Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a **metric Lie group**

Simply connected homogeneous **3**-manifolds **X** are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a **metric Lie group** = Lie group with a left-invariant metric.

Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a **metric Lie group** = Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups X

 If X is <u>diffeomorphic to S³</u>, then X is isomorphic to SU(2); otherwise, X is diffeomorphic to R³.

Simply connected homogeneous 3-manifolds \mathbf{X} are either isometric to $\mathbf{S}^2(\kappa) \times \mathbb{R}$ or to a **metric Lie group** = Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups X

- If X is diffeomorphic to \mathbb{S}^3 , then X is isomorphic to SU(2); otherwise, X is diffeomorphic to \mathbb{R}^3 .
- If X is diffeomorphic to \mathbb{R}^3 , then X is isomorphic to a semidirect product $\mathbb{R}^2 \rtimes_{\mathbf{A}} \mathbb{R}$ with its canonical metric, where \mathbf{A} is a 2×2 real matrix, or X is isomorphic to $\widetilde{\mathrm{SL}}(2,\mathbb{R})$.

Simply connected homogeneous 3-manifolds \mathbf{X} are either isometric to $\mathbf{S}^2(\kappa) \times \mathbb{R}$ or to a **metric Lie group** = Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups X

- If X is diffeomorphic to \mathbb{S}^3 , then X is isomorphic to SU(2); otherwise, X is diffeomorphic to \mathbb{R}^3 .
- If X is diffeomorphic to \mathbb{R}^3 , then X is isomorphic to a semidirect product $\mathbb{R}^2 \rtimes_{\mathbf{A}} \mathbb{R}$ with its canonical metric, where \mathbf{A} is a 2×2 real matrix, or X is isomorphic to $\widetilde{\mathrm{SL}}(2,\mathbb{R})$.
- The group operation \star of the semidirect product $\mathbb{R}^2 \rtimes_{\mathbf{A}} \mathbb{R}$, where + is the group operation of \mathbb{R}^2 and \mathbb{R} , is given by

$$(\mathbf{p}_1, z_1) \star (\mathbf{p}_2, z_2) = (\mathbf{p}_1 + (e^{z_1 \mathbf{A}} \mathbf{p}_2), z_1 + z_2).$$

Simply connected homogeneous **3**-manifolds **X** are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a **metric Lie group** = Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups X

- If X is diffeomorphic to \mathbb{S}^3 , then X is isomorphic to SU(2); otherwise, X is diffeomorphic to \mathbb{R}^3 .
- If X is diffeomorphic to \mathbb{R}^3 , then X is isomorphic to a semidirect product $\mathbb{R}^2 \rtimes_{\mathbf{A}} \mathbb{R}$ with its canonical metric, where \mathbf{A} is a 2×2 real matrix, or X is isomorphic to $\widetilde{\mathrm{SL}}(2,\mathbb{R})$.
- The group operation \star of the semidirect product $\mathbb{R}^2 \rtimes_{\mathbf{A}} \mathbb{R}$, where + is the group operation of \mathbb{R}^2 and \mathbb{R} , is given by

$$(\mathbf{p}_1, z_1) \star (\mathbf{p}_2, z_2) = (\mathbf{p}_1 + (e^{z_1 \mathbf{A}} \mathbf{p}_2), z_1 + z_2).$$

• The intrinsically flat horizontal planes $\mathbb{R}^2 \rtimes_{\mathbf{A}} \{t\}$ in $\mathbb{R}^2 \rtimes_{\mathbf{A}} \mathbb{R}$ have constant mean curvature trace(\mathbf{A})/2.

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max | H_M| : M = immersed closed surface in Y\}$, where $max | H_M|$ denotes the max of the absolute mean curvature function H_M of M.

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max | H_M| : M = immersed closed surface in Y\}$, where $max | H_M|$ denotes the max of the absolute mean curvature function H_M of M.

The number H(Y) is called the **critical mean curvature** of Y.

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max|H_M| : M = immersed closed surface in Y\}$, where $max|H_M|$ denotes the max of the absolute mean curvature function H_M of M.

The number H(Y) is called the **critical mean curvature** of Y.

Remark

• If \mathbf{Y} is diffeomorphic to \mathbb{S}^3 , then $\mathbf{H}(\mathbf{Y}) = 0$ since there exist closed minimal surfaces in such a space \mathbf{Y} .

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max|H_M| : M = immersed closed surface in Y\}$, where $max|H_M|$ denotes the max of the absolute mean curvature function H_M of M.

The number H(Y) is called the **critical mean curvature** of Y.

Remark

- If Y is diffeomorphic to S³, then H(Y) = 0 since there exist closed minimal surfaces in such a space Y.
- Meeks, Mira, Perez and Ros proved that if Y is a non-compact, simply connected homogeneous 3-manifold, then:

$$2H(Y) = Inf_{K \subset Y \text{ compact}} \frac{Area(\partial K)}{Volume(K)} = Cheeger \text{ constant of } Y.$$

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max | H_M| : M = immersed closed surface in Y\}$, where $max | H_M|$ denotes the max of the absolute mean curvature function H_M of M.

The number H(Y) is called the **critical mean curvature** of Y.

