Arnold diffusion for 'complete' families of perturbations with two or three independent harmonics

Emerging interactions of geometric and variational methods Institute for Advanced Study, Princeton, April 9-13, 2018

Amadeu Delshams Rodrigo G. Schaefer

Universitat Politècnica de Catalunya

April 9th, 2018

Consider a pendulum and a rotor plus a time periodic perturbation depending on two harmonics in the variables (φ, s) :

$$H_{\varepsilon}(p,q,I,\varphi,s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + \frac{I^2}{2} + \varepsilon h(q,\varphi,s)$$
 (1)

$$h(q, \varphi, s) = f(q)g(\varphi, s), \qquad f(q) = \cos q,$$

$$g(\varphi, s) = a_1 \cos(k_1 \varphi + l_1 s) + a_2 \cos(k_2 \varphi + l_2 s),$$
(2)

for some $k_1, k_2, l_1, l_2 \in \mathbb{Z}$.

Theorem

Assume that $a_1a_2 \neq 0$ and $\begin{vmatrix} k_1 & k_2 \\ l_1 & l_2 \end{vmatrix} \neq 0$ in (1)-(2). Then, for any $I^* > 0$, there exists $\varepsilon^* = \varepsilon^*(I^*, a_1, a_2) > 0$ such that for any ε , $0 < \varepsilon < \varepsilon^*$, there exists a trajectory $(p(t), q(t), I(t), \varphi(t))$ such that for some T > 0

$$I(0) \leq -I^* < I^* \leq I(T).$$

Remark: $I(t) \equiv \text{constant for } \varepsilon = 0.$

Goals

- To review the construction of scattering maps initiated in [D-Llave-Seara00], designed to detect global instability.
- To compute explicitly several scattering maps to prove global instability for the action I for any $\varepsilon > 0$ small enough.
- To estimate the time of diffusion in some cases (at least for $k_1 = l_2 = 1$ and $l_1 = k_2 = 0$).
- To play with the parameter $\mu = a_1/a_2$ to prove global instability for any value of $\mu \neq 0, \infty$.
- To describe bifurcations of the scattering maps.
- \bullet To get a glimpse of the $3+\frac{1}{2}$ degrees of freedom case.

It is easy to check that if

$$\Delta := k_1 l_2 - k_2 l_1 = 0$$
 or $a_1 = 0$ or $a_2 = 0$

there is no global instability for the variable I.

If $\Delta a_1 a_2 \neq 0$, after some rational linear changes in the angles, we only need to study two cases:

• The first (and easier) case [D-Schaefer17]

$$g(\varphi,s)=a_1\cos\varphi+a_2\cos s$$

• The second case [D-Schaefer17a]

$$g(\varphi,\sigma)=a_1\cos\varphi+a_2\cos\sigma,$$

where $\sigma = \varphi - s$.

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case $\varepsilon=0$, the Hamiltonian H_0 is integrable formed by the standard pendulum plus a rotor

$$H_0(p,q,I,arphi,s)=\pm\left(rac{p^2}{2}+\cos q-1
ight)+rac{I^2}{2}.$$

I is constant:
$$\triangle I := I(T) - I(0) \equiv 0$$
.

For any $0 < \varepsilon \ll 1$, there is a finite drift in the action of the rotor I: $\triangle I = \mathcal{O}(1)$, so we have global instability.

In short, this is also frequently called Arnold diffusion.

Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct iterates under several Scattering maps and the Inner map, giving rise to diffusing pseudo-orbits.
- To use previous results about Shadowing [Fontich-Martín00], [Gidea-Llave-Seara14]) for ensuring the existence of real orbits close to the pseudo-orbits.

We have two important dynamics associated to the system: the inner and the outer dynamics on a large invariant object $\widetilde{\Lambda}$:

$$\widetilde{\Lambda} = \{(0,0,I,\varphi,s); I \in [-I^*,I^*], (\varphi,s) \in \mathbb{T}^2\},\$$

which is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with associated 4D stable $W_{\varepsilon}^{s}(\widetilde{\Lambda})$ and unstable $W_{\varepsilon}^{u}(\widetilde{\Lambda})$ invariant manifolds.

