[0,1), \exists$ a complete embedded stable \mathbf{H}-plane that is nonproper in the hyperbolic 3 -space \mathbb{H}^{3}.
- For every $\mathbf{H} \in(0,1 / 2), \exists$ a complete embedded stable \mathbf{H}-plane that is nonproper in the Riemannian product $\mathbb{H}^{2} \times \mathbb{R}$.

Theorem (Tinaglia-Rodriguez)

\exists a complete embedded stable minimal plane that is nonproper in $\mathbb{H}^{2} \times \mathbb{R}$.

Theorem (Meeks-Ramos(2017))

- Suppose \mathbf{X} is a complete hyperbolic 3 -manifold with finite volume, $\mathrm{H} \in[0,1)$ and M is a properly immersed H -surface. Then:
- M has finite area and total curvature $2 \pi \chi(M)$.
- M has bounded fundamental form $\Longleftrightarrow \mathrm{M}$ has finite topology.
- Each annular end of \mathbf{M} is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Meeks-Ramos(2017))

- Suppose \mathbf{X} is a complete hyperbolic 3 -manifold with finite volume, $\mathrm{H} \in[0,1)$ and M is a properly immersed H -surface. Then:
- \mathbf{M} has finite area and total curvature $2 \pi \chi(\mathbf{M})$.
- M has bounded fundamental form $\Longleftrightarrow \mathrm{M}$ has finite topology.
- Each annular end of \mathbf{M} is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Adams-Meeks-Ramos(2018))

- Let $\mathbf{H} \geq 0$ and \mathbf{M} be a connected noncompact surface of finite topology and negative Euler characteristic.
- There exists a complete hyperbolic 3-manifold of finite volume containing a proper totally umbilic embedding of M with constant mean curvature H if and only if $\mathrm{H} \in[0,1)$.

Theorem (Meeks-Ramos(2017))

- Suppose \mathbf{X} is a complete hyperbolic 3-manifold with finite volume, $\mathrm{H} \in[0,1)$ and M is a properly immersed H -surface. Then:
- \mathbf{M} has finite area and total curvature $2 \pi \chi(\mathrm{M})$.
- \mathbf{M} has bounded fundamental form $\Longleftrightarrow \mathbf{M}$ has finite topology.
- Each annular end of \mathbf{M} is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Adams-Meeks-Ramos(2018))

- Let $\mathbf{H} \geq 0$ and \mathbf{M} be a connected noncompact surface of finite topology and negative Euler characteristic.
- There exists a complete hyperbolic 3-manifold of finite volume containing a proper totally umbilic embedding of M with constant mean curvature H if and only if $\mathrm{H} \in[0,1)$.
- There does NOT exist a complete hyperbolic 3-manifold of finite volume containing a proper embedding of \mathbf{M} with constant mean curvature $\mathrm{H} \geq 1$.

Figure: Replacing (a) with (b) preserves hyperbolicity of the complement.

Theorem (The Chain Lemma)

Let L be a link in a 3-manifold \mathbf{M} such that the link complement $\mathbf{M} \backslash L$ admits a complete hyperbolic metric of finite volume. Suppose that there is a sphere \mathcal{S} in \mathbf{M} bounding a ball \mathcal{B} that intersects L as in Figure 2 (a). Let L^{\prime} be the resulting link obtained by replacing $L \cap \mathcal{B}$ by the components as appear in Figure 2 (b). Then $\mathbf{M} \backslash L^{\prime}$ admits a complete hyperbolic metric of finite volume.

Theorem (The Switch Move Lemma)

Let L be a link in a 3-manifold \mathbf{M} such that $\mathbf{M} \backslash L$ admits a complete hyperbolic metric of finite volume. Let $\alpha \subset M$ be the closure in \mathbf{M} of a complete, properly embedded geodesic of $\mathbf{M} \backslash L$ with distinct endpoints on L. Let \mathcal{B} be a closed ball in M containing α in its interior and such that $\mathcal{B} \cap L$ is composed of two arcs in L, as in Figure 3. Let L_{1} be the resulting link in \mathbf{M} obtained by replacing $L \cap \mathcal{B}$ by the components as appearing in Figure 4 (b). Then $\mathbf{M} \backslash L_{1}$ admits a complete hyperbolic metric of finite volume.

Figure: The trace of a geodesic α of ($\mathbf{M} \backslash L, h$) joins distinct components G, G^{\prime} of L, and a neighborhood \mathcal{B} of α intersects L in two arcs $g \subset G$ and $g^{\prime} \subset G^{\prime}$.

(a)

(b)

