Applications of the trace of Frobenius past, present, and future

Tony Feng

September 25, 2020

Applications of the trace of Frobenius past, present, and future

Tony Feng

September 25, 2020

Weil's conjecture for curves

Consider the equation

$$
y^{2}=x^{3}+x^{2}+x+1
$$

Weil's conjecture for curves

Consider the equation

$$
y^{2}=x^{3}+x^{2}+x+1
$$

How many solutions in $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$?

Weil's conjecture for curves

Consider the equation

$$
y^{2}=x^{3}+x^{2}+x+1
$$

How many solutions in $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$?
How many solutions in $\mathbb{F}_{p^{n}}$?

Weil's conjecture for curves

Consider the equation

$$
y^{2}=x^{3}+x^{2}+x+1
$$

How many solutions in $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$?
How many solutions in $\mathbb{F}_{p^{n}}$?
Answer: $p^{n}+O\left(p^{n / 2}\right)$

Weil's conjecture for curves

Consider the equation

$$
y^{2}=x^{3}+x^{2}+x+1
$$

How many solutions in $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$?

How many solutions in $\mathbb{F}_{p^{n}}$?
Answer: $p^{n}+O\left(p^{n / 2}\right)$
This is a case of Weil's conjecture.

Frobenius endomorphism

$$
y^{2}=x^{3}+x^{2}+x+1
$$

Frobenius endomorphism

$$
y^{2}=x^{3}+x^{2}+x+1
$$

In characteristic $p,(a+b)^{p}=a^{p}+b^{p}$.

Frobenius endomorphism

$$
y^{2}=x^{3}+x^{2}+x+1
$$

In characteristic $p,(a+b)^{p}=a^{p}+b^{p}$.
If (a, b) is a solution, then $\left(a^{p}, b^{p}\right)$ is a solution:

Frobenius endomorphism

$$
y^{2}=x^{3}+x^{2}+x+1
$$

In characteristic $p,(a+b)^{p}=a^{p}+b^{p}$.
If (a, b) is a solution, then $\left(a^{p}, b^{p}\right)$ is a solution:

$$
0=\left(b^{2}-a^{3}-a^{2}-a-1\right)^{p}
$$

Frobenius endomorphism

$$
y^{2}=x^{3}+x^{2}+x+1
$$

In characteristic $p,(a+b)^{p}=a^{p}+b^{p}$.
If (a, b) is a solution, then $\left(a^{p}, b^{p}\right)$ is a solution:

$$
0=\left(b^{2}-a^{3}-a^{2}-a-1\right)^{p}=\left(b^{p}\right)^{2}-\left(a^{p}\right)^{3}-\left(a^{p}\right)^{2}-a^{p}-1
$$

Frobenius endomorphism

$$
y^{2}=x^{3}+x^{2}+x+1
$$

In characteristic $p,(a+b)^{p}=a^{p}+b^{p}$.
If (a, b) is a solution, then $\left(a^{p}, b^{p}\right)$ is a solution:

$$
0=\left(b^{2}-a^{3}-a^{2}-a-1\right)^{p}=\left(b^{p}\right)^{2}-\left(a^{p}\right)^{3}-\left(a^{p}\right)^{2}-a^{p}-1
$$

\Longrightarrow there is a symmetry $(a, b) \mapsto\left(a^{p}, b^{p}\right)$ on the space of solutions, called the Frobenius endomorphism.

Weil's conjecture for curves

Consider the equation

$$
y^{2}=x^{3}+x^{2}+x+1
$$

How many solutions in $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$?

How many solutions in $\mathbb{F}_{p^{n}}$?
Answer: $p^{n}+O\left(p^{n / 2}\right)$
This is a case of Weil's conjecture.

Weil's conjecture

There is a generalization to more complicated systems of equations Z, called Weil's Conjecture, proved by Deligne (1974).

Weil's conjecture

There is a generalization to more complicated systems of equations Z, called Weil's Conjecture, proved by Deligne (1974).

