
Classification Fact:

Simply connected homogeneous 3-manifolds X are either isometric to
S2(κ)× R or to a metric Lie group

= Lie group with a left-invariant
metric.

Milnor’s description of simply connected 3-dim metric Lie groups X

If X is diffeomorphic to S3, then X is isomorphic to SU(2);

otherwise, X is diffeomorphic to R3.

If X is diffeomorphic to R3, then X is isomorphic to a semidirect

product R2 oA R with its canonical metric, where A is a 2× 2 real
matrix, or X is isomorphic to S̃L(2,R).

The group operation ? of the semidirect product R2 oA R, where +
is the group operation of R2 and R, is given by

(p1, z1) ? (p2, z2) = (p1 + (ez1Ap2), z1 + z2).

The intrinsically flat horizontal planes R2 oA {t} in R2 oA R have
constant mean curvature trace(A)/2.
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Notation and language:

Y denotes a simply connected 3-dimensional homogeneous manifold.

H(Y) = Inf{max |HM| : M = immersed closed surface in Y},
where max |HM| denotes the max of the absolute mean curvature
function HM of M.

The number H(Y) is called the critical mean curvature of Y.

Remark

If Y is diffeomorphic to S3, then H(Y) = 0 since there exist closed
minimal surfaces in such a space Y.

Meeks, Mira, Perez and Ros proved that if Y is a non-compact,
simply connected homogeneous 3-manifold, then:

2H(Y) = InfK⊂Y compact
Area(∂K)

Volume(K)
= Cheeger constant of Y.

In particular, H(Y) = 1 if Y = H3 and H(Y) = 1/2 if Y = H2 × R.
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Remark

The proof of

2H(Y) = InfK⊂Y compact
Area(∂K)

Volume(K)
= Cheeger constant of Y

in the case Y is diffeomorphic to R3 uses the existence of a
H(Y)-foliation F of Y by doubly-periodic planes of quadratic area
growth to demonstrate:

1. If Ω(n) ⊂ Y is a sequence of isoperimetric domains in Y with
Volume(Ω(n))→∞, then:

lim
n→∞

Radius(Ω(n)) =∞=⇒k � 0, H(Y) < H∂Ω(n+k) < H∂Ω(n).

lim
n→∞

H∂Ω(n) = H(Y) (Study the Isoperimetric Profile P of Y.)

lim
n→∞

2 ·H∂Ω(n) = Ch(Y) (Prove P has asymptotic slope Ch(Y)).

2. In this case where Y is diffeomorphic to R3,

The leaves of the foliation F of Y are invariant under a
1-parameter group of isometries of Y.
By the maximum principle, there are no closed immersed
H(Y)-surfaces in Y.
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Let M be a homogeneous 3-manifold, X denote its Riemannian universal
cover, Ch(X) denote the Cheeger constant of X.

The next theorem solves the so called Hopf Uniqueness Problem.

Theorem (Hopf Uniqueness Problem, 2017 Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature
differ by an isometry of M. Moreover:

(1) If X is not diffeomorphic to R3, then, for every H ∈ R, there exists a
sphere of constant mean curvature H in M.

(2) If X is diffeomorphic to R3, then the values H ∈ R for which there
exists a sphere of constant mean curvature H in M are exactly those
with |H| > Ch(X)/2.
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Theorem (Geometry of H-spheres, 2017 Meeks-Mira-Pérez-Ros)

Let S be an H-sphere in M.

1 If H = 0 and X is a product S2 × R, where S2 is a sphere of
constant curvature, then S is totally geodesic, stable and has nullity
1 for its Jacobi operator.

2 Otherwise, S has index 1 and nullity 3 for its Jacobi operator and
the immersion of S into M extends as the boundary of an isometric
immersion F : B→M of a Riemannian 3-ball B which is mean
convex. (When X is S2 × R, this follows by work of Abresch,
Rosenberg and Souam.)

3 There is a point pS ∈M, called the center of symmetry of S, such
that every isometry of M that fixes pS also leaves invariant S.
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Previous influential results on the Hopf Uniqueness Problem:

Theorem (Hopf, 1951)

H-spheres in R3 are round.

Theorem (Abresch-Rosenberg, 2004)

If M has a 4-dimensional isometry group, then H-spheres in M are
surfaces of revolution and they are unique.

Theorem (Daniel-Mira (2013), Meeks (2013))

If X is the Lie group Sol3 with the left invariant metric

e2zdx2 + e−2zdy2 + dz2,

then H-spheres in X are unique, embedded and have index 1.