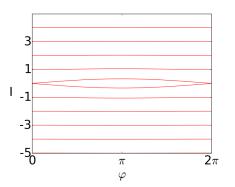
- The *inner dynamics* is the dynamics restricted to $\widetilde{\Lambda}$. (Inner map)
- The *outer dynamics* is the dynamics along the invariant manifolds to $\widetilde{\Lambda}$. (Scattering map)

Remark: Due to the form of the perturbation, $\widetilde{\Lambda} = \widetilde{\Lambda}_{\varepsilon}$.

For the first case $g(\varphi, s) = a_1 \cos \varphi + a_2 \cos s$, the inner dynamics is described by the Hamiltonian systems with the Hamiltonian

$$K(I,\varphi,s) = \frac{I^2}{2} + \varepsilon (a_1 \cos \varphi + a_2 \cos s).$$

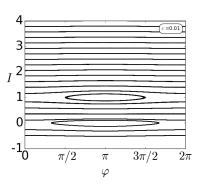
In this case the inner dynamics is integrable (a pendulum).



For $g(\varphi, \sigma)$, the inner dynamics is by the Hamiltonian

$$K(I,\varphi,\sigma) = \frac{I^2}{2} + \varepsilon (a_1 \cos \varphi + a_2 \cos \sigma),$$

where $\sigma = \varphi - s$. The system associated to this Hamiltonian is not integrable and two resonances arise in I=0 and I=1.



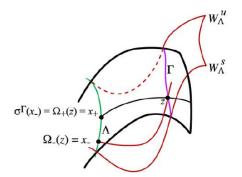
Outer dynamics

Scattering map

Let Λ be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold Γ . A scattering map is a map S defined by $S(\tilde{x}_{-}) = \tilde{x}_{+}$ if there exists $\tilde{z} \in \Gamma$ satisfying

$$|\phi_t^arepsilon(ilde{z})-\phi_t^arepsilon(ilde{x}_\mp)| \longrightarrow 0 ext{ as } t \longrightarrow \mp\infty$$

that is, $W^u_\varepsilon(\tilde{\mathbf{x}}_-)$ intersects transversally $W^s_\varepsilon(\tilde{\mathbf{x}}_+)$ in $\tilde{\mathbf{z}}$.



S is symplectic and exact [D-Llave-Seara08] and takes the form:

$$S_{\varepsilon}(I,\varphi,s) = \left(I + \varepsilon \frac{\partial \mathcal{L}^*}{\partial \theta}(I,\theta) + \mathcal{O}(\varepsilon^2), \theta - \varepsilon \frac{\partial \mathcal{L}^*}{\partial I}(I,\theta) + \mathcal{O}(\varepsilon^2), s\right),$$

where $\theta = \varphi - Is$ and $\mathcal{L}^*(I, \theta)$ is the Reduced Poincaré function, or more simply in the variables (I, θ) :

$$S_{\varepsilon}(I,\theta) = \left(I + \varepsilon \frac{\partial \mathcal{L}^*}{\partial \theta}(I,\theta) + \mathcal{O}(\varepsilon^2), \theta - \varepsilon \frac{\partial \mathcal{L}^*}{\partial I}(I,\theta) + \mathcal{O}(\varepsilon^2)\right),$$

- ullet The variable s remains fixed under $S_{arepsilon}$: it plays the role of a parameter
- Up to first order in ε , S_{ε} is the $-\varepsilon$ -time flow of the Hamiltonian $\mathcal{L}^*(I,\theta)$
- ullet The scattering map jumps $\mathcal{O}(arepsilon)$ distances along the level curves of $\mathcal{L}^*(I, heta)$

To get a scattering map we search for homoclinic orbits to $\tilde{\Lambda}_{\epsilon}$