Remark

- If Y is diffeomorphic to S³, then H(Y) = 0 since there exist closed minimal surfaces in such a space Y.
- Meeks, Mira, Perez and Ros proved that if Y is a non-compact, simply connected homogeneous 3-manifold, then:

$$2\mathsf{H}(\textcolor{red}{\textbf{Y}}) = \textcolor{red}{\mathsf{Inf}_{\mathsf{K} \subset \textbf{Y} \; \mathrm{compact}}} \; \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger} \; \mathsf{constant} \; \mathsf{of} \; \textcolor{red}{\textbf{Y}}.$$

• In particular, $\mathbf{H}(\mathbf{Y}) = 1$ if $\mathbf{Y} = \mathbb{H}^3$ and $\mathbf{H}(\mathbf{Y}) = 1/2$ if $\mathbf{Y} = \mathbb{H}^2 \times \mathbb{R}$.

The proof of

$$2H(Y) = Inf_{K \subset Y \text{ compact}} \frac{Area(\partial K)}{Volume(K)} = Cheeger \text{ constant of } Y$$

The proof of

$$2H(Y) = Inf_{K \subset Y \text{ compact}} \frac{Area(\partial K)}{Volume(K)} = Cheeger \text{ constant of } Y$$

in the case \mathbf{Y} is diffeomorphic to \mathbf{R}^3 uses the **existence** of a $\mathbf{H}(\mathbf{Y})$ -foliation \mathcal{F} of \mathbf{Y} by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset Y$ is a sequence of isoperimetric domains in Y with $Volume(\Omega(n)) \to \infty$, then:

The proof of

$$2H(Y) = Inf_{K \subset Y \text{ compact}} \frac{Area(\partial K)}{Volume(K)} = Cheeger \text{ constant of } Y$$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\mathbf{Volume}(\Omega(n)) \to \infty$, then:
 - $\lim_{n\to\infty} \mathsf{Radius}(\mathbf{\Omega}(n)) = \infty$

The proof of

$$2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \, \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger} \, \, \mathsf{constant} \, \, \mathsf{of} \, \, \mathsf{Y}$$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\mathbf{Volume}(\Omega(n)) \to \infty$, then:
 - $\lim_{n \to \infty} \mathsf{Radius}(\mathbf{\Omega}(n)) = \infty \Longrightarrow k \gg 0$, $\mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial \mathbf{\Omega}(n+k)} < \mathsf{H}_{\partial \mathbf{\Omega}(n)}$.

The proof of

$$2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \, \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger} \, \, \mathsf{constant} \, \, \mathsf{of} \, \, \mathsf{Y}$$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\mathbf{Volume}(\Omega(n)) \to \infty$, then:
 - $\lim_{n\to\infty} \operatorname{Radius}(\Omega(n)) = \infty \Longrightarrow k \gg 0, \operatorname{H}(Y) < \operatorname{H}_{\partial\Omega(n+k)} < \operatorname{H}_{\partial\Omega(n)}.$
 - $\bullet \lim_{n \to \infty} \mathsf{H}_{\partial \mathbf{\Omega}(n)} = \mathsf{H}(\mathsf{Y})$

The proof of

$$2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \; \mathrm{compact}} \, \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger} \; \mathsf{constant} \; \mathsf{of} \; \mathsf{Y}$$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\mathbf{Volume}(\Omega(n)) \to \infty$, then:
 - $\lim_{n\to\infty} \mathsf{Radius}(\mathbf{\Omega}(n)) = \infty \Longrightarrow k \gg 0, \mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial\mathbf{\Omega}(n+k)} < \mathsf{H}_{\partial\mathbf{\Omega}(n)}.$
 - $\lim_{n\to\infty} \mathbf{H}_{\partial\Omega(n)} = \mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile **P** of **Y**.)

The proof of

$$2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \; \mathrm{compact}} \, \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger} \; \mathsf{constant} \; \mathsf{of} \; \mathsf{Y}$$

- 1. If $\Omega(n) \subset Y$ is a sequence of isoperimetric domains in Y with **Volume**($\Omega(n)$) $\to \infty$, then:
 - $\lim_{n\to\infty} \operatorname{Radius}(\mathbf{\Omega}(n)) = \infty \Longrightarrow k \gg 0, \mathbf{H}(\mathbf{Y}) < \mathbf{H}_{\partial\mathbf{\Omega}(n+k)} < \mathbf{H}_{\partial\mathbf{\Omega}(n)}.$
 - $\lim_{\substack{n \to \infty \\ \text{lim}}} \mathbf{H}_{\partial\Omega(n)} = \mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile \mathbf{P} of \mathbf{Y} .)
 $\lim_{\substack{n \to \infty \\ \text{lim}}} 2 \cdot \mathbf{H}_{\partial\Omega(n)} = \mathrm{Ch}(\mathbf{Y})$

The proof of

$$2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \; \mathrm{compact}} \, \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger} \; \mathsf{constant} \; \mathsf{of} \; \mathsf{Y}$$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\mathbf{Volume}(\Omega(n)) \to \infty$, then:
 - $\lim_{n\to\infty} \mathsf{Radius}(\mathbf{\Omega}(n)) = \infty \Longrightarrow k \gg 0, \mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial\mathbf{\Omega}(n+k)} < \mathsf{H}_{\partial\mathbf{\Omega}(n)}.$
 - $\lim_{n\to\infty} H_{\partial\Omega(n)} = H(Y)$ (Study the Isoperimetric Profile P of Y.)
 - $\lim_{n \to \infty} 2 \cdot \mathbf{H}_{\partial \Omega(n)} = \mathsf{Ch}(\mathbf{Y})$ (Prove **P** has asymptotic slope $\mathsf{Ch}(\mathbf{Y})$).

