Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group

Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group = Lie group with a left-invariant metric.

Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group = Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups X

 If X is diffeomorphic to S³, then X is isomorphic to SU(2); otherwise, X is diffeomorphic to R³.

Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group = Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups X

- If X is diffeomorphic to S³, then X is isomorphic to SU(2); otherwise, X is diffeomorphic to R³.
- If X is diffeomorphic to R³, then X is isomorphic to a semidirect product ℝ² ⋊_A ℝ with its canonical metric, where A is a 2 × 2 real matrix, or X is isomorphic to SL(2, ℝ).

Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group = Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups X

- If X is diffeomorphic to S³, then X is isomorphic to SU(2); otherwise, X is diffeomorphic to R³.
- If X is diffeomorphic to R³, then X is isomorphic to a semidirect product ℝ² ⋊_A ℝ with its canonical metric, where A is a 2 × 2 real matrix, or X is isomorphic to SL(2, ℝ).
- The group operation \star of the semidirect product $\mathbb{R}^2 \rtimes_A \mathbb{R}$, where + is the group operation of \mathbb{R}^2 and \mathbb{R} , is given by

$$(\mathbf{p}_1, z_1) \star (\mathbf{p}_2, z_2) = (\mathbf{p}_1 + (e^{z_1 \mathbf{A}} \mathbf{p}_2), z_1 + z_2).$$

Simply connected homogeneous 3-manifolds X are either isometric to $S^2(\kappa) \times \mathbb{R}$ or to a metric Lie group = Lie group with a left-invariant metric.

Milnor's description of simply connected 3-dim metric Lie groups X

- If X is diffeomorphic to S³, then X is isomorphic to SU(2); otherwise, X is diffeomorphic to R³.
- If X is diffeomorphic to R³, then X is isomorphic to a semidirect product ℝ² ⋊_A ℝ with its canonical metric, where A is a 2 × 2 real matrix, or X is isomorphic to SL(2, ℝ).
- The group operation \star of the semidirect product $\mathbb{R}^2 \rtimes_A \mathbb{R}$, where + is the group operation of \mathbb{R}^2 and \mathbb{R} , is given by

$$(\mathbf{p}_1, z_1) \star (\mathbf{p}_2, z_2) = (\mathbf{p}_1 + (e^{z_1 \mathbf{A}} \mathbf{p}_2), z_1 + z_2).$$

The intrinsically flat horizontal planes ℝ² ⋊_A {t} in ℝ² ⋊_A ℝ have constant mean curvature trace(A)/2.

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max | H_M | : M = immersed closed surface in Y\}$, where max $| H_M |$ denotes the max of the absolute mean curvature function H_M of M.

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max|H_M| : M = immersed closed surface in Y\}$, where max $|H_M|$ denotes the max of the absolute mean curvature function H_M of M.

The number H(Y) is called the critical mean curvature of Y.

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max | H_M | : M = immersed closed surface in Y\}$, where max $| H_M |$ denotes the max of the absolute mean curvature function H_M of M.

The number H(Y) is called the critical mean curvature of Y.

Remark

 If Y is diffeomorphic to S³, then H(Y) = 0 since there exist closed minimal surfaces in such a space Y.

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max | H_M | : M = immersed closed surface in Y\}$, where max $| H_M |$ denotes the max of the absolute mean curvature function H_M of M.

The number H(Y) is called the critical mean curvature of Y.

Remark

- If Y is diffeomorphic to S³, then H(Y) = 0 since there exist closed minimal surfaces in such a space Y.
- Meeks, Mira, Perez and Ros proved that if Y is a non-compact, simply connected homogeneous 3-manifold, then:

$$2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K}\subset\mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial\mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}.$$

- Y denotes a simply connected 3-dimensional homogeneous manifold.
- $H(Y) = Inf\{max | H_M | : M = immersed closed surface in Y\}$, where max $| H_M |$ denotes the max of the absolute mean curvature function H_M of M.

The number H(Y) is called the critical mean curvature of Y.

Remark

- If Y is diffeomorphic to S³, then H(Y) = 0 since there exist closed minimal surfaces in such a space Y.
- Meeks, Mira, Perez and Ros proved that if Y is a non-compact, simply connected homogeneous 3-manifold, then:

$$2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K}\subset\mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial\mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ }\mathsf{Y}.$$

• In particular, H(Y) = 1 if $Y = \mathbb{H}^3$ and H(Y) = 1/2 if $Y = \mathbb{H}^2 \times \mathbb{R}$.