Fundamental identity (Grothendieck)
$\#\left\{\right.$ solutions to Z in $\left.\mathbb{F}_{p^{n}}\right\}=\operatorname{Tr}\left(\operatorname{Frob}_{p}^{n}, H^{*}(Z)\right)$.

Weil's conjecture

There is a generalization to more complicated systems of equations Z, called Weil's Conjecture, proved by Deligne (1974).

Fundamental identity (Grothendieck) $\#\left\{\right.$ solutions to Z in $\left.\mathbb{F}_{p^{n}}\right\}=\operatorname{Tr}\left(\operatorname{Frob}_{p}^{n}, H^{*}(Z)\right)$.

Enables geometric and algebraic tools:

- nearby cycles, monodromy, Lefschetz pencils, spectral sequences, etc.

The past

$$
\underbrace{\#\left\{\text { solutions to } Z \text { in } \mathbb{F}_{p^{n}}\right\}}_{\text {number }}=\operatorname{Tr}(\operatorname{Frob}_{p}^{n}, \underbrace{H^{*}(Z)}_{\text {vector space }})
$$

The past

$\underbrace{\#\left\{\text { solutions to } Z \text { in } \mathbb{F}_{p^{n}}\right\}}_{\text {number }}=\operatorname{Tr}(\operatorname{Frob}_{p}^{n}, \underbrace{H^{*}(Z)}_{\text {vector space }})$

What's next?

Hierarchy of traces

$$
\begin{aligned}
& \text { Numbers Trace } \frac{\text { Vector spaces }}{\text { (Rings, complexes, etc.) Trace }} \text { ??? } \\
& 2 \\
& 3 \\
& 4=2^{2} \\
& \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& \begin{array}{cc}
\mathbb{F}_{p} & \left.\begin{array}{c}
\mathbb{C}[x] \\
\mathbb{F}_{p^{n}} \\
\\
\\
\\
\mathbb{C}[x] / x^{2}
\end{array}\right]
\end{array}
\end{aligned}
$$

Hierarchy of traces

$$
\begin{array}{ll}
\text { Numbers } \\
\text { Trace } & \frac{\text { Vector spaces }}{\text { (Rings, complexes, etc.) }} \text { Trace ? ? } \\
2 & \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
\end{array}
$$

Hierarchy of traces

Categorical traces

Ben-Zvi-Nadler, Gaitsgory: an endomorphism of a category has a trace.

Categorical traces

Ben-Zvi-Nadler, Gaitsgory: an endomorphism of a category has a trace.

Categorical traces

Ben-Zvi-Nadler, Gaitsgory: an endomorphism of a category has a trace.

Applications:

- Categorical proof of Hirzebruch-Riemann-Roch

Categorical traces

Ben-Zvi-Nadler, Gaitsgory: an endomorphism of a category has a trace.

Applications:

- Categorical proof of Hirzebruch-Riemann-Roch
- (Xiao-Zhu) Tate conjecture on products of Shimura varieties

The commuting variety conjecture

Lie algebra $\mathfrak{g}=$ vector space (of matrices) with notion of commutator $[X, Y]$ for $X, Y \in \mathfrak{g}$.

The commuting variety conjecture

Lie algebra $\mathfrak{g}=$ vector space (of matrices) with notion of commutator $[X, Y]$ for $X, Y \in \mathfrak{g}$.

- ("Type A") $\mathfrak{g l} l_{n}=\left\{X \in \operatorname{Mat}_{n}(\mathbb{C})\right\}$,

$$
[X, Y]=X Y-Y X
$$

The commuting variety conjecture

Lie algebra $\mathfrak{g}=$ vector space (of matrices) with notion of commutator $[X, Y]$ for $X, Y \in \mathfrak{g}$.

- ("Type A") $\mathfrak{g l} l_{n}=\left\{X \in \operatorname{Mat}_{n}(\mathbb{C})\right\}$,

$$
[X, Y]=X Y-Y X
$$

- ("Type $\left.B^{\prime \prime}\right) \mathfrak{s o}_{2 n+1}=\left\{X \in \operatorname{Mat}_{2 n+1}(\mathbb{C}): X+X^{t}=0\right\}$

$$
[X, Y]=X Y-Y X
$$

The commuting variety conjecture

Lie algebra $\mathfrak{g}=$ vector space (of matrices) with notion of commutator $[X, Y]$ for $X, Y \in \mathfrak{g}$.