Proposition

Given $(I, \varphi, s) \in [-I^*, I^*] \times \mathbb{T}^2$, assume that the real function

$$au \, \in \, \mathbb{R} \, \longmapsto \, \mathcal{L}(\mathbf{I}, \varphi - \mathbf{I} \, au, \mathbf{s} - au) \, \in \, \mathbb{R}$$

has a non degenerate critical point $au^* = au(I, arphi, s)$, where

$$\mathcal{L}(I,\varphi,s) = \int_{-\infty}^{+\infty} (\cos q_0(\sigma) - \cos 0) g(\varphi + I\sigma, s + \sigma; 0) d\sigma.$$

Then, for $0<|\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\widetilde{\Lambda}_{\varepsilon}$, which is ε -close to the point $\tilde{z}^*(I,\varphi,s)=(p_0(\tau^*),q_0(\tau^*),I,\varphi,s)\in W^0(\widetilde{\Lambda})$:

$$\tilde{z} = \tilde{z}(I, \varphi, s) = (p_0(\tau^*) + O(\varepsilon), q_0(\tau^*) + O(\varepsilon), I, \varphi, s) \in W^u(\widetilde{\Lambda}_{\varepsilon}) \, \pitchfork \, W^s(\widetilde{\Lambda}_{\varepsilon}).$$

In our model $q_0(t) = 4 \arctan e^t$, $p_0(t) = 2/\cosh t$ is the separatrix for positive p of the standard pendulum $P(q, p) = p^2/2 + \cos q - 1$.

• For $g(\varphi, s) = a_1 \cos \varphi + a_2 \cos s$, the Melnikov potential becomes

$$\mathcal{L}(I,\varphi,s) = A_1(I)\cos\varphi + A_2\cos s,$$

where
$$A_1(I) = \frac{2 \pi I a_1}{\sinh\left(\frac{I \pi}{2}\right)}$$
 and $A_2 = \frac{2 \pi a_2}{\sinh\left(\frac{\pi}{2}\right)}$.

• For $g(\varphi, \sigma) = a_1 \cos \varphi + a_2 \cos \sigma$ ($\sigma = \varphi - s$), the Melnikov potential becomes

$$\mathcal{L}(I,\varphi,\sigma) = A_1(I)\cos\varphi + A_2(I)\cos\sigma,$$

where $A_1(I)$ is as before but now $A_2(I) = \frac{2(I-1)\pi a_2}{\sinh\left(\frac{(I-1)\pi}{2}\right)}$.

The Melnikov potentials are similar in both cases.

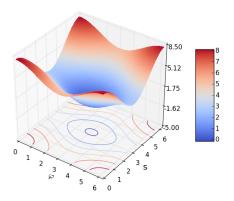


Figure: The Melnikov Potential, $\mu = a_1/a_2 = 0.6$, I = 1, $g(\varphi, s)$.

Finally, the function $\mathcal{L}^*(I,\theta)$ can be defined:

Definition

The Reduced Poincaré function is

$$\mathcal{L}^*(I,\theta) = \mathcal{L}(I,\varphi - I \tau^*(I,\varphi,s), s - \tau^*(I,\varphi,s)),$$

where $\theta = \varphi - I s$.

Therefore the definition of $\mathcal{L}^*(I,\theta)$ depends on the function $\tau^*(I,\varphi,s)$.

From the Proposition given above, we look for τ^* such that $\frac{\partial \mathcal{L}}{\partial \tau}(I, \varphi - I \tau^*, s - \tau^*) = 0$.

Different view-points for $\tau^* = \tau^*(I, \varphi, s)$

- Look for critical points of \mathcal{L} on the straight line, called NHIM line $R(I, \varphi, s) = \{(\varphi I \tau, s \tau), \tau \in \mathbb{R}\}.$
- Look for intersections between $R(I, \varphi, s) = \{(\varphi I \tau, s \tau), \tau \in \mathbb{R}\}$ and a crest which is a curve of equation

$$\frac{\partial \mathcal{L}}{\partial \tau} (I, \varphi - I\tau, s - \tau)|_{\tau = 0} = 0.$$

Note that the crests are characterized by $\tau^*(I, \varphi, s) = 0$.