After left translation, these spheres have ambient symmetry group
generated by reflections in the (x , z) and (y , z)-planes and rotations
by π around the two lines y = ±x in the (x , y)-plane.
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Theorem (Daniel-Mira (2013), Meeks (2013))

If X is the Lie group Sol3 with the left invariant metric

e2zdx2 + e−2zdy2 + dz2,

then H-spheres in X are unique, embedded and have index 1.

After left translation, these spheres have ambient symmetry group
generated by reflections in the (x , z) and (y , z)-planes and rotations
by π around the two lines y = ±x in the (x , y)-plane.
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Theorem (Classification Theorem for H-spheres, Meeks-Mira-Pérez-Ros)

Suppose X is a simply connected 3-dimensional homogeneous manifold
different from S2(κ)× R, where S2(κ) is a sphere of curvature κ.

X diffeomorphic to S3 =⇒ the moduli space of H-spheres in X is
parameterized by the mean curvature values H ∈ R.

X diffeomorphic to R3 =⇒ moduli space of H-spheres in X is
parameterized by the H ∈ R values, where |H| ∈ (H(X),∞).

X diffeomorphic to S3 =⇒ the areas of all H-spheres form a
half-open interval (0,A(X)].

H-spheres in X are Alexandrov embedded with index 1, nullity 3.

Remark

In the following proof, choose a metric Lie group structure on X.
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Definition (Left invariant Gauss map)

Let X be a 3-dimensional metric Lie group.

Given an oriented immersed surface f : M→ X with unit normal
vector field ξ, the left invariant Gauss map of M is the map
G : M→ S2 ⊂ TeX that assigns to each p ∈M, the unit tangent
vector to X at the identity element e given by left translation:

(dlf (p))e(G(p)) = ξp.
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Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H0-sphere in X of index 1.

Step 0: Σ has nullity 3: Cheng’s theorem.

Step 1: The moduli space M(X) of non-congruent index-1
H-spheres in X is an analytic 1-manifold locally parameterized by its
mean curvature values: Implicit Function Theorem.

Step 2: The left invariant Gauss map G : Σ→ S2 ⊂ Te(X) is a
degree-1 diffeomorphism: Nodal Domain Argument + Rep Thm.

Step 3: Curvature estimates for Σ (given any fixed upper bound H1

of H0): Use that Gauss map is a degree-1 diffeo.

Step 4: Area estimates for Σ. This means:

(A) If X is isomorphic to SU(2), areas of spheres in M(X) are
uniformly bounded.

(B) If X is not isomorphic to SU(2), then for any ∆ > 0 the areas
of spheres in M(X) with H0 ∈ [H(X) + ∆,∞) are uniformly
bounded. Recall, there are no H(X)-spheres in X.
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Steps of the proof continued.

Step 5: Components of M(X) are parameterized by the mean
curvature values [0,∞) if X is isomorphic to SU(2) and otherwise
by (H(X),∞).

Step 6: On any H0-sphere M different from a left translation of Σ,
∃ a NON-ZERO complex valued quadratic differential ωΣ(M) with
isolated negative index zeroes. Depends on Representation Thm.

Step 7: Since the Euler characteristic of the sphere is positive, any
H0-sphere in X is a left translate of the unique H0-sphere in M(X).

Conclusions:

The space of non-congruent H-spheres in X equals M(X)
which is an interval parameterized by the mean curvature
values in [0,∞) if X is isomorphic to SU(2) and otherwise, in
the interval (H(X),∞).
Each H-sphere in X has index 1 and nullity 3.
Each H-sphere in X is the boundary of an immersed 3-ball
F : B→ X on its mean convex side (Alexandrov embedded).
If X is isomorphic to SU(2), then the areas of H-spheres in X
form a half-open interval (0,A(X)].
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Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia 2018)

Fix ε,H0 > 0 and a complete locally homogenous 3-manifold X. ∃ C > 0
s.t. for all embedded (H ≥ H0)-disks D in X:

|AD|(p) ≤ C for all p ∈ D s.t. distD(p, ∂D) ≥ ε,
where |AD| denotes the norm of second fundamental form.

Sketch of Proof.

Suppose theorem fails for X simply connected for some ε,H0 > 0.

Consider a sequence of embedded (Hn ≥ H0)-disks D(n) in X and
points pn ∈ D(n), distD(pn, ∂D) ≥ ε with |AD|(pn) > n.

Step 1: Blow-up argument on scale of the second fundamental form

produces a properly ”embedded” H-planar domain D ⊂ R3 with
bounded second fundamental form.