The proof of

$$2H(Y) = Inf_{K \subset Y \text{ compact}} \frac{Area(\partial K)}{Volume(K)} = Cheeger \text{ constant of } Y$$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\mathbf{Volume}(\Omega(n)) \to \infty$, then:
 - $\lim_{n\to\infty} \mathsf{Radius}(\mathbf{\Omega}(n)) = \infty \Longrightarrow k \gg 0, \mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial\mathbf{\Omega}(n+k)} < \mathsf{H}_{\partial\Omega(n)}.$
 - $\lim_{\Omega(n)} H_{\partial\Omega(n)} = H(Y)$ (Study the Isoperimetric Profile P of Y.)
 - $\lim_{n\to\infty} 2 \cdot \mathbf{H}_{\partial\Omega(n)} = \mathsf{Ch}(\mathbf{Y})$ (Prove **P** has asymptotic slope $\mathsf{Ch}(\mathbf{Y})$).
- 2. In this case where Y is diffeomorphic to \mathbb{R}^3 ,
 - The leaves of the foliation F of Y are invariant under a 1-parameter group of isometries of Y.

The proof of

$$2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \, \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger} \, \, \mathsf{constant} \, \, \mathsf{of} \, \, \mathsf{Y}$$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $\mathbf{Volume}(\Omega(n)) \to \infty$, then:
 - $\lim_{n\to\infty} \mathsf{Radius}(\mathbf{\Omega}(n)) = \infty \Longrightarrow k \gg 0, \mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial\mathbf{\Omega}(n+k)} < \mathsf{H}_{\partial\Omega(n)}.$
 - $\lim_{\Omega(n)} H_{\partial\Omega(n)} = H(Y)$ (Study the Isoperimetric Profile P of Y.)
 - $\lim_{n\to\infty} 2 \cdot \mathbf{H}_{\partial \mathbf{\Omega}(n)} = \mathsf{Ch}(\mathbf{Y})$ (Prove **P** has asymptotic slope $\mathsf{Ch}(\mathbf{Y})$).
- 2. In this case where Y is diffeomorphic to \mathbb{R}^3 ,
 - The leaves of the foliation F of Y are invariant under a 1-parameter group of isometries of Y.
 - By the maximum principle, there are no closed immersed H(Y)-surfaces in Y.

The next theorem solves the so called **Hopf Uniqueness Problem**.

The next theorem solves the so called **Hopf Uniqueness Problem**.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M.

The next theorem solves the so called **Hopf Uniqueness Problem**.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M. Moreover:

(1) If **X** is not diffeomorphic to \mathbb{R}^3 , then, for every $\mathbf{H} \in \mathbb{R}$, there exists a sphere of constant mean curvature **H** in **M**.

The next theorem solves the so called **Hopf Uniqueness Problem**.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M. Moreover:

- (1) If **X** is not diffeomorphic to \mathbb{R}^3 , then, for every $\mathbf{H} \in \mathbb{R}$, there exists a sphere of constant mean curvature **H** in **M**.
- (2) If **X** is diffeomorphic to \mathbb{R}^3 , then the values $\mathbf{H} \in \mathbb{R}$ for which there exists a sphere of constant mean curvature \mathbf{H} in \mathbf{M} are exactly those with $|\mathbf{H}| > \mathrm{Ch}(\mathbf{X})/2$.

Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let **S** be an **H**-sphere in **M**.

• If H = 0 and X is a product $S^2 \times \mathbb{R}$, where S^2 is a sphere of constant curvature, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.

Theorem (Geometry of **H**-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let **S** be an **H**-sphere in **M**.

- If H = 0 and X is a product $S^2 \times \mathbb{R}$, where S^2 is a sphere of constant curvature, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.
- ② Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into M extends as the boundary of an isometric immersion $F \colon B \to M$ of a Riemannian 3-ball B which is mean convex. (When X is $S^2 \times \mathbb{R}$, this follows by work of Abresch, Rosenberg and Souam.)

Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let **S** be an **H**-sphere in **M**.

- If $\mathbf{H}=0$ and \mathbf{X} is a product $\mathbf{S}^2\times\mathbb{R}$, where \mathbf{S}^2 is a sphere of constant curvature, then \mathbf{S} is totally geodesic, stable and has nullity 1 for its Jacobi operator.
- ② Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into M extends as the boundary of an isometric immersion $F \colon B \to M$ of a Riemannian 3-ball B which is mean convex. (When X is $S^2 \times \mathbb{R}$, this follows by work of Abresch, Rosenberg and Souam.)
- $\textbf{3} \ \, \text{There is a point } p_S \in M \text{, called the } \textbf{center of symmetry of S, such that every isometry of M that fixes } p_S \text{ also leaves invariant S.}$

<u>Previous influential results</u> on the **Hopf Uniqueness Problem**:

Theorem (Hopf, 1951)

H-spheres in \mathbb{R}^3 are round.

<u>Previous influential results</u> on the **Hopf Uniqueness Problem**:

Theorem (Hopf, 1951)

H-spheres in R³ are round.

Theorem (Abresch-Rosenberg, 2004)

If M has a 4-dimensional isometry group, then H-spheres in M are surfaces of revolution and they are unique.

<u>Previous influential results</u> on the **Hopf Uniqueness Problem**:

Theorem (Hopf, 1951)

H-spheres in R³ are round.

Theorem (Abresch-Rosenberg, 2004)

If M has a 4-dimensional isometry group, then H-spheres in M are surfaces of revolution and they are unique.