Definition - Crests [D-Huguet11]

For each I, we call $crest \ \mathcal{C}(I)$ the set of curves in the variables (φ,s) of equation

$$I\frac{\partial \mathcal{L}}{\partial \varphi}(I,\varphi,s) + \frac{\partial \mathcal{L}}{\partial s}(I,\varphi,s) = 0.$$
 (3)

which in our case can be rewritten as

$$g(\varphi, s)$$
: $\mu\alpha(I) \sin \varphi + \sin s = 0$, with $\alpha(I) = \frac{I^2 \sinh(\frac{\pi}{2})}{\sinh(\frac{\pi}{2})}$, $\mu = \frac{a_1}{a_2}$.

$$g(\varphi, \sigma = \varphi - s): \ \mu\alpha(I) \sin \varphi + \sin \sigma = 0, \qquad \text{with } \alpha(I) = \frac{I^2 \sinh(\frac{(I-1)\pi}{2})}{(I-1)^2 \sinh(\frac{\pi}{2}I)}, \quad \mu = \frac{a_1}{a_2}.$$

- For any I, the critical points of the Melnikov potential $\mathcal{L}(I,\cdot,\cdot)$ ((0,0), (0, π), (π ,0) and (π , π): one maximum, one minimum point and two saddle points) always belong to the crest $\mathcal{C}(I)$.
- $\mathcal{L}^*(I,\theta)$ is nothing else but \mathcal{L} evaluated on the crest $\mathcal{C}(I)$.
- $\theta = \varphi Is$ is constant on the NHIM line $R(I, \varphi, s)$

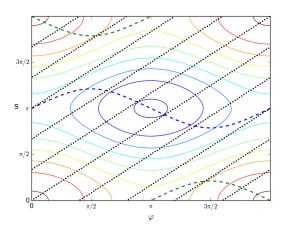


Figure: Level curves of \mathcal{L} for $\mu = a_1/a_2 = 0.5$, I = 1.2 and $g(\varphi, s)$.

Understanding the behavior of the crests

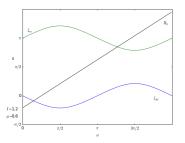
Understanding the behavior of the Reduced Poincaré function

Understanding the Scattering map

• For $|\mu\alpha(I)| < 1$, there are two crests $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$ parameterized by:

$$s = \xi_M(I, \varphi) = -\arcsin(\mu\alpha(I)\sin\varphi) \mod 2\pi$$

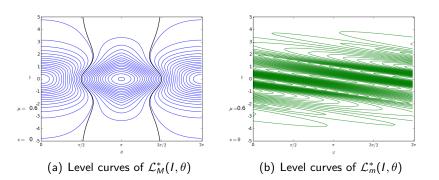
$$\xi_m(I, \varphi) = \arcsin(\mu\alpha(I)\sin\varphi) + \pi \mod 2\pi$$
(4)



They are "horizontal" crests

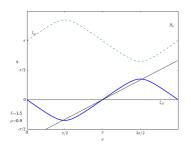
First case: $g(\varphi, s) = 0 < |\mu| < 0.625$

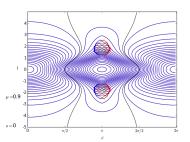
- For each I, the NHIM line $R(I, \varphi, s)$ and the crest $\mathcal{C}_{M,m}(I)$ has only one intersection point.
- The scattering map $S_{\rm M}$ associated to the intersections between $C_{\rm M}(I)$ and $R(I, \varphi, s)$ is well defined for any $\varphi \in \mathbb{T}$. Analogously for S_m , changing M to m. In the variables $(I, \theta = \varphi - Is)$, both scattering maps S_M , S_m are globally well defined.

