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Wigner matrix

Definition

A Hermitian Wigner matrix of size N is a Hermitian random matrix

W = (wij) =
1√
N

(xij) , (1 ≤ i, j ≤ N) ,

whose entries (xij) are complex random variables, independent up to the constraint
xij = xji, such that E wij = 0, and

E|wij |2 =
1

N
, E w2

ij =

{
1
N
, i = j ,

0 , i 6= j .

For simplicity, assume subexponential decay of the matrix entries,

P (|xij | > s) ≤ C0e−s
ϑ

,

for some constants C0 and ϑ > 0.

Special case: Gaussian unitary ensemble, c.f., Bourgade’s talk.

Then the eigenvalues of W follow the semicircle law, Wigner [1955]:



Wigner’s Semicircle law
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Histogram of the eigenvalues of a N = 5000 Hermitian Wigner matrix with complex Gaussian entries



Deformed Wigner matrix

◦ Let V = diag (vi) be an N ×N diagonal random matrix whose entries are real,
centered, i.i.d. random variables.

◦ Assume that the distribution of (vi) is

µ(v) = Z−1(1 + v)b(1− v)bf(v)χ[−1,1](v) ,

where

−1 < b <∞ , f ∈ C1 , with f(v) > 0 , Z is a normalization .

In particular: Evi = 0 and Ev2i = O(1).

Deformed Wigner matrix / Wigner matrix with random potential

For λ ∈ R+, set

H = (hij) := λV +W ,

and assume that V and W are independent.

◦ Note λ = O(N0), so that the eigenvalues of λV and W are of the same order.

◦ Then the eigenvalues follow the deformed semicircle law, µfc, Pastur [1972]:



Deformed semicircle law I

Example 1: (vi) are distributed
according to

µ(v) = Z−1(1− v)
1
3 (1 + v)

1
3χ[−1,1](v) :

b=1/3
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Histogram of eigenvalues of a N = 5000 deformed Wigner matrix with λ = 2, respectively λ = 4.



Stieltjes transform & deformed semicircle law I

◦ Stieltjes transform of a measure ω,

mω(z) :=

∫
R

dω(x)

x− z , z = E + iη ∈ C+ .

◦ Inversion formula (for abs. continuous ω)

ω(E) = lim
η↘0

1

π
Immω(E + iη) .

For example: dµsc(x) := 1
2π

√
4− x2χ[−2,2](x)dx,

mµsc(z) = − 1

z +mµsc(z)
, z ∈ C+ ,

with Immµsc(z) ≥ 0, η > 0.



Stieltjes transform & deformed semicircle law II

mω(z) :=

∫
R

dω(x)

x− z , mµsc(z) = − 1

z +mµsc(z)
, z ∈ C+ .

◦ The Stieltjes transform of the deformed semicircle law, mµfc , satisfies

mµfc(z) =

∫
R

dµ(v)

λv − z −mµfc(z)
, (Pastur relation)

and Immµfc(z) ≥ 0, η > 0.

◦ The deformed semicircle law, µfc, is then obtained through the inversion formula
(µfc is abs. continuous).

◦ Alternative definition, additive free convolution µfc = µ� µsc, c.f., free probability
theory, Voiculescu,...[1985-...].

◦ For the special choice of µ above, µfc is supported on a single interval,
suppµfc = [L−, L+].



Eigenvector behavior I

Denote by (λα) the eigenvalues (with λ1 ≥ λ2 ≥ . . . ≥ λN ), by (uα) the associated
(`2)-normalized eigenvectors and by (uα(k)) the components of the eigenvectors of H.
Then:

◦ λ = 0 (Wigner matrix),

|uα(k)| . N−1/2 , (1 ≤ α ≤ N , 1 ≤ k ≤ N) .

All eigenvectors are completely delocalized.
Erdős-Schlein-Yau,...[2009-2012].

◦ λ 6= 0, b < 1,

|uα(k)| . N−1/2 , (1 ≤ α ≤ N , 1 ≤ k ≤ N) ,

for all finite λ. All eigenvectors are completely delocalized.
Lee-S. [2013]



Deformed semicircle law II

Example 2: (vi) are distributed
according to

µ(v) = Z−1(1−v)4(1+v)4χ[−1,1](v) :

b = 4
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Histograms of eigenvalues of a N = 5000 deformed Wigner matrix with λ = 2, respectively λ = 4.



Eigenvector behavior II

For b > 1, there is a constant λ+, such that we have

µfc(E) ∼

{√
κE , if λ < λ+ ,

(κE)b, if λ > λ+ ,
E ≥ 0 ,

where κE denotes the distance from E to the upper endpoint of the support of µfc.
(A similar statement holds for E ≤ 0).

Wlog assume that v1 ≥ v2 ≥ . . . ≥ vN .

◦ For λ < λ+, all eigenvectors are completely delocalized:

|uα(k)|2 . N−1 , (1 ≤ α ≤ N , 1 ≤ k ≤ N) .

◦ For λ > λ+, the eigenvectors in the bulk are completely delocalized; at the extreme
edge they are ‘partially localized’, i.e.,

|uα(α)|2 =
λ2 − λ2

+

λ2
+ o(1) ,

|uα(k)|2 . 1

N

1

λ2|vα − vk|2
, (α 6= k , 1 ≤ k ≤ N) ,

where α ≤ n0, for some fixed n0. (Similar statement holds for the lower edge)
Lee-S.-Yau



Fluctuations of the largest eigenvalue

The largest eigenvalue λ1 of H approaches L+, as N →∞, where suppµfc = [L−, L+].

Fluctuations at the (upper) edge: λ = O(1)

◦ In the delocalized regime,

lim
N→∞

P
(
N1/2(L+ − λ1) ≤ s

)
= Φa(s) , s ∈ R ,

where Φa is the CDF of centered Gaussian of variance a = a(µ, λ);

◦ In the ‘partially localized’ regime,

lim
N→∞

P
(
N1/(b+1)(L+ − λ1) ≤ s

)
= Gb+1(s) , s ∈ R ,

where

Gb+1(s) =
(

1− e−( s
c
)b+1

)
χ[0,∞)(s)

is the CDF of a Weibull distribution with parameters b + 1 and c = c(µ, λ).

Lee-S.-Yau



From Tracy-Widom to Gaussian: λ = o(N0)

◦ For λ = 0 (Wigner matrix),

lim
N→∞

P
(
N2/3(λ1 − 2) ≤ s

)
= exp

(
−
∫ ∞
s

(x− s)q(x)2dx

)
(1)

=: F2(s) ,

where q satisfies

q′′ = xq + 2q3 , q(x) ∼ Ai(x) , as x→∞ .

GUE: Tracy-Widom [1994-1996], Wigner: Soshnikov [1998],
Erdős-Yau-Yin,... [2012], Lee-Yin [2013]

◦ For λ 6= 0, in case W is a GUE matrix, it is known that the Tracy-Widom law (1)
holds true for λ� N−1/6, Johansson [2007], T. Shcherbina [2011], and that the
transition to Gaussian fluctuations occurs at λ ∼ N−1/6, Johansson [2007].
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