Theorem (Daniel-Mira (2013), Meeks (2013))

• If X is the Lie group Sol₃ with the left invariant metric

$$e^{2z}dx^2 + e^{-2z}dy^2 + dz^2$$

then **H**-spheres in **X** are unique, embedded and have index 1.

• After left translation, these spheres have ambient symmetry group generated by reflections in the (x,z) and (y,z)-planes and rotations by π around the two lines $y=\pm x$ in the (x,y)-plane.

Theorem (Classification Theorem for **H**-spheres, Meeks-Mira-Pérez-Ros)

Suppose **X** is a simply connected **3**-dimensional homogeneous manifold different from $S^2(\kappa) \times \mathbb{R}$, where $S^2(\kappa)$ is a sphere of curvature κ .

- X diffeomorphic to $S^3 \implies$ the moduli space of H-spheres in X is parameterized by the mean curvature values $H \in \mathbb{R}$.
- X diffeomorphic to $\mathbb{R}^3 \implies$ moduli space of H-spheres in X is parameterized by the $H \in \mathbb{R}$ values, where $|H| \in (H(X), \infty)$.
- X diffeomorphic to S³ ⇒ the areas of all H-spheres form a half-open interval (0, A(X)].
- H-spheres in X are Alexandrov embedded with index 1, nullity 3.

Theorem (Classification Theorem for **H**-spheres, Meeks-Mira-Pérez-Ros)

Suppose **X** is a simply connected **3**-dimensional homogeneous manifold different from $S^2(\kappa) \times \mathbb{R}$, where $S^2(\kappa)$ is a sphere of curvature κ .

- X diffeomorphic to $S^3 \implies$ the moduli space of H-spheres in X is parameterized by the mean curvature values $H \in \mathbb{R}$.
- X diffeomorphic to $\mathbb{R}^3 \implies$ moduli space of H-spheres in X is parameterized by the $H \in \mathbb{R}$ values, where $|H| \in (H(X), \infty)$.
- X diffeomorphic to S³ ⇒ the areas of all H-spheres form a half-open interval (0, A(X)).
- H-spheres in X are Alexandrov embedded with index 1, nullity 3.

Remark

In the following proof, choose a metric Lie group structure on X.

Definition (Left invariant Gauss map)

- Let X be a 3-dimensional metric Lie group.
- Given an oriented immersed surface $f: \mathbf{M} \to \mathbf{X}$ with unit normal vector field ξ , the **left invariant Gauss map** of \mathbf{M} is the map $\mathbf{G}: \mathbf{M} \to \mathbf{S}^2 \subset T_{\mathbf{e}}\mathbf{X}$ that assigns to each $\mathbf{p} \in \mathbf{M}$, the unit tangent vector to \mathbf{X} at the identity element \mathbf{e} given by left translation:

$$(dI_{f(\mathbf{p})})_{\mathbf{e}}(\mathbf{G}(\mathbf{p})) = \xi_{\mathbf{p}}.$$

Steps of the proof of the Classification Theorem for **H**-spheres. Throughout Σ denotes a fixed H_0 -sphere in X of index 1.

Steps of the proof of the Classification Theorem for ${\bf H}\text{-spheres}.$

Throughout Σ denotes a fixed H_0 -sphere in X of index 1.

• Step 0: Σ has nullity 3: Cheng's theorem.

- Step 0: Σ has <u>nullity 3</u>: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.

- Step 0: Σ has <u>nullity 3</u>: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.

- Step 0: Σ has <u>nullity 3</u>: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: <u>Curvature estimates</u> for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.

- Step 0: Σ has <u>nullity 3</u>: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: <u>Curvature estimates</u> for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: Area estimates for Σ.

- Step 0: Σ has <u>nullity 3</u>: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: <u>Curvature estimates</u> for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: Area estimates for ∑. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.

- Step 0: Σ has <u>nullity 3</u>: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: <u>Curvature estimates</u> for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: Area estimates for ∑. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.
 - (B) If X is **not** isomorphic to SU(2), then for any $\Delta > 0$ the areas of spheres in $\mathcal{M}(X)$ with $H_0 \in [H(X) + \Delta, \infty)$ are uniformly bounded.

- Step 0: Σ has <u>nullity 3</u>: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic 1-manifold locally parameterized by its mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: <u>Curvature estimates</u> for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: Area estimates for ∑. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.
 - (B) If X is **not** isomorphic to SU(2), then for any $\Delta > 0$ the areas of spheres in $\mathcal{M}(X)$ with $H_0 \in [H(X) + \Delta, \infty)$ are uniformly bounded. Recall, there are **no** H(X)-spheres in X.

• Step 5: Components of $\mathcal{M}(X)$ are parameterized by the mean curvature values $[0,\infty)$ if X is isomorphic to SU(2) and otherwise by $(H(X),\infty)$.

- Step 5: Components of $\mathcal{M}(X)$ are parameterized by the mean curvature values $[0,\infty)$ if X is isomorphic to SU(2) and otherwise by $(H(X),\infty)$.
- Step 6: On any H_0 -sphere M different from a left translation of Σ , \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(M)$ with isolated negative index zeroes. Depends on Representation Thm.

