Edge behavior of deformed Wigner matrices

Kevin Schnelli (Joint work with J. O. Lee and H.-T. Yau)

Sept. 25, 2013

Wigner matrix

Definition

A Hermitian Wigner matrix of size ${\cal N}$ is a Hermitian random matrix

$$W = (w_{ij}) = \frac{1}{\sqrt{N}}(x_{ij}), \qquad (1 \le i, j \le N),$$

whose entries (x_{ij}) are complex random variables, independent up to the constraint $x_{ij} = \overline{x}_{ji}$, such that $\mathbb{E} w_{ij} = 0$, and

$$\mathbb{E}|w_{ij}|^2 = \frac{1}{N}, \qquad \mathbb{E} \ w_{ij}^2 = \begin{cases} \frac{1}{N}, & i = j, \\ 0, & i \neq j. \end{cases}$$

For simplicity, assume subexponential decay of the matrix entries,

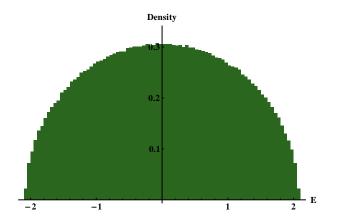
$$\mathbb{P}\left(|x_{ij}| > s\right) \le C_0 \mathrm{e}^{-s^\vartheta},$$

for some constants C_0 and $\vartheta > 0$.

Special case: Gaussian unitary ensemble, c.f., Bourgade's talk.

Then the eigenvalues of W follow the semicircle law, Wigner [1955]:

Wigner's Semicircle law



Histogram of the eigenvalues of a N=5000 Hermitian Wigner matrix with complex Gaussian entries

Deformed Wigner matrix

- Let $V = \text{diag}(v_i)$ be an $N \times N$ diagonal random matrix whose entries are real, centered, i.i.d. random variables.
- \circ Assume that the distribution of (v_i) is

$$\mu(v) = Z^{-1}(1+v)^{\mathbf{b}}(1-v)^{\mathbf{b}}f(v)\chi_{[-1,1]}(v),$$

where

$$-1 < b < \infty$$
, $f \in C^1$, with $f(v) > 0$, Z is a normalization.
In particular: $\mathbb{E}v_i = 0$ and $\mathbb{E}v_i^2 = O(1)$.

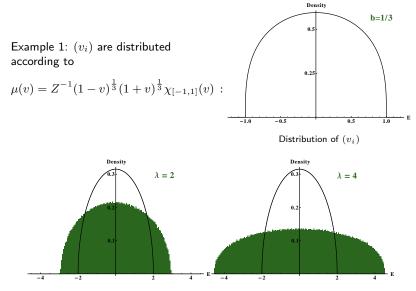
Deformed Wigner matrix / Wigner matrix with random potential For $\lambda \in \mathbb{R}^+$, set

$$H = (h_{ij}) := \lambda V + W \,,$$

and assume that V and W are independent.

- $\circ~$ Note $\lambda=O(N^0),$ so that the eigenvalues of λV and W are of the same order.
- \circ Then the eigenvalues follow the deformed semicircle law, μ_{fc} , Pastur [1972]:

Deformed semicircle law I



Histogram of eigenvalues of a N = 5000 deformed Wigner matrix with $\lambda = 2$, respectively $\lambda = 4$.

Stieltjes transform & deformed semicircle law I

 $\circ~$ Stieltjes transform of a measure $\omega,$

$$m_{\omega}(z) := \int_{\mathbb{R}} \frac{\mathrm{d}\omega(x)}{x-z}, \qquad z = E + \mathrm{i}\eta \in \mathbb{C}^+.$$

• Inversion formula (for abs. continuous ω)

$$\omega(E) = \lim_{\eta \searrow 0} \frac{1}{\pi} \operatorname{Im} m_{\omega}(E + i\eta) \,.$$

For example: $\mathrm{d}\mu_{sc}(x) \mathrel{\mathop:}= \frac{1}{2\pi}\sqrt{4-x^2}\chi_{[-2,2]}(x)\mathrm{d}x$,

$$m_{\mu_{sc}}(z) = -\frac{1}{z + m_{\mu_{sc}}(z)}, \qquad z \in \mathbb{C}^+,$$

with $\operatorname{Im} m_{\mu_{sc}}(z) \ge 0$, $\eta > 0$.

Stieltjes transform & deformed semicircle law II

$$m_{\omega}(z) := \int_{\mathbb{R}} \frac{\mathrm{d}\omega(x)}{x-z}, \qquad m_{\mu_{sc}}(z) = -\frac{1}{z+m_{\mu_{sc}}(z)}, \qquad z \in \mathbb{C}^+.$$

 $\circ~$ The Stieltjes transform of the deformed semicircle law, $m_{\mu_{fc}}$, satisfies

$$m_{\mu_{fc}}(z) = \int_{\mathbb{R}} \frac{\mathrm{d}\mu(v)}{\lambda v - z - m_{\mu_{fc}}(z)}, \qquad (\text{Pastur relation})$$

and $\operatorname{Im} m_{\mu_{fc}}(z) \geq 0$, $\eta > 0$.