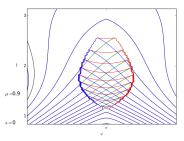


First case: $g(\varphi, s)$ 0.625 < $|\mu|$

- There are tangencies between $C_{M,m}(I,\varphi)$ and $R(I,\varphi,s)$. For some value of (I, φ, s) , there are 3 points in $R(I, \varphi, s) \cap \mathcal{C}_{M,m}(I)$.
- This implies that there are 3 scattering maps associated to each crest with different domains.(Multiple Scattering maps)







- (c) The three types of level curves.
- (d) Zoom where the scattering maps are different

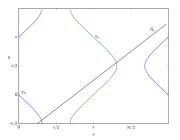
Figure: Level curves of $\mathcal{L}_{M}^{*}(I,\theta)$, $\mathcal{L}_{M}^{*(1)}(I,\theta)$ and $\mathcal{L}_{M}^{*(2)}(I,\theta)$

First case: $g(\varphi, s)$ $|\mu| > 0.97$

• For some values of I, $|\mu\alpha(I)| > 1$, the two crests $\mathcal{C}_{\mathsf{M,m}}$ are parameterized by:

$$\varphi = \eta_M(I, s) = -\arcsin(\mu\alpha(I)\sin s) \mod 2\pi$$

$$\eta_m(I, s) = \arcsin(\mu\alpha(I)\sin s) + \pi \mod 2\pi$$
(5)



They are "vertical" crests

First case: $g(\varphi, s)$ $|\mu| > 0.97$

For the values of I for which horizontal crests become vertical, it is not always possible to prolong in a continuous way the scattering maps, so the domain of the scattering map has to be restricted.

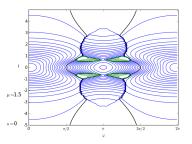


Figure: The level curves of $\mathcal{L}_{M}^{*}(I,\theta)$, $\mu=1.5$.

In green, the region where the scattering map $S_{\rm M}$ is not defined.

Definition: Highways

Highways are the level curves of \mathcal{L}^* such that

$$\mathcal{L}^*(I,\theta) = A_2 = \frac{2\pi a_2}{\sinh(\pi/2)}.$$

- The highways are "vertical" in the variables (φ, s)
- We always have a pair of highways. One goes up, the other goes down (this depends on the sign of $\mu = a_1/a_2$)
- The highways give rise to fast diffusing pseudo-orbits

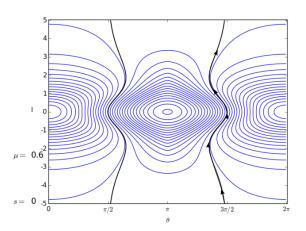


Figure: The scattering map jumps $\mathcal{O}(\varepsilon)$ distances along the level curves of $\mathcal{L}^*(I,\theta)$

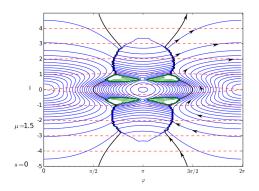


Figure: In red: Inner map, blue: Scattering map, black: Highways

An estimate of the total time of diffusion between $-I^*$ and I^* , along the highway, is

$$T_{\rm d} = \frac{T_{\rm s}}{\varepsilon} \left[2 \log \left(\frac{{\it C}}{\varepsilon} \right) + \mathcal{O}(\varepsilon^b) \right], \ {\rm for} \ \varepsilon \to 0, \ {\rm where} \ 0 < b < 1,$$

with

$$T_{\rm s} = T_{\rm s}(I^*, a_1, a_2) = \int_0^{I^*} rac{-\sinh(\pi I/2)}{\pi a_1 I \sin \psi_{
m h}(I)} dI,$$

where $\psi_h = \theta - I\tau^*(I,\theta)$ is the parameterization of the highway $\mathcal{L}^*(I,\psi_h) = A_2$, and

$$C = C(I^*, a_1, a_2) = 16 |a_1| \left(1 + \frac{1.465}{\sqrt{1 - \mu^2 A^2}}\right)$$

where $A = \max_{I \in [0,I^*]} \alpha(I)$, with $\alpha(I) = \frac{\sinh(\frac{\pi}{2})I^2}{\sinh(\frac{\pi}{2})}$ and $\mu = a_1/a_2$.

Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01] and quantifies the general optimal diffusion estimate $\mathcal{O}\left(\frac{1}{\varepsilon}\log\frac{1}{\varepsilon}\right)$ of [Berti-Biasco-Bolle03] and [Treschev04].