- Step 5: Components of $\mathcal{M}(X)$ are parameterized by the mean curvature values $[0,\infty)$ if X is isomorphic to SU(2) and otherwise by $(H(X),\infty)$.
- Step 6: On any H_0 -sphere M different from a left translation of Σ , \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(M)$ with isolated negative index zeroes. Depends on Representation Thm.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

- Step 5: Components of $\mathcal{M}(X)$ are parameterized by the mean curvature values $[0,\infty)$ if X is isomorphic to SU(2) and otherwise by $(H(X),\infty)$.
- Step 6: On any H_0 -sphere M different from a left translation of Σ , \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(M)$ with isolated negative index zeroes. Depends on Representation Thm.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent **H**-spheres in **X** equals $\mathcal{M}(\mathbf{X})$ which is an interval parameterized by the mean curvature values in $[0,\infty)$ if **X** is isomorphic to $\mathbf{SU}(\mathbf{2})$ and otherwise, in the interval $(\mathbf{H}(\mathbf{X}),\infty)$.
- Each H-sphere in X has index 1 and nullity 3.
- Each H-sphere in X is the boundary of an immersed 3-ball
 F: B → X on its mean convex side (Alexandrov embedded).
- If X is isomorphic to SU(2), then the areas of H-spheres in X form a half-open interval (0, A(X)].

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. \exists C > 0 s.t. for all embedded ($H \ge H_0$)-disks D in X:

$$|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$$
 for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$,

where $|\mathbf{A}_{D}|$ denotes the norm of second fundamental form.

Fix ε , $H_0 > 0$ and a complete locally homogenous **3**-manifold **X**. \exists **C** > 0 s.t. for all embedded ($H \ge H_0$)-disks **D** in **X**:

$$|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$$
 for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$,

where $|\mathbf{A}_{D}|$ denotes the norm of second fundamental form.

Sketch of Proof.

• Suppose theorem fails for **X** simply connected for some ε , $\mathbf{H}_0 > 0$.

Fix ε , $H_0 > 0$ and a complete locally homogenous **3**-manifold **X**. \exists **C** > 0 s.t. for all embedded ($H \ge H_0$)-disks **D** in **X**:

$$|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$$
 for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$,

where $|\mathbf{A}_{D}|$ denotes the norm of second fundamental form.

- Suppose theorem fails for **X** simply connected for some ε , $\mathbf{H}_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, $\operatorname{dist}_D(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.

Fix ε , $H_0 > 0$ and a complete locally homogenous **3**-manifold **X**. \exists **C** > 0 s.t. for all embedded ($H \ge H_0$)-disks **D** in **X**:

$$|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$$
 for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$, where $|\mathbf{A}_{\mathsf{D}}|$ denotes the norm of second fundamental form.

- Suppose theorem fails for **X** simply connected for some ε , $\mathbf{H}_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, $\operatorname{dist}_D(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" \overline{H} -planar domain $\mathcal{D} \subset \mathbb{R}^3$ with bounded second fundamental form.

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists C > 0$ s.t. for all embedded $(H \ge H_0)$ -disks D in X:

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$ for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$, where $|\mathbf{A}_{\mathsf{D}}|$ denotes the norm of second fundamental form.

- Suppose theorem fails for **X** simply connected for some ε , $H_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, $\operatorname{dist}_D(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" \overline{H} -planar domain $\mathcal{D} \subset \mathbb{R}^3$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit $\overline{\mathbf{H}}$ -surface \mathcal{D}' of \mathcal{D} , which is a Delaunay surface or a non-flat minimal planar domain.

Fix ε , $\mathbf{H}_0 > 0$ and a complete locally homogenous **3**-manifold \mathbf{X} . $\exists \ \mathbf{C} > 0$ s.t. for all embedded $(\mathbf{H} \ge \mathbf{H}_0)$ -disks \mathbf{D} in \mathbf{X} :

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$ for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$, where $|\mathbf{A}_{\mathsf{D}}|$ denotes the norm of second fundamental form.

- Suppose theorem fails for **X** simply connected for some ε , $H_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, $\operatorname{dist}_D(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" \overline{H} -planar domain $\mathcal{D} \subset \mathbb{R}^3$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit $\overline{\mathbf{H}}$ -surface \mathcal{D}' of \mathcal{D} , which is a Delaunay surface or a non-flat minimal planar domain.
- Step 3: But the limit must have 0 CMC flux $\implies \mathcal{D}'$ is a helicoid.

Fix ε , $H_0 > 0$ and a complete locally homogenous **3**-manifold **X**. \exists **C** > 0 s.t. for all embedded ($H \ge H_0$)-disks **D** in **X**:

$$|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$$
 for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$, where $|\mathbf{A}_{\mathsf{D}}|$ denotes the norm of second fundamental form.

- Suppose theorem fails for **X** simply connected for some ε , $\mathbf{H}_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, $\operatorname{dist}_D(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" \overline{H} -planar domain $\mathcal{D} \subset \mathbb{R}^3$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit $\overline{\mathbf{H}}$ -surface \mathcal{D}' of \mathcal{D} , which is a Delaunay surface or a non-flat minimal planar domain.
- Step 3: But the limit must have 0 CMC flux $\implies \mathcal{D}'$ is a helicoid.
- Step 4: One extends the double multigraph in the forming helicoid near $p_n \in D(n)$ a definite distance for n large, a contradiction.

Theorem (One-sided curvature estimate for **H**-disks, Meeks-Tinaglia)

 $\exists C, \varepsilon > 0$ s.t. for any embedded H-disk $\Sigma \subset \mathbb{R}^3$ as in the figure below:

$$|\mathbf{A}_{\Sigma}| \leq \frac{\mathbf{C}}{R}$$
 in $\Sigma \cap \mathbb{B}(\varepsilon R) \cap \{x_3 > 0\}$.