Step 2: Dynamics Theorem produces a translational limit

H-surface D′ of D, which is a Delaunay surface or a non-flat
minimal planar domain.

Step 3: But the limit must have 0 CMC flux =⇒ D′ is a helicoid.

Step 4: One extends the double multigraph in the forming helicoid
near pn ∈ D(n) a definite distance for n large, a contradiction.
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Theorem (One-sided curvature estimate for H-disks, Meeks-Tinaglia)

∃C, ε > 0 s.t. for any embedded H-disk Σ ⊂ R3 as in the figure below:

|AΣ| ≤
C

R
in Σ ∩ B(εR) ∩{x3 > 0}.

εR

∂Σ

∂Σ

R

Σ
This piece
is graphical

x3 = 0

This result generalizes the one-sided curvature estimates for minimal
disks by Colding-Minicozzi, and uses their work in its proof.
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New uniqueness results for CMC surfaces.

Old Question

Is the round sphere the only complete simply connected surface
embedded in R3 with non-zero constant mean curvature?

NOT simply connected

Cylinder

NOT embedded

Smyth surface
conformally C

Answer (Meeks-Tinaglia)

Yes!
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Corollary (Radius Estimates for H-Disks, Meeks-Tinaglia 2017)

∃ R0 ≥ π such that every embedded 1-disk in R3 has radius < R0.

Proof.

Let D(n) ⊂ R3 be a sequence of embedded 1-disks of radius
R(n) > n.

The homothetically scaled disks D(n) = 1
R(n) D(n) contain points

pn of distance 1 from the boundary with mean curvature R(n) > n.

So, |AD(n)|(pn) > n, which contradicts the curvature estimates for

(R(n) ≥ 1)-disks with ε = 1.

Corollary (Meeks-Tinaglia 2017)

A complete simply connected H-surface embedded in R3 with H > 0 is a
round sphere.
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Theorem (Calabi-Yau Holds for Embedded Finite Topology H-surfaces,
Meeks-Tinaglia 2017)

Let M ⊂ R3 be a complete, connected embedded H-surface.

1 M has positive injectivity radius =⇒ M is properly embedded in R3.

2 M has finite topology =⇒ M has positive injectivity radius.

3 Suppose H > 0. Then:

|AM| is bounded ⇐⇒ M has positive injectivity radius.

When H = 0, items 1 and 2 were proved by Meeks-Rosenberg, based on:

Colding-Minicozzi: M has finite topology and H = 0 =⇒ M is proper.

Item 3 in the above theorem holds for 3-manifolds which have bounded
absolute sectional curvature; in particular it holds in closed Riemannian
3-manifolds.
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Universal domain for Embedded Calabi-Yau problem?

D∞ = above bounded domain, smooth except at p∞ on right.

Ferrer, Martin and Meeks conjecture: An open surface properly
embeds as a complete minimal surface in D∞ ⇐⇒ every end
has infinite genus ⇐⇒ it admits a complete bounded minimal
embedding in R3.
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Conjecture (General Calabi-Yau Conjecture, Meeks-Pérez-Ros-Tinaglia)

Let Σ ⊂ R3 be a complete, connected embedded H-surface.

Σ is an H-lamination in R3 iff Σ has locally bounded genus in R3.

∃ AΣ s.t. ∀r ≥ 1 and p ∈ R3,

Area(Σ ∩ B(p, r)) ≤ AΣ · r3 iff

Σ has uniformly bounded genus in balls of radius 1.

Theorem (Emb Calabi-Yau for Finite Genus, Meeks-Pérez-Ros (2017))

Let Σ ⊂ R3 be a complete, connected embedded minimal surface of
finite genus. Then:

The General Calabi-Yau Conjecture is true for Σ ⇐⇒ Σ has a
countable # of ends ⇐⇒ Σ has at most 2 limit ends.
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Let Σ ⊂ R3 be a complete, connected embedded H-surface.

Σ is an H-lamination in R3 iff Σ has locally bounded genus in R3.

∃ AΣ s.t. ∀r ≥ 1 and p ∈ R3,

Area(Σ ∩ B(p, r)) ≤ AΣ · r3 iff

Σ has uniformly bounded genus in balls of radius 1.

Theorem (Emb Calabi-Yau for Finite Genus, Meeks-Pérez-Ros (2017))
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Figure: A body-centered cubic interface or Fermi surface in salt crystal.

Next theorem is motivated by the study of 3-periodic H-surfaces that
appear as interfaces in material science or as equipotential surfaces in
crystals. This result contrasts with the failure of area estimates for
compact minimal surfaces of genus g > 2 in any flat 3-torus (Traizet).