The proof of

 $2H(\mathbf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathbf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathbf{Y}$

The proof of

 $2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}$

in the case Y is diffeomorphic to R^3 uses the existence of a H(Y)-foliation $\bar{\mathcal{F}}$ of Y by doubly-periodic planes of quadratic area growth to demonstrate:

1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:

The proof of

 $2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:
 - $\lim_{n\to\infty} \operatorname{Radius}(\Omega(n)) = \infty$

The proof of

 $2H(\mathbf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathbf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathbf{Y}$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:
 - $\lim_{n \to \infty} \operatorname{\mathsf{Radius}}(\Omega(n)) = \infty \Longrightarrow k \gg 0, \, \mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial\Omega(n+k)} < \mathsf{H}_{\partial\Omega(n)}.$

The proof of

 $2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:
 - $\lim_{n \to \infty} \operatorname{\mathsf{Radius}}(\Omega(n)) = \infty \Longrightarrow k \gg 0, \, \mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial\Omega(n+k)} < \mathsf{H}_{\partial\Omega(n)}.$
 - $\lim_{n\to\infty} \mathbf{H}_{\partial\Omega(n)} = \mathbf{H}(\mathbf{Y})$

The proof of

 $2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:
 - $\lim_{n \to \infty} \operatorname{\mathsf{Radius}}(\Omega(n)) = \infty \Longrightarrow k \gg 0, \, \mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial\Omega(n+k)} < \mathsf{H}_{\partial\Omega(n)}.$
 - $\lim_{n \to \infty} H_{\partial \Omega(n)} = H(\mathbf{Y})$ (Study the Isoperimetric Profile **P** of **Y**.)

The proof of

 $2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:
 - $\lim_{n \to \infty} \operatorname{Radius}(\Omega(n)) = \infty \Longrightarrow k \gg 0, \operatorname{H}(\mathbf{Y}) < \operatorname{H}_{\partial\Omega(n+k)} < \operatorname{H}_{\partial\Omega(n)}.$
 - $\lim_{n\to\infty} H_{\partial\Omega(n)} = H(\mathbf{Y})$ (Study the Isoperimetric Profile P of Y.)
 - $\lim_{n \to \infty} 2 \cdot \mathbf{H}_{\partial \Omega(n)} = \mathrm{Ch}(\mathbf{Y})$

The proof of

 $2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:
 - $\lim_{n \to \infty} \operatorname{Radius}(\Omega(n)) = \infty \Longrightarrow k \gg 0, \operatorname{H}(\mathbf{Y}) < \operatorname{H}_{\partial\Omega(n+k)} < \operatorname{H}_{\partial\Omega(n)}.$
 - $\lim_{n \to \infty} H_{\partial \Omega(n)} = H(\mathbf{Y})$ (Study the Isoperimetric Profile **P** of **Y**.)
 - $\lim_{n \to \infty} 2 \cdot \mathbf{H}_{\partial \Omega(n)} = Ch(\mathbf{Y})$ (Prove P has asymptotic slope $Ch(\mathbf{Y})$).

The proof of

 $2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:
 - $\lim_{n\to\infty} \operatorname{Radius}(\Omega(n)) = \infty \Longrightarrow k \gg 0, \operatorname{H}(\mathbf{Y}) < \operatorname{H}_{\partial\Omega(n+k)} < \operatorname{H}_{\partial\Omega(n)}.$
 - $\lim_{n \to \infty} \mathbf{H}_{\partial \Omega(n)} = \mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile **P** of **Y**.)
 - $\lim_{n \to \infty} 2 \cdot \mathbf{H}_{\partial \Omega(n)} = Ch(\mathbf{Y})$ (Prove P has asymptotic slope $Ch(\mathbf{Y})$).
- 2. In this case where \mathbf{Y} is diffeomorphic to \mathbf{R}^3 ,
 - The leaves of the foliation \mathcal{F} of **Y** are invariant under a 1-parameter group of isometries of **Y**.

The proof of

 $2\mathsf{H}(\mathsf{Y}) = \mathsf{Inf}_{\mathsf{K} \subset \mathsf{Y} \text{ compact}} \frac{\mathsf{Area}(\partial \mathsf{K})}{\mathsf{Volume}(\mathsf{K})} = \mathsf{Cheeger \ constant \ of \ } \mathsf{Y}$

- 1. If $\Omega(n) \subset \mathbf{Y}$ is a sequence of isoperimetric domains in \mathbf{Y} with $Volume(\Omega(n)) \rightarrow \infty$, then:
 - $\lim_{n \to \infty} \operatorname{Radius}(\Omega(n)) = \infty \Longrightarrow k \gg 0, \, \mathsf{H}(\mathbf{Y}) < \mathsf{H}_{\partial\Omega(n+k)} < \mathsf{H}_{\partial\Omega(n)}.$
 - $\lim_{n \to \infty} \mathbf{H}_{\partial \Omega(n)} = \mathbf{H}(\mathbf{Y})$ (Study the Isoperimetric Profile **P** of **Y**.)
 - $\lim_{n \to \infty} 2 \cdot \mathbf{H}_{\partial \Omega(n)} = Ch(\mathbf{Y})$ (Prove P has asymptotic slope $Ch(\mathbf{Y})$).
- 2. In this case where \mathbf{Y} is diffeomorphic to \mathbf{R}^3 ,
 - The leaves of the foliation \mathcal{F} of **Y** are invariant under a 1-parameter group of isometries of **Y**.
 - By the maximum principle, there are **no** closed immersed **H(Y)**-surfaces in **Y**.