- The deformed semicircle law, μ_{fc} , is then obtained through the inversion formula (μ_{fc} is abs. continuous).
- Alternative definition, additive free convolution $\mu_{fc} = \mu \boxplus \mu_{sc}$, c.f., free probability theory, Voiculescu,...[1985-...].
- For the special choice of μ above, μ_{fc} is supported on a single interval, $\operatorname{supp} \mu_{fc} = [L_-, L_+].$

Eigenvector behavior I

Denote by (λ_{α}) the eigenvalues (with $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_N$), by (u_{α}) the associated (ℓ^2) -normalized eigenvectors and by $(u_{\alpha}(k))$ the components of the eigenvectors of H. Then:

 $\circ \lambda = 0$ (Wigner matrix),

 $|u_{\alpha}(k)| \lesssim N^{-1/2}$, $(1 \le \alpha \le N, 1 \le k \le N)$.

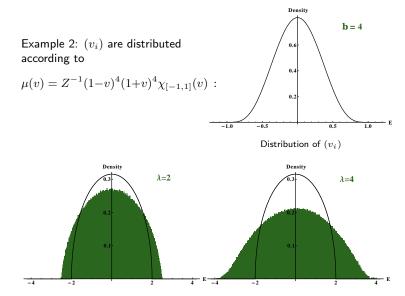
All eigenvectors are completely delocalized. Erdős-Schlein-Yau,...[2009-2012].

 $\circ \lambda \neq 0$, $\mathbf{b} < 1$,

$$|u_{\alpha}(k)| \lesssim N^{-1/2}, \qquad (1 \le \alpha \le N, 1 \le k \le N),$$

for all finite $\lambda.$ All eigenvectors are completely delocalized. Lee-S. [2013]

Deformed semicircle law II



Histograms of eigenvalues of a N = 5000 deformed Wigner matrix with $\lambda = 2$, respectively $\lambda = 4$.

Eigenvector behavior II

For b > 1, there is a constant λ_+ , such that we have

$$\mu_{fc}(E) \sim \begin{cases} \sqrt{\kappa_E}, & \text{if } \lambda < \lambda_+, \\ (\kappa_E)^{\mathbf{b}}, & \text{if } \lambda > \lambda_+, \end{cases} \quad E \ge 0,$$

where κ_E denotes the distance from E to the upper endpoint of the support of μ_{fc} . (A similar statement holds for $E \leq 0$).

Wlog assume that $v_1 \geq v_2 \geq \ldots \geq v_N$.

• For $\lambda < \lambda_+$, all eigenvectors are completely delocalized:

$$|u_{\alpha}(k)|^2 \lesssim N^{-1}$$
, $(1 \le \alpha \le N, 1 \le k \le N)$.

• For $\lambda > \lambda_+$, the eigenvectors in the bulk are completely delocalized; at the extreme edge they are 'partially localized', i.e.,

$$\begin{split} |u_{\alpha}(\alpha)|^2 &= \frac{\lambda^2 - \lambda_+^2}{\lambda^2} + o(1) \,, \\ |u_{\alpha}(k)|^2 &\lesssim \frac{1}{N} \frac{1}{\lambda^2 |v_{\alpha} - v_k|^2} \,, \qquad (\alpha \neq k \,, 1 \le k \le N) \,, \end{split}$$

where $\alpha \leq n_{\rm 0},$ for some fixed $n_{\rm 0}.$ (Similar statement holds for the lower edge) Lee-S.-Yau

Fluctuations of the largest eigenvalue

The largest eigenvalue λ_1 of H approaches L_+ , as $N \to \infty$, where $\operatorname{supp} \mu_{fc} = [L_-, L_+]$.

Fluctuations at the (upper) edge: $\lambda = O(1)$

o In the delocalized regime,

$$\lim_{N \to \infty} \mathbb{P}\left(N^{1/2}(L_+ - \lambda_1) \le s \right) = \Phi_a(s) \,, \qquad s \in \mathbb{R} \,,$$

where Φ_a is the CDF of centered Gaussian of variance $a=a(\mu,\lambda);$ $\circ~$ In the 'partially localized' regime,

$$\lim_{N \to \infty} \mathbb{P}\left(N^{1/(b+1)}(L_{+} - \lambda_{1}) \le s\right) = G_{b+1}(s), \qquad s \in \mathbb{R}.$$

where

$$G_{b+1}(s) = \left(1 - e^{-\left(\frac{s}{c}\right)^{b+1}}\right) \chi_{[0,\infty)}(s)$$

is the CDF of a Weibull distribution with parameters $\mathbf{b}+1$ and $c=c(\mu,\lambda).$ Lee-S.-Yau

From Tracy-Widom to Gaussian: $\lambda = o(N^0)$

• For $\lambda = 0$ (Wigner matrix),

$$\lim_{N \to \infty} \mathbb{P}\left(N^{2/3}(\lambda_1 - 2) \le s\right) = \exp\left(-\int_s^\infty (x - s)q(x)^2 \mathrm{d}x\right)$$
(1)
=: $F_2(s)$,

where q satisfies

$$q'' = xq + 2q^3$$
, $q(x) \sim \operatorname{Ai}(x)$, as $x \to \infty$.

GUE: Tracy-Widom [1994-1996], Wigner: Soshnikov [1998], Erdős-Yau-Yin,... [2012], Lee-Yin [2013]

• For $\lambda \neq 0$, in case W is a GUE matrix, it is known that the Tracy-Widom law (1) holds true for $\lambda \ll N^{-1/6}$, Johansson [2007], T. Shcherbina [2011], and that the transition to Gaussian fluctuations occurs at $\lambda \sim N^{-1/6}$, Johansson [2007].