4 D > 4 B > 4 E > 4 E > E 990

In the second case:

- For $|\mu\alpha(I)| < 1$, there are two crests $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$ parameterized by $\sigma = \xi_{\mathsf{M}}(I,\varphi)$ and $\xi_{\mathsf{m}}(I,\varphi)$. For $|\mu\alpha(I)| > 1$, $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$ parameterized by $\varphi = \eta_{\mathsf{M}}(I,\sigma)$ and $\eta_{\mathsf{m}}(I,\sigma)$. The crests lie on the plane (φ,σ)
- There are no global Highways.
- For any value of $\mu = a_1/a_2$ is possible to find I_h and I_v such that for $I = I_h$ the crests are horizontal and for $I = I_v$ the crests are vertical.
- ullet For any value of μ there exists I such that the crests and some NHIM line are tangent. There are always multiple scattering maps

From the definitions of $R(I, \varphi, s)$ and C(I), we have

$$R(I,\varphi,s) \cap C(I) = \{(I,\varphi - I\tau^*(I,\varphi,s), s - \tau^*(I,\varphi,s))\}.$$

Introducing

$$\tau^*(I,\theta) := \tau^*(I,\varphi - Is, 0), \quad \text{ with } \theta = \varphi - Is = (1-I)\varphi + I\sigma,$$

one can see that on the plane $(arphi,\sigma=arphi-s)$, the NHIM lines take the form

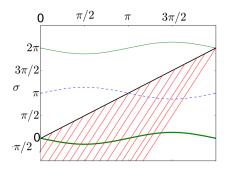
$$R_I(\varphi,\sigma) = \{(\varphi - I\tau, \sigma - (I-1)\tau), \tau \in \mathbb{R}\}$$

and that

$$R_I(\varphi,\sigma)\cap C(I)=\{(\theta-I\tau^*(I,\theta),\theta-(I-1)\tau^*(I,\theta))\}.$$

Therefore, the function $\tau^*(I,\theta)$ is the time spent to go from a point (θ,θ) in the diagonal $\sigma=\varphi$ up to $\mathcal{C}(I)$ with a velocity vector $\mathbf{v}=-(I,I-1)$.

The choice of the concrete curve of the crest and therefore of $\tau^*(I,\theta)$ is very important and useful.



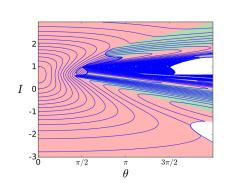


Figure: Going down along NHIM lines

Figure: The "lower" crest

Green zones: *I* increases under the scattering map.

Red zones: I decreases under the scattering map.

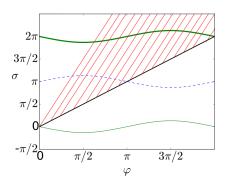


Figure: Going up along NHIM lines

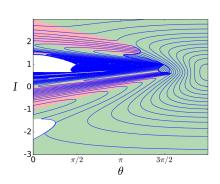


Figure: The "upper" crest

Kinds of scattering maps

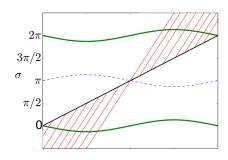


Figure: Minimal time

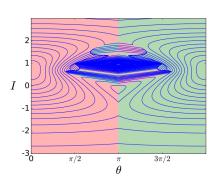


Figure: Minimal $|\tau^*|$ between "lower" and "upper" crest

In this picture we show a combination of 3 scattering maps.