The next theorem solves the so called Hopf Uniqueness Problem.

The next theorem solves the so called Hopf Uniqueness Problem.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M.

The next theorem solves the so called Hopf Uniqueness Problem.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M. Moreover:

(1) If X is not diffeomorphic to \mathbb{R}^3 , then, for every $H \in \mathbb{R}$, there exists a sphere of constant mean curvature H in M.

The next theorem solves the so called Hopf Uniqueness Problem.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M. Moreover:

- (1) If X is not diffeomorphic to \mathbb{R}^3 , then, for every $\mathbf{H} \in \mathbb{R}$, there exists a sphere of constant mean curvature H in M.
- (2) If X is diffeomorphic to \mathbb{R}^3 , then the values $H \in \mathbb{R}$ for which there exists a sphere of constant mean curvature H in M are exactly those with |H| > Ch(X)/2.

Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let **S** be an **H**-sphere in **M**.

If H = 0 and X is a product S² × ℝ, where S² is a sphere of constant curvature, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.

Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let **S** be an **H**-sphere in **M**.

- If H = 0 and X is a product S² × ℝ, where S² is a sphere of constant curvature, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.
- ② Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into M extends as the boundary of an isometric immersion $F\colon B\to M$ of a Riemannian 3-ball B which is mean convex. (When X is $S^2\times\mathbb{R}$, this follows by work of Abresch, Rosenberg and Souam.)

Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let **S** be an **H**-sphere in **M**.

- If H = 0 and X is a product S² × ℝ, where S² is a sphere of constant curvature, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.
- ② Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into M extends as the boundary of an isometric immersion $F\colon B\to M$ of a Riemannian 3-ball B which is mean convex. (When X is $S^2\times\mathbb{R}$, this follows by work of Abresch, Rosenberg and Souam.)
- On the point p_S ∈ M, called the center of symmetry of S, such that every isometry of M that fixes p_S also leaves invariant S.

Previous influential results on the Hopf Uniqueness Problem:

Theorem (Hopf, 1951)

H-spheres in \mathbb{R}^3 are round.

Previous influential results on the Hopf Uniqueness Problem:

Theorem (Hopf, 1951)

H-spheres in \mathbb{R}^3 are round.

Theorem (Abresch-Rosenberg, 2004)

If ${\bf M}$ has a 4-dimensional isometry group, then H-spheres in ${\bf M}$ are surfaces of revolution and they are unique.

Previous influential results on the Hopf Uniqueness Problem:

Theorem (Hopf, 1951)

H-spheres in \mathbb{R}^3 are round.

Theorem (Abresch-Rosenberg, 2004)

If ${\bf M}$ has a 4-dimensional isometry group, then H-spheres in ${\bf M}$ are surfaces of revolution and they are unique.

Theorem (Daniel-Mira (2013), Meeks (2013))

• If X is the Lie group Sol₃ with the left invariant metric

$$e^{2z}dx^2 + e^{-2z}dy^2 + dz^2,$$

then H-spheres in X are unique, embedded and have index 1.

• After left translation, these spheres have ambient symmetry group generated by reflections in the (x, z) and (y, z)-planes and rotations by π around the two lines $y = \pm x$ in the (x, y)-plane.

Theorem (Classification Theorem for **H**-spheres, Meeks-Mira-Pérez-Ros)

Suppose X is a simply connected 3-dimensional homogeneous manifold different from $S^2(\kappa) \times \mathbb{R}$, where $S^2(\kappa)$ is a sphere of curvature κ .

- X diffeomorphic to $S^3 \implies$ the moduli space of H-spheres in X is parameterized by the mean curvature values $H \in \mathbb{R}$.
- X diffeomorphic to $\mathbb{R}^3 \implies$ moduli space of H-spheres in X is parameterized by the $\mathbb{H} \in \mathbb{R}$ values, where $|\mathbb{H}| \in (\mathbb{H}(X), \infty)$.
- X diffeomorphic to $S^3 \implies$ the areas of all H-spheres form a half-open interval (0, A(X)].
- H-spheres in X are Alexandrov embedded with index 1, nullity 3.

Theorem (Classification Theorem for **H**-spheres, Meeks-Mira-Pérez-Ros)

Suppose X is a simply connected 3-dimensional homogeneous manifold different from $S^2(\kappa) \times \mathbb{R}$, where $S^2(\kappa)$ is a sphere of curvature κ .

- X diffeomorphic to $S^3 \implies$ the moduli space of H-spheres in X is parameterized by the mean curvature values $H \in \mathbb{R}$.
- X diffeomorphic to $\mathbb{R}^3 \implies$ moduli space of H-spheres in X is parameterized by the $H \in \mathbb{R}$ values, where $|H| \in (H(X), \infty)$.
- X diffeomorphic to S³ ⇒ the areas of all H-spheres form a half-open interval (0, A(X)].
- H-spheres in X are Alexandrov embedded with index 1, nullity 3.

Remark

In the following proof, choose a metric Lie group structure on X.