This result generalizes the one-sided curvature estimates for minimal disks by Colding-Minicozzi, and uses their work in its proof.

New uniqueness results for CMC surfaces.

Old Question

Is the round sphere the only complete simply connected surface embedded in R³ with non-zero constant mean curvature?

NOT simply connected

Cylinder

NOT embedded

 Smyth surface conformally C

New uniqueness results for CMC surfaces.

Old Question

Is the round sphere the only complete simply connected surface **embedded** in **R**³ with **non-zero** constant mean curvature?

NOT simply connected

Cylinder

NOT embedded

 Smyth surface conformally C

Answer (Meeks-Tinaglia)

Yes!

 $\exists \ \mathsf{R}_0 \geq \pi$ such that every embedded 1-disk in R^3 has radius $< \mathsf{R}_0$.

 $\exists \ \mathsf{R}_0 \geq \pi$ such that every embedded 1-disk in R^3 has radius $< \mathsf{R}_0$.

Proof.

• Let $D(n) \subset \mathbb{R}^3$ be a sequence of embedded 1-disks of radius R(n) > n.

 $\exists \ \mathsf{R}_0 \geq \pi$ such that every embedded 1-disk in R^3 has radius $< \mathsf{R}_0$.

Proof.

- Let $D(n) \subset \mathbb{R}^3$ be a sequence of embedded 1-disks of radius R(n) > n.
- The homothetically scaled disks $\overline{\mathbf{D}(n)} = \frac{1}{R(n)} \mathbf{D}(n)$ contain points p_n of distance 1 from the boundary with mean curvature R(n) > n.

 $\exists \ \mathsf{R}_0 \geq \pi$ such that every embedded 1-disk in R^3 has radius $< \mathsf{R}_0$.

Proof.

- Let $D(n) \subset \mathbb{R}^3$ be a sequence of embedded 1-disks of radius R(n) > n.
- The homothetically scaled disks $\overline{D(n)} = \frac{1}{R(n)} D(n)$ contain points p_n of distance 1 from the boundary with mean curvature R(n) > n.
- So, $|\mathbf{A}_{\overline{\mathbb{D}(n)}}|(p_n) > n$, which contradicts the curvature estimates for $(R(n) \ge 1)$ -disks with $\varepsilon = 1$.

 $\exists \ \mathsf{R}_0 \geq \pi$ such that every embedded 1-disk in R^3 has radius $< \mathsf{R}_0$.

Proof.

- Let $D(n) \subset \mathbb{R}^3$ be a sequence of embedded 1-disks of radius R(n) > n.
- The homothetically scaled disks $\overline{D(n)} = \frac{1}{R(n)} D(n)$ contain points p_n of distance 1 from the boundary with mean curvature R(n) > n.
- So, $|\mathbf{A}_{\overline{\mathbb{D}(n)}}|(p_n) > n$, which contradicts the curvature estimates for $(R(n) \ge 1)$ -disks with $\varepsilon = 1$.

Corollary (Meeks-Tinaglia 2017)

A complete simply connected **H**-surface embedded in \mathbb{R}^3 with H>0 is a round sphere.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

1 M has positive injectivity radius \Longrightarrow M is properly embedded in \mathbb{R}^3 .

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- **1** M has positive injectivity radius \Longrightarrow M is properly embedded in \mathbb{R}^3 .
- \bigcirc M has finite topology \Longrightarrow M has positive injectivity radius.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- **1** M has positive injectivity radius \Longrightarrow M is properly embedded in \mathbb{R}^3 .
- ${f 2}$ M has finite topology \Longrightarrow M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|A_{M}|$ is bounded \iff M has positive injectivity radius.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- **1** M has positive injectivity radius \Longrightarrow M is properly embedded in \mathbb{R}^3 .
- $oldsymbol{0}$ M has finite topology \Longrightarrow M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|\mathbf{A}_{\mathbf{M}}|$ is bounded \iff \mathbf{M} has positive injectivity radius.

When H = 0, items 1 and 2 were proved by Meeks-Rosenberg, based on:

Colding-Minicozzi: M has finite topology and $H=0\Longrightarrow M$ is proper.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- **1** M has positive injectivity radius \Longrightarrow M is properly embedded in \mathbb{R}^3 .
- \bigcirc M has finite topology \Longrightarrow M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|A_M|$ is bounded \iff M has positive injectivity radius.

When $\mathbf{H} = \mathbf{0}$, items 1 and 2 were proved by Meeks-Rosenberg, based on:

Colding-Minicozzi: M has finite topology and $H = 0 \Longrightarrow M$ is proper.

Item 3 in the above theorem holds for 3-manifolds which have bounded absolute sectional curvature; in particular it holds in closed Riemannian 3-manifolds.

Universal domain for Embedded Calabi-Yau problem?

- $\mathcal{D}_{\infty} =$ above bounded domain, smooth except at \mathbf{p}_{∞} on right.
- Ferrer, Martin and Meeks conjecture: An open surface properly embeds as a complete minimal surface in $\mathcal{D}_{\infty} \iff$ every end has infinite genus \iff it admits a complete bounded minimal embedding in \mathbb{R}^3 .

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\Sigma \subset \mathbb{R}^3$ be a complete, connected embedded **H**-surface.

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\Sigma \subset {\hbox{\bf R}}^3$ be a complete, connected embedded H-surface.

• $\overline{\Sigma}$ is an <u>H-lamination</u> in \mathbb{R}^3 iff Σ has locally bounded genus in \mathbb{R}^3 .