Theorem (Meeks-Tinaglia(2016))

Given a flat 3-torus T3 and H > 0, ∀g ∈ N, ∃C(g,H) s.t. a closed
H-surface Σ embedded in T3 with genus at most g satisfies

Area(Σ) ≤ C(g,H).
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Closed H-surfaces in a flat 3-torus. By K. Grosse-Brauckmann (top) and N. Schmitt (bottom)
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Theorem (Choi-Wang(1983), Choi-Schoen(1985))

Let N = a closed Riemannian 3-manifold with Ricci curvature > 0.
Then:

1 The areas of closed, connected embedded minimal surfaces of fixed
genus in N are bounded

2 The space of embedded closed minimal surfaces of fixed genus in N
is compact.

Theorem (Meeks-Tinaglia(2018))

Let 0 < a ≤ b and N = closed Riem. 3-manifold with H2(N) = 0. Then:

1 The areas and indexes of stability of closed, connected embedded
H-surfaces of fixed genus g in N with H ∈ [a, b] are bounded are
uniformly bounded.

2 For every closed Riemannian 3-manifold X and any non-negative
integer g, the space of strongly Alexandrov embedded closed
surfaces in X of genus at most g and constant mean curvature
H ∈ [a, b] is compact. (Similar compactness result holds for any
fixed smooth compact family of metrics on X.)
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Calabi-Yau type problems for embedded H-surfaces

Theorem (Meeks-Tinaglia (2018)

For H ≥ 1, complete embedded finite topology H-surfaces Σ in
complete hyperbolic 3-manifolds are proper.

In particular, by results of Collin, Hauswirth, Rosenberg in the
case H = 1 and of Korevaar, Kusner, Meeks, Solomon in the
case H > 1, Σ has ends asymptotic to annuli of revolution.

Theorem (Coskunuzer-Meeks-Tinaglia(2017))

For every H ∈ [0, 1), ∃ a complete embedded stable H-plane that is
nonproper in the hyperbolic 3-space H3.

For every H ∈ (0, 1/2), ∃ a complete embedded stable H-plane
that is nonproper in the Riemannian product H2 × R.

Theorem (Tinaglia-Rodriguez)

∃ a complete embedded stable minimal plane that is nonproper in
H2 × R.
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Theorem (Meeks-Ramos(2017))

Suppose X is a complete hyperbolic 3-manifold with finite volume,
H ∈ [0, 1) and M is a properly immersed H-surface. Then:

M has finite area and total curvature 2πχ(M).
M has bounded fundamental form ⇐⇒ M has finite topology.
Each annular end of M is asymptotic to a totally umbilic
immersed annulus of finite area.

Theorem (Adams-Meeks-Ramos(2018))

Let H ≥ 0 and M be a connected noncompact surface of finite
topology and negative Euler characteristic.

There exists a complete hyperbolic 3-manifold of finite volume
containing a proper totally umbilic embedding of M with constant
mean curvature H if and only if H ∈ [0, 1).

There does NOT exist a complete hyperbolic 3-manifold of finite
volume containing a proper embedding of M with constant mean
curvature H ≥ 1.
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(a) (b)

Figure: Replacing (a) with (b) preserves hyperbolicity of the complement.

Theorem (The Chain Lemma)

Let L be a link in a 3-manifold M such that the link complement M \ L
admits a complete hyperbolic metric of finite volume. Suppose that there
is a sphere S in M bounding a ball B that intersects L as in Figure 2 (a).
Let L′ be the resulting link obtained by replacing L ∩ B by the
components as appear in Figure 2 (b). Then M \ L′ admits a complete
hyperbolic metric of finite volume.
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Theorem (The Switch Move Lemma)

Let L be a link in a 3-manifold M such that M \ L admits a complete
hyperbolic metric of finite volume. Let α ⊂ M be the closure in M of a
complete, properly embedded geodesic of M \ L with distinct endpoints
on L. Let B be a closed ball in M containing α in its interior and such
that B ∩ L is composed of two arcs in L, as in Figure 3. Let L1 be the
resulting link in M obtained by replacing L ∩ B by the components as
appearing in Figure 4 (b). Then M \ L1 admits a complete hyperbolic
metric of finite volume.
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Figure: The trace of a geodesic α of (M \ L, h) joins distinct components
G ,G ′ of L, and a neighborhood B of α intersects L in two arcs g ⊂ G
and g ′ ⊂ G ′.

(a)

−→

(b)

Figure: The Switch Move replaces the arcs g and g ′ by the tangle
γ1 ∪ γ2 ∪ C .
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