Definition (Left invariant Gauss map)

- Let X be a 3-dimensional metric Lie group.
- Given an oriented immersed surface f: M → X with unit normal vector field ξ, the left invariant Gauss map of M is the map G: M → S² ⊂ T_eX that assigns to each p ∈ M, the unit tangent vector to X at the identity element e given by left translation:

$$(dI_{f(\mathbf{p})})_{\mathbf{e}}(\mathbf{G}(\mathbf{p})) = \xi_{\mathbf{p}}.$$

Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0 -sphere in X of index 1.

Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H_0 -sphere in X of index 1.

• Step 0: Σ has nullity 3: Cheng's theorem.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G : \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G : \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: <u>Area estimates</u> for Σ.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G : \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: <u>Area estimates</u> for **Σ**. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G : \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: <u>Area estimates</u> for **Σ**. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.
 - (B) If X is **not** isomorphic to SU(2), then for any $\Delta > 0$ the areas of spheres in $\mathcal{M}(X)$ with $H_0 \in [H(X) + \Delta, \infty)$ are uniformly bounded.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G : \Sigma \to S^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: <u>Area estimates</u> for **Σ**. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.
 - (B) If X is **not** isomorphic to **SU**(2), then for any $\Delta > 0$ the areas of spheres in $\mathcal{M}(X)$ with $H_0 \in [H(X) + \Delta, \infty)$ are uniformly bounded. Recall, there are **no** H(X)-spheres in X.

• Step 5: Components of $\mathcal{M}(X)$ are parameterized by the mean curvature values $[0, \infty)$ if X is isomorphic to SU(2) and otherwise by $(H(X), \infty)$.

- Step 5: Components of *M*(X) are parameterized by the mean curvature values [0,∞) if X is isomorphic to SU(2) and otherwise by (H(X),∞).
- Step 6: On any H₀-sphere M different from a left translation of Σ , \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(M)$ with isolated negative index zeroes. Depends on Representation Thm.

- Step 5: Components of $\mathcal{M}(X)$ are parameterized by the mean curvature values $[0, \infty)$ if X is isomorphic to SU(2) and otherwise by $(H(X), \infty)$.
- Step 6: On any H₀-sphere M different from a left translation of Σ , \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(M)$ with isolated negative index zeroes. Depends on Representation Thm.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

- Step 5: Components of $\mathcal{M}(X)$ are parameterized by the mean curvature values $[0, \infty)$ if X is isomorphic to SU(2) and otherwise by $(H(X), \infty)$.
- Step 6: On any H₀-sphere M different from a left translation of Σ , \exists a NON-ZERO complex valued quadratic differential $\omega_{\Sigma}(M)$ with isolated negative index zeroes. Depends on Representation Thm.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0,\infty)$ if X is isomorphic to SU(2) and otherwise, in the interval $(H(X),\infty)$.
- Each H-sphere in X has index 1 and nullity 3.
- Each H-sphere in X is the boundary of an immersed 3-ball
 F: B → X on its mean convex side (Alexandrov embedded).
- If X is isomorphic to SU(2), then the areas of H-spheres in X form a half-open interval (0, A(X)].

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists C > 0$ s.t. for all embedded ($H \ge H_0$)-disks D in X:

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$ for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$,

where $|\mathbf{A}_{\mathbf{D}}|$ denotes the norm of second fundamental form.

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists C > 0$ s.t. for all embedded ($H \ge H_0$)-disks D in X:

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$ for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$,

where $|A_D|$ denotes the norm of second fundamental form.

Sketch of Proof.

• Suppose theorem fails for X simply connected for some ε , $H_0 > 0$.

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists C > 0$ s.t. for all embedded ($H \ge H_0$)-disks D in X:

 $|\mathbf{A}_{\mathsf{D}}|(p) \leq \mathbf{C}$ for all $p \in \mathbf{D}$ s.t. $\mathbf{dist}_{\mathsf{D}}(p, \partial \mathbf{D}) \geq \varepsilon$,

where $|A_D|$ denotes the norm of second fundamental form.

- Suppose theorem fails for X simply connected for some ε, H₀ > 0.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, dist_D $(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists C > 0$ s.t. for all embedded ($H \ge H_0$)-disks D in X:

 $|\mathsf{A}_{\mathsf{D}}|(p) \leq \mathsf{C}$ for all $p \in \mathsf{D}$ s.t. $\mathsf{dist}_{\mathsf{D}}(p, \partial \mathsf{D}) \geq \varepsilon$,

where $|A_D|$ denotes the norm of second fundamental form.

- Suppose theorem fails for X simply connected for some ε , $H_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, dist_D $(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" \overline{H} -planar domain $\mathcal{D} \subset \mathbb{R}^3$ with bounded second fundamental form.

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists C > 0$ s.t. for all embedded ($H \ge H_0$)-disks D in X:

 $|\mathsf{A}_{\mathsf{D}}|(p) \leq \mathsf{C}$ for all $p \in \mathsf{D}$ s.t. $\mathsf{dist}_{\mathsf{D}}(p, \partial \mathsf{D}) \geq \varepsilon$,

where $|A_D|$ denotes the norm of second fundamental form.