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\Sigma \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- $\overline{\Sigma}$ is an <u>H-lamination</u> in \mathbb{R}^3 iff Σ has locally bounded genus in \mathbb{R}^3 .
- ullet \exists A_{Σ} s.t. $\forall r \geq 1$ and $p \in \mathbb{R}^3$,

$$\text{Area}(\Sigma \cap \mathbb{B}(p,r)) \leq \textbf{A}_{\Sigma} \cdot r^3 \quad \text{iff} \quad$$

Σ has **uniformly bounded genus** in balls of radius 1.

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\Sigma \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- $\overline{\Sigma}$ is an <u>H-lamination</u> in \mathbb{R}^3 iff Σ has locally bounded genus in \mathbb{R}^3 .
- ullet \exists A_{Σ} s.t. $\forall r \geq 1$ and $p \in \mathbb{R}^3$,

$$\text{Area}(\Sigma \cap \mathbb{B}(p,r)) \leq \textbf{A}_{\Sigma} \cdot r^3 \quad \text{iff} \quad$$

Σ has **uniformly bounded genus** in balls of radius 1.

Theorem (Emb Calabi-Yau for Finite Genus, Meeks-Pérez-Ros (2017))

• Let $\Sigma \subset \mathbb{R}^3$ be a complete, connected embedded minimal surface of finite genus. Then:

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\Sigma \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- $\overline{\Sigma}$ is an <u>H-lamination</u> in \mathbb{R}^3 iff Σ has locally bounded genus in \mathbb{R}^3 .
- ullet \exists A_{Σ} s.t. \forall r \geq 1 and $\mathbf{p} \in \mathbb{R}^3$,

$$\text{Area}(\Sigma \cap \mathbb{B}(p,r)) \leq \textbf{A}_{\Sigma} \cdot r^3 \quad \text{iff} \quad$$

Σ has **uniformly bounded genus** in balls of radius 1.

Theorem (Emb Calabi-Yau for Finite Genus, Meeks-Pérez-Ros (2017))

- Let $\Sigma \subset \mathbb{R}^3$ be a complete, connected embedded minimal surface of finite genus. Then:

Figure: A body-centered cubic interface or Fermi surface in salt crystal.

Next theorem is motivated by the study of 3-periodic H-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus $\mathbf{g} > 2$ in any flat 3-torus (Traizet).

Figure: A body-centered cubic interface or Fermi surface in salt crystal.

Next theorem is motivated by the study of 3-periodic H-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus $\mathbf{g} > 2$ in any flat 3-torus (Traizet).

Theorem (Meeks-Tinaglia(2016))

Given a flat 3-torus \mathbb{T}^3 and $\mathbf{H}>0$, $\forall \mathbf{g}\in\mathbb{N},\ \exists \mathbf{C}(\mathbf{g},\mathbf{H})$ s.t. a closed \mathbf{H} -surface Σ embedded in \mathbb{T}^3 with genus at most \mathbf{g} satisfies $\mathbf{Area}(\Sigma)\leq \mathbf{C}(\mathbf{g},\mathbf{H}).$

Closed H-surfaces in a flat 3-torus. By K. Grosse-Brauckmann (top) and N. Schmitt (bottom)

Let N = a closed Riemannian 3-manifold with Ricci curvature > 0. Then:

- The areas of closed, connected embedded minimal surfaces of fixed genus in N are bounded
- 2 The space of embedded closed minimal surfaces of fixed genus in N is compact.

Let N = a closed Riemannian 3-manifold with Ricci curvature > 0. Then:

- ① The areas of closed, connected embedded minimal surfaces of fixed genus in N are bounded
- 2 The space of embedded closed minimal surfaces of fixed genus in N is compact.

Theorem (Meeks-Tinaglia(2018))

Let $0 < a \le b$ and $\mathbb{N} = \text{closed Riem}$. 3-manifold with $\mathbb{H}_2(\mathbb{N}) = 0$.

Let N = a closed Riemannian 3-manifold with Ricci curvature > 0. Then:

- The areas of closed, connected embedded minimal surfaces of fixed genus in N are bounded
- 2 The space of embedded closed minimal surfaces of fixed genus in ${\bf N}$ is **compact**.

Theorem (Meeks-Tinaglia(2018))

Let $0 < a \le b$ and $\mathbb{N} = \text{closed Riem}$. 3-manifold with $\mathbb{H}_2(\mathbb{N}) = 0$. Then:

① The <u>areas</u> and indexes of stability of closed, **connected** embedded H-surfaces of fixed genus g in N with $H \in [a, b]$ are bounded are uniformly bounded.

Let N = a closed Riemannian 3-manifold with Ricci curvature > 0. Then:

- $oldsymbol{0}$ The areas of closed, connected embedded minimal surfaces of fixed genus in $oldsymbol{N}$ are bounded
- 2 The space of embedded closed minimal surfaces of fixed genus in N is compact.

Theorem (Meeks-Tinaglia(2018))

Let $0 < a \le b$ and $\mathbb{N} = \text{closed Riem}$. 3-manifold with $\mathbb{H}_2(\mathbb{N}) = 0$. Then:

- ① The <u>areas</u> and <u>indexes of stability</u> of closed, **connected** embedded H-surfaces of fixed genus g in N with $H \in [a, b]$ are bounded are uniformly bounded.
- ② For every closed Riemannian 3-manifold X and any non-negative integer g, the space of strongly Alexandrov embedded closed surfaces in X of genus at most g and constant mean curvature H ∈ [a, b] is compact. (Similar compactness result holds for any fixed smooth compact family of metrics on X.)