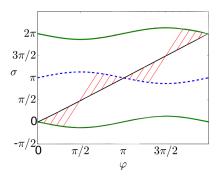


Figure: First intersection

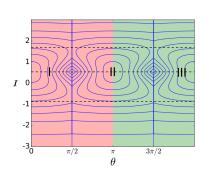


Figure: Minimal $|\tau^*|$ between $\mathcal{C}_{\mathrm{M}}(I)$ and $\mathcal{C}_{\mathrm{m}}(I)$

Consider a pendulum and two rotors plus a time periodic perturbation depending on three harmonics in the angles $(\varphi_1, \varphi_2, \varphi_3 = s)$:

$$H_{\varepsilon}(p,q,l_1,l_2,\varphi_1,\varphi_2,s) = \pm \left(\frac{p^2}{2} + \cos q - 1\right) + h(l_1,l_2) + \varepsilon f(q) g(\varphi_1,\varphi_2,s),$$
(6)

$$h(I_1, I_2) = \Omega_1 I_1^2 / 2 + \Omega_2 I_2^2 / 2, \qquad f(q) = \cos q$$

$$g(\varphi_1, \varphi_2, s) = a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos s.$$
 (7)

Theorem (Arnold diffusion for a two-parameter family)

Assume $a_1 a_2 a_3 \neq 0$ and $|a_1/a_3| + |a_2/a_3| < 0.625$ in Hamiltonian (6)+(7). Then, for any two actions I_+ and any δ there exists $\varepsilon_0 > 0$ such that for every $0 < |\varepsilon| < \varepsilon_0$ there exists an orbit $\tilde{x}(t)$ and T > 0 such that

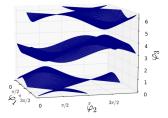
$$|I(\tilde{x}(0)) - I_-| \le \delta$$
 and $|I(\tilde{x}(T)) - I_+| \le \delta$

The a priori unstable system

Results for $3 + \frac{1}{2}$ **d.o.f.**

For $|a_1/a_3| + |a_2/a_3| < 0.625$ there are two horizontal crests $\mathcal{C}_{\mathsf{M},\mathsf{m}}(I)$, and both scattering maps \mathcal{S}_{M} , \mathcal{S}_{m} are globally well defined.

Figure: Horizontal crests: $a_1/a_3 = a_2/a_3 = 0.48$, $\Omega_1 I_1 = \Omega_2 I_2 = 1.219$.



Diffusing orbits are found by shadowing orbits of both scattering maps scattering maps and the inner dynamics.

Remark

Actually, we can prove that given any two actions I_{\pm} and any path $\gamma(s)$ joining them in the actions space, there exists an orbit $\tilde{x}(t)$ such that $I(\tilde{x}(t))$ is δ -close to $\gamma(\Psi(t))$ for some parameterization Ψ .

Theorem (Diffusion paths using only Scattering maps)

Assume $a_1a_2a_3\neq 0$ and $|a_1/a_3|+|a_2/a_3|<0.625$ in Hamiltonian (6)+(7). Given any two $(I_\pm,\theta_\pm)\in \tilde{\mathcal{I}}$, where

$$\tilde{\mathcal{I}} = \mathbb{R}^2 \times \mathbb{T}^2 \setminus \left\{ (0,0,0,0), (0,0,\pi,0), (0,0,0,\pi), (0,0,\pi,\pi) \right\},$$

and any δ there exists $\varepsilon_0 > 0$ such that for every $0 < |\varepsilon| < \varepsilon_0$ there is an orbit $(I^i, \theta^i)_{0 \le i < N}$ of the polyscattering map (S_0, S_1, S_2) :

$$(I^{i+1}, \theta^{i+1}) = S_{\ell}(I^i, \theta^i), \text{ where } \ell \in \{0, 1, 2\},$$

such that

$$\left|\left(I^{0},\theta^{0}\right)-\left(I_{-},\theta_{-}\right)\right|<\delta$$
 and $\left|\left(I^{N},\theta^{N}\right)-\left(I_{+},\theta_{+}\right)\right|<\delta.$

Theorem (Existence of Highways)

Assume $a_1a_2a_3 \neq 0$ and $|a_1/a_3| + |a_2/a_3| < 0.625$ in Hamiltonian (6)+(7). Given any $0 < c_j < C_j$, j = 1, 2, there is an orbit $(I^i, \theta^i)_{0 \leq i < N}$ of the scattering map S_0 such that

$$\left|I_{j}^{0}\right| < c_{j} \quad \text{ and } \quad \left|I_{j}^{N}\right| > C_{j}, \qquad j = 1, 2.$$