- Suppose theorem fails for X simply connected for some ε , $H_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, dist_D $(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" \overline{H} -planar domain $\mathcal{D} \subset \mathbb{R}^3$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit H-surface \mathcal{D}' of \mathcal{D} , which is a Delaunay surface or a non-flat minimal planar domain.

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists C > 0$ s.t. for all embedded ($H \ge H_0$)-disks D in X:

 $|\mathsf{A}_{\mathsf{D}}|(p) \leq \mathsf{C}$ for all $p \in \mathsf{D}$ s.t. $\mathsf{dist}_{\mathsf{D}}(p, \partial \mathsf{D}) \geq \varepsilon$,

where $|A_D|$ denotes the norm of second fundamental form.

- Suppose theorem fails for X simply connected for some ε , $H_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, dist_D $(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" \overline{H} -planar domain $\mathcal{D} \subset \mathbb{R}^3$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit H-surface \mathcal{D}' of \mathcal{D} , which is a Delaunay surface or a non-flat minimal planar domain.
- Step 3: But the limit must have 0 CMC flux $\implies D'$ is a helicoid.

Fix ε , $H_0 > 0$ and a complete locally homogenous 3-manifold X. $\exists C > 0$ s.t. for all embedded ($H \ge H_0$)-disks D in X:

 $|\mathsf{A}_{\mathsf{D}}|(p) \leq \mathsf{C}$ for all $p \in \mathsf{D}$ s.t. $\mathsf{dist}_{\mathsf{D}}(p, \partial \mathsf{D}) \geq \varepsilon$,

where $|\textbf{A}_{D}|$ denotes the norm of second fundamental form.

Sketch of Proof.

- Suppose theorem fails for X simply connected for some ε , $H_0 > 0$.
- Consider a sequence of embedded $(H_n \ge H_0)$ -disks D(n) in X and points $p_n \in D(n)$, dist_D $(p_n, \partial D) \ge \varepsilon$ with $|A_D|(p_n) > n$.
- Step 1: Blow-up argument on scale of the second fundamental form produces a properly "embedded" \overline{H} -planar domain $\mathcal{D} \subset \mathbb{R}^3$ with bounded second fundamental form.
- Step 2: Dynamics Theorem produces a translational limit H-surface \mathcal{D}' of \mathcal{D} , which is a Delaunay surface or a non-flat minimal planar domain.
- Step 3: But the limit must have 0 CMC flux $\implies D'$ is a helicoid.
- **Step 4:** One extends the double multigraph in the forming helicoid near $p_n \in D(n)$ a definite distance for *n* large, a contradiction.

Bill Meeks at the University of Massachusetts

Theorem (One-sided curvature estimate for **H**-disks, Meeks-Tinaglia)

 $\exists \mathbf{C}, \varepsilon > 0 \text{ s.t. for any embedded } \mathbf{H}\text{-disk } \mathbf{\Sigma} \subset \mathbf{R}^3 \text{ as in the figure below:} \\ |\mathbf{A}_{\mathbf{\Sigma}}| \leq \frac{\mathbf{C}}{R} \text{ in } \mathbf{\Sigma} \cap \mathbb{B}(\varepsilon R) \cap \{x_3 > 0\}.$

This result generalizes the one-sided curvature estimates for minimal disks by Colding-Minicozzi, and uses their work in its proof.

Old Question

Is the round sphere the only complete simply connected surface **embedded** in \mathbb{R}^3 with **non-zero** constant mean curvature?

Old Question

Is the round sphere the only complete simply connected surface **embedded** in \mathbb{R}^3 with **non-zero** constant mean curvature?

Bill Meeks at the University of Massachusetts

Embedded constant mean curvature surfaces

 $\exists \mathbf{R}_0 \geq \pi$ such that every embedded 1-disk in \mathbf{R}^3 has radius $< \mathbf{R}_0$.

 $\exists \ \mathbf{R_0} \geq \pi$ such that every embedded 1-disk in $\mathbf{R^3}$ has radius $< \mathbf{R_0}$.

Proof.

• Let $D(n) \subset \mathbb{R}^3$ be a sequence of embedded 1-disks of radius R(n) > n.

 $\exists \ \mathbf{R}_0 \geq \pi$ such that every embedded 1-disk in \mathbf{R}^3 has radius $< \mathbf{R}_0$.

Proof.

- Let $D(n) \subset \mathbb{R}^3$ be a sequence of embedded 1-disks of radius R(n) > n.
- The homothetically scaled disks $\overline{D(n)} = \frac{1}{R(n)} D(n)$ contain points p_n of distance 1 from the boundary with mean curvature R(n) > n.

 $\exists \ \mathbf{R}_0 \geq \pi$ such that every embedded 1-disk in \mathbf{R}^3 has radius $< \mathbf{R}_0$.

Proof.