Theorem (Meeks-Tinaglia (2018)

 For H ≥ 1, complete embedded finite topology H-surfaces Σ in complete hyperbolic 3-manifolds are proper.

Theorem (Meeks-Tinaglia (2018)

- For H ≥ 1, complete embedded finite topology H-surfaces Σ in complete hyperbolic 3-manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case H = 1 and of Korevaar, Kusner, Meeks, Solomon in the case H > 1, Σ has ends asymptotic to annuli of revolution.

Theorem (Meeks-Tinaglia (2018)

- For H ≥ 1, complete embedded finite topology H-surfaces Σ in complete hyperbolic 3-manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case $\mathbf{H}=1$ and of Korevaar, Kusner, Meeks, Solomon in the case $\mathbf{H}>1$, Σ has ends asymptotic to annuli of revolution.

Theorem (Coskunuzer-Meeks-Tinaglia(2017))

- For every $\mathbf{H} \in [0,1), \ \exists$ a complete embedded stable \mathbf{H} -plane that is **nonproper** in the hyperbolic **3**-space \mathbb{H}^3 .
- For every $\mathbf{H} \in (0,1/2), \ \exists$ a complete embedded stable \mathbf{H} -plane that is **nonproper** in the Riemannian product $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (Meeks-Tinaglia (2018)

- For H ≥ 1, complete embedded finite topology H-surfaces Σ in complete hyperbolic 3-manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case H = 1 and of Korevaar, Kusner, Meeks, Solomon in the case H > 1, Σ has ends asymptotic to annuli of revolution.

Theorem (Coskunuzer-Meeks-Tinaglia(2017))

- For every $\mathbf{H} \in [0,1), \ \exists$ a complete embedded stable \mathbf{H} -plane that is **nonproper** in the hyperbolic **3**-space \mathbb{H}^3 .
- For every $\mathbf{H} \in (0, 1/2)$, \exists a complete embedded stable \mathbf{H} -plane that is **nonproper** in the Riemannian product $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (Tinaglia-Rodriguez)

 \exists a complete embedded stable minimal plane that is **nonproper** in $\mathbb{H}^2\times\mathbb{R}.$

Theorem (Meeks-Ramos(2017))

- Suppose X is a complete hyperbolic 3-manifold with finite volume, $H \in [0,1)$ and M is a properly immersed H-surface. Then:
 - **M** has finite area and total curvature $2\pi\chi(\mathbf{M})$.
 - M has bounded fundamental form
 M has finite topology.
 - Each annular end of M is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Meeks-Ramos(2017))

- Suppose X is a complete hyperbolic 3-manifold with finite volume, $H \in [0,1)$ and M is a properly immersed H-surface. Then:
 - **M** has finite area and total curvature $2\pi\chi(\mathbf{M})$.
 - M has bounded fundamental form
 M has finite topology.
 - Each annular end of M is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Adams-Meeks-Ramos(2018))

- Let $H \ge 0$ and M be a connected noncompact surface of finite topology and negative Euler characteristic.
- There exists a complete hyperbolic 3-manifold of finite volume containing a proper totally umbilic embedding of M with constant mean curvature H if and only if $H \in [0,1)$.

Theorem (Meeks-Ramos(2017))

- Suppose X is a complete hyperbolic 3-manifold with finite volume, $H \in [0,1)$ and M is a properly immersed H-surface. Then:
 - **M** has finite area and total curvature $2\pi\chi(\mathbf{M})$.
 - M has bounded fundamental form
 M has finite topology.
 - Each annular end of M is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Adams-Meeks-Ramos(2018))

- Let H ≥ 0 and M be a connected noncompact surface of finite topology and negative Euler characteristic.
- There exists a complete hyperbolic 3-manifold of finite volume containing a proper totally umbilic embedding of M with constant mean curvature H if and only if $H \in [0,1)$.
- There does **NOT** exist a complete hyperbolic 3-manifold of finite volume containing a proper embedding of M with constant mean curvature H > 1.

Figure: Replacing (a) with (b) preserves hyperbolicity of the complement.

Theorem (The Chain Lemma)

Let L be a link in a 3-manifold M such that the link complement $M \setminus L$ admits a complete hyperbolic metric of finite volume. Suppose that there is a sphere $\mathcal S$ in M bounding a ball $\mathcal B$ that intersects L as in Figure 2 (a). Let L' be the resulting link obtained by replacing $L \cap \mathcal B$ by the components as appear in Figure 2 (b). Then $M \setminus L'$ admits a complete hyperbolic metric of finite volume.

Theorem (The Switch Move Lemma)

Let L be a link in a 3-manifold M such that $M \setminus L$ admits a complete hyperbolic metric of finite volume. Let $\alpha \subset M$ be the closure in M of a complete, properly embedded geodesic of $M \setminus L$ with distinct endpoints on L. Let $\mathcal B$ be a closed ball in M containing α in its interior and such that $\mathcal B \cap L$ is composed of two arcs in L, as in Figure 3. Let L_1 be the resulting link in M obtained by replacing $L \cap \mathcal B$ by the components as appearing in Figure 4 (b). Then $M \setminus L_1$ admits a complete hyperbolic metric of finite volume.

Figure: The trace of a geodesic α of $(M \setminus L, h)$ joins distinct components G, G' of L, and a neighborhood \mathcal{B} of α intersects L in two arcs $g \subset G$ and $g' \subset G'$.