- Let $D(n) \subset \mathbb{R}^3$ be a sequence of embedded 1-disks of radius R(n) > n.
- The homothetically scaled disks $\overline{\mathbf{D}(n)} = \frac{1}{R(n)} \mathbf{D}(n)$ contain points p_n of distance 1 from the boundary with mean curvature R(n) > n.
- So, $|\mathbf{A}_{\overline{\mathbf{D}(n)}}|(p_n) > n$, which contradicts the curvature estimates for $(R(n) \ge 1)$ -disks with $\varepsilon = 1$.

 $\exists \ \mathbf{R}_0 \geq \pi$ such that every embedded 1-disk in \mathbf{R}^3 has radius $< \mathbf{R}_0$.

Proof.

- Let $D(n) \subset \mathbb{R}^3$ be a sequence of embedded 1-disks of radius R(n) > n.
- The homothetically scaled disks $\overline{D(n)} = \frac{1}{R(n)} D(n)$ contain points p_n of distance 1 from the boundary with mean curvature R(n) > n.
- So, |A_{D(n)}|(p_n) > n, which contradicts the curvature estimates for (R(n) ≥ 1)-disks with ε = 1.

Corollary (Meeks-Tinaglia 2017)

A complete simply connected H-surface embedded in \mathbb{R}^3 with $\mathbb{H} > 0$ is a round sphere.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

() M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- **1** M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .
- **2** M has finite topology \implies M has positive injectivity radius.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- **1** M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .
- **2** M has finite topology \implies M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|A_M|$ is bounded \iff M has positive injectivity radius.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- **1** M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .
- **2** M has finite topology \implies M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|A_M|$ is bounded \iff M has positive injectivity radius.

When H = 0, items 1 and 2 were proved by Meeks-Rosenberg, based on: Colding-Minicozzi: M has finite topology and $H = 0 \implies M$ is proper.

Let $M \subset \mathbb{R}^3$ be a complete, connected embedded H-surface.

- **1** M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .
- **2** M has finite topology \implies M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|A_M|$ is bounded \iff M has positive injectivity radius.

When H = 0, items 1 and 2 were proved by Meeks-Rosenberg, based on: Colding-Minicozzi: M has finite topology and $H = 0 \implies M$ is proper.

Item 3 in the above theorem holds for 3-manifolds which have bounded absolute sectional curvature; in particular it holds in closed Riemannian 3-manifolds.

Universal domain for Embedded Calabi-Yau problem?

- \mathcal{D}_{∞} = above bounded domain, smooth except at \mathbf{p}_{∞} on right.
- Ferrer, Martin and Meeks conjecture: An open surface properly embeds as a complete minimal surface in $\mathcal{D}_{\infty} \iff$ every end has infinite genus \iff it admits a complete bounded minimal embedding in \mathbb{R}^3 .

Bill Meeks at the University of Massachusetts

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\Sigma \subset R^3$ be a complete, connected embedded H-surface.

Bill Meeks at the University of Massachusetts

Embedded constant mean curvature surfaces

Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let $\Sigma \subset {\textbf R}^3$ be a complete, connected embedded ${\textbf H}\text{-surface}.$

• $\overline{\Sigma}$ is an <u>H-lamination</u> in \mathbb{R}^3 iff Σ has locally bounded genus in \mathbb{R}^3 .

 $\begin{array}{l} \mbox{Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)} \\ \mbox{Let } \Sigma \subset R^3 \mbox{ be a complete, connected embedded H-surface.} \\ \bullet \ \overline{\Sigma} \ \mbox{is an } \underline{H}\mbox{-lamination in } R^3 \ \mbox{iff } \Sigma \ \mbox{has locally bounded genus in } R^3. \\ \bullet \ \exists \ A_{\Sigma} \ \mbox{s.t. } \forall r \geq 1 \ \mbox{and } p \in R^3, \\ & \ \mbox{Area}(\Sigma \cap \mathbb{B}(p,r)) \leq A_{\Sigma} \cdot r^3 \ \ \mbox{iff} \end{array}$

Σ has **uniformly bounded genus** in balls of radius 1.

 $\begin{array}{l} \mbox{Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)} \\ \mbox{Let } \Sigma \subset R^3 \mbox{ be a complete, connected embedded H-surface.} \\ \bullet \ \overline{\Sigma} \ \mbox{is an } \underline{H\mbox{-lamination}} \ \mbox{in } R^3 \ \mbox{iff } \Sigma \ \mbox{has } \underline{locally \ bounded \ genus} \ \mbox{in } R^3. \\ \bullet \ \exists \ A_{\Sigma} \ \mbox{s.t.} \ \ \forall r \geq 1 \ \mbox{and } p \in R^3, \\ & \ \mbox{Area}(\Sigma \cap \mathbb{B}(p,r)) \leq A_{\Sigma} \cdot r^3 \ \ \ \mbox{iff} \end{array}$

Σ has **uniformly bounded genus** in balls of radius 1.

Theorem (Emb Calabi-Yau for Finite Genus, Meeks-Pérez-Ros (2017))

• Let $\Sigma \subset R^3$ be a complete, connected embedded minimal surface of finite genus. Then:

 $\begin{array}{l} \hline \mbox{Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)} \\ \mbox{Let } \Sigma \subset R^3 \mbox{ be a complete, connected embedded H-surface.} \\ \bullet \ \overline{\Sigma} \mbox{ is an } \underline{H\mbox{-lamination}} \mbox{ in } R^3 \mbox{ iff } \Sigma \mbox{ has } \underline{\mbox{locally bounded genus}} \mbox{ in } R^3. \\ \bullet \ \exists \ A_{\Sigma} \mbox{ s.t. } \forall r \geq 1 \mbox{ and } p \in R^3, \end{array}$

 $\label{eq:real} \mbox{Area}(\pmb{\Sigma} \cap \mathbb{B}(p,r)) \leq \pmb{A}_{\pmb{\Sigma}} \cdot r^3 \quad \mbox{iff}$

Σ has **uniformly bounded genus** in balls of radius 1.

Theorem (Emb Calabi-Yau for Finite Genus, Meeks-Pérez-Ros (2017))

- Let Σ ⊂ R³ be a complete, connected embedded minimal surface of finite genus. Then:
- The General Calabi-Yau Conjecture is true for Σ ↔ Σ has a countable # of ends ↔ Σ has at most 2 limit ends.

Figure: A body-centered cubic interface or Fermi surface in salt crystal.

Next theorem is motivated by the study of **3**-periodic **H**-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus $\mathbf{g} > 2$ in any flat **3**-torus (**Traizet**).

Figure: A body-centered cubic interface or Fermi surface in salt crystal.

Next theorem is motivated by the study of 3-periodic H-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus g > 2 in any flat 3-torus (Traizet).

Theorem (Meeks-Tinaglia(2016))

Given a flat 3-torus \mathbb{T}^3 and H > 0, $\forall g \in \mathbb{N}$, $\exists C(g, H)$ s.t. a closed H-surface Σ embedded in \mathbb{T}^3 with genus at most g satisfies $Area(\Sigma) \leq C(g, H).$

Closed H-surfaces in a flat 3-torus. By K. Grosse-Brauckmann (top) and N. Schmitt (bottom)

Bill Meeks at the University of Massachusetts

Embedded constant mean curvature surfaces

Let $\mathbf{N}=\mathbf{a}$ closed Riemannian 3-manifold with Ricci curvature > 0. Then:

- The areas of closed, connected embedded minimal surfaces of fixed genus in N are bounded
- One of embedded closed minimal surfaces of fixed genus in N is compact.

Let $\mathbf{N}=\mathbf{a}$ closed Riemannian 3-manifold with Ricci curvature > 0. Then:

- The areas of closed, connected embedded minimal surfaces of fixed genus in N are bounded
- One of embedded closed minimal surfaces of fixed genus in N is compact.

Theorem (Meeks-Tinaglia(2018))

Let $0 < a \le b$ and $\mathbb{N} = \text{closed Riem}$. 3-manifold with $\mathbb{H}_2(\mathbb{N}) = 0$.

Let $\mathbf{N}=\mathbf{a}$ closed Riemannian 3-manifold with Ricci curvature >0. Then:

- The areas of closed, connected embedded minimal surfaces of fixed genus in N are bounded
- One of embedded closed minimal surfaces of fixed genus in N is compact.

Theorem (Meeks-Tinaglia(2018))

Let $0 < a \le b$ and $\mathbb{N} = \text{closed Riem}$. 3-manifold with $\mathbb{H}_2(\mathbb{N}) = 0$. Then:

The <u>areas</u> and <u>indexes of stability</u> of closed, **connected** embedded H-surfaces of fixed genus g in N with H ∈ [a, b] are bounded are uniformly bounded.

Let $\mathbf{N}=\mathbf{a}$ closed Riemannian 3-manifold with Ricci curvature >0. Then:

- The areas of closed, connected embedded minimal surfaces of fixed genus in N are bounded
- One of embedded closed minimal surfaces of fixed genus in N is compact.

Theorem (Meeks-Tinaglia(2018))

Let $0 < a \le b$ and $\mathbb{N} = \text{closed Riem}$. 3-manifold with $\mathbb{H}_2(\mathbb{N}) = 0$. Then:

- The <u>areas</u> and <u>indexes of stability</u> of closed, **connected** embedded H-surfaces of fixed genus g in N with H ∈ [a, b] are bounded are uniformly bounded.
- Por every closed Riemannian 3-manifold X and any non-negative integer g, the space of strongly Alexandrov embedded closed surfaces in X of genus at most g and constant mean curvature H ∈ [a, b] is compact. (Similar compactness result holds for any fixed smooth compact family of metrics on X.)

Calabi-Yau type problems for embedded H-surfaces

Theorem (Meeks-Tinaglia (2018)

 For H ≥ 1, complete embedded finite topology H-surfaces Σ in complete hyperbolic 3-manifolds are proper.

Theorem (Meeks-Tinaglia (2018)

- For H ≥ 1, complete embedded finite topology H-surfaces Σ in complete hyperbolic 3-manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case H = 1 and of Korevaar, Kusner, Meeks, Solomon in the case H > 1, Σ has ends asymptotic to annuli of revolution.

Theorem (Meeks-Tinaglia (2018)

- For H ≥ 1, complete embedded finite topology H-surfaces Σ in complete hyperbolic 3-manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case H = 1 and of Korevaar, Kusner, Meeks, Solomon in the case H > 1, Σ has ends asymptotic to annuli of revolution.

Theorem (Coskunuzer-Meeks-Tinaglia(2017))

- For every H ∈ [0, 1), ∃ a complete embedded stable H-plane that is nonproper in the hyperbolic 3-space H³.
- For every $\mathbf{H} \in (0, 1/2)$, \exists a complete embedded stable H-plane that is **nonproper** in the Riemannian product $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (Meeks-Tinaglia (2018)

- For H ≥ 1, complete embedded finite topology H-surfaces Σ in complete hyperbolic 3-manifolds are proper.
- In particular, by results of Collin, Hauswirth, Rosenberg in the case H = 1 and of Korevaar, Kusner, Meeks, Solomon in the case H > 1, Σ has ends asymptotic to annuli of revolution.

Theorem (Coskunuzer-Meeks-Tinaglia(2017))

- For every $H \in [0, 1)$, \exists a complete embedded stable H-plane that is **nonproper** in the hyperbolic **3**-space \mathbb{H}^3 .
- For every $\mathbf{H} \in (0, 1/2)$, \exists a complete embedded stable \mathbf{H} -plane that is **nonproper** in the Riemannian product $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (Tinaglia-Rodriguez)

 \exists a complete embedded stable minimal plane that is nonproper in $\mathbb{H}^2\times\mathbb{R}.$

Bill Meeks at the University of Massachusetts

Theorem (Meeks-Ramos(2017))

- Suppose X is a complete hyperbolic 3-manifold with finite volume, $H \in [0, 1)$ and M is a properly immersed H-surface. Then:
 - **M** has finite area and total curvature $2\pi\chi(M)$.
 - M has bounded fundamental form \iff M has finite topology.
 - Each annular end of M is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Meeks-Ramos(2017))

- Suppose X is a complete hyperbolic 3-manifold with finite volume, $H \in [0, 1)$ and M is a properly immersed H-surface. Then:
 - **M** has finite area and total curvature $2\pi\chi(M)$.
 - M has bounded fundamental form \iff M has finite topology.
 - Each annular end of M is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Adams-Meeks-Ramos(2018))

- Let H ≥ 0 and M be a connected noncompact surface of finite topology and negative Euler characteristic.
- There exists a complete hyperbolic 3-manifold of finite volume containing a proper totally umbilic embedding of M with constant mean curvature H if and only if H ∈ [0, 1).

Theorem (Meeks-Ramos(2017))

- Suppose X is a complete hyperbolic 3-manifold with finite volume, $H \in [0, 1)$ and M is a properly immersed H-surface. Then:
 - **M** has finite area and total curvature $2\pi\chi(M)$.
 - M has bounded fundamental form \iff M has finite topology.
 - Each annular end of M is asymptotic to a totally umbilic immersed annulus of finite area.

Theorem (Adams-Meeks-Ramos(2018))

- Let H ≥ 0 and M be a connected noncompact surface of finite topology and negative Euler characteristic.
- There exists a complete hyperbolic 3-manifold of finite volume containing a proper totally umbilic embedding of M with constant mean curvature H if and only if $H \in [0, 1)$.
- There does NOT exist a complete hyperbolic 3-manifold of finite volume containing a proper embedding of M with constant mean curvature $H \ge 1$.

Figure: Replacing (a) with (b) preserves hyperbolicity of the complement.

Theorem (The Chain Lemma)

Let *L* be a link in a 3-manifold **M** such that the link complement $\mathbf{M} \setminus L$ admits a complete hyperbolic metric of finite volume. Suppose that there is a sphere *S* in **M** bounding a ball *B* that intersects *L* as in Figure 2 (a). Let *L'* be the resulting link obtained by replacing $L \cap B$ by the components as appear in Figure 2 (b). Then $\mathbf{M} \setminus L'$ admits a complete hyperbolic metric of finite volume.

Theorem (The Switch Move Lemma)

Let *L* be a link in a 3-manifold M such that $M \setminus L$ admits a complete hyperbolic metric of finite volume. Let $\alpha \subset M$ be the closure in M of a complete, properly embedded geodesic of $M \setminus L$ with distinct endpoints on *L*. Let \mathcal{B} be a closed ball in M containing α in its interior and such that $\mathcal{B} \cap L$ is composed of two arcs in *L*, as in Figure 3. Let L_1 be the resulting link in M obtained by replacing $L \cap \mathcal{B}$ by the components as appearing in Figure 4 (b). Then $M \setminus L_1$ admits a complete hyperbolic metric of finite volume.

Figure: The trace of a geodesic α of $(\mathbf{M} \setminus L, h)$ joins distinct components G, G' of L, and a neighborhood \mathcal{B} of α intersects L in two arcs $g \subset G$ and $g' \subset G'$.