- ("Type A") $\mathfrak{g l} l_{n}=\left\{X \in \operatorname{Mat}_{n}(\mathbb{C})\right\}$,

$$
[X, Y]=X Y-Y X
$$

- ("Type $\left.B^{\prime \prime}\right) \mathfrak{s o}_{2 n+1}=\left\{X \in \operatorname{Mat}_{2 n+1}(\mathbb{C}): X+X^{t}=0\right\}$

$$
[X, Y]=X Y-Y X
$$

Conjecture

The commuting variety $\{X, Y \in \mathfrak{g}:[X, Y]=0\}$ is reduced, i.e. $f^{2}=0 \Longrightarrow f=0$.

The commuting variety conjecture

Example: $\mathfrak{g l}_{2}$

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\}
$$

The commuting variety conjecture

Example: $\mathfrak{g l}_{2}$

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\}
$$

Reduced means if $P^{2}=0 \in \mathbb{C}[a, b, c, d, e, f, g, h] /(a e+b g=a e+f c, \ldots)$, then $P=0 \in \mathbb{C}[a, b, c, d, e, f, g, h] /(a e+b g=a e+f c, \ldots)$.

The commuting variety conjecture

Example: $\mathfrak{g l}_{2}$

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\}
$$

Reduced means if $P^{2}=0 \in \mathbb{C}[a, b, c, d, e, f, g, h] /(a e+b g=a e+f c, \ldots)$, then $P=0 \in \mathbb{C}[a, b, c, d, e, f, g, h] /(a e+b g=a e+f c, \ldots)$.

Example of something non-reduced: $\mathbb{C}[a] / a^{2}$.

The commuting variety conjecture

Example: $\mathfrak{g l}_{2}$

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\}
$$

Reduced means if $P^{2}=0 \in \mathbb{C}[a, b, c, d, e, f, g, h] /(a e+b g=a e+f c, \ldots)$, then $P=0 \in \mathbb{C}[a, b, c, d, e, f, g, h] /(a e+b g=a e+f c, \ldots)$.

Example of something non-reduced: $\mathbb{C}[a] / a^{2}$.
Note: $\mathrm{GL}_{2}(\mathbb{C})$ acts on the space of solutions by simultaneous conjugation.

The commuting variety conjecture

$\underline{\text { Example: } \mathfrak{g l}_{2}}$

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\}
$$

Reduced means if $P^{2}=0 \in \mathbb{C}[a, b, c, d, e, f, g, h] /(a e+b g=a e+f c, \ldots)$, then $P=0 \in \mathbb{C}[a, b, c, d, e, f, g, h] /(a e+b g=a e+f c, \ldots)$.

Example of something non-reduced: $\mathbb{C}[a] / a^{2}$.
Note: $G L_{2}(\mathbb{C})$ acts on the space of solutions by simultaneous conjugation.

Conjecture

The variety $\{X, Y \in \mathfrak{g}:[X, Y]=0\} /$ conjugation by G is reduced.

Trace of Frobenius on the Satake category

(Joint with Dennis Gaitsgory)

Trace of Frobenius on the Satake category

(Joint with Dennis Gaitsgory)
(modular) coherent
Satake category for G
trace of Frob!
\downarrow
$\sim \frac{\text { commuting variety of } \mathfrak{g}}{\text { conjugation by } G}$

Trace of Frobenius on the Satake category

(Joint with Dennis Gaitsgory)

Trace of Frobenius on the Satake category

(Joint with Dennis Gaitsgory)

Trace of Frobenius on the Satake category

(Joint with Dennis Gaitsgory)

Theorem

If this picture is correct, then $\frac{\text { commuting variety } \mathfrak{f g}}{\text { conjugation by } G}$ is reduced in types A, B, C (as a consequence of a much more precise theorem).

Trace of Frobenius on the Satake category

(Joint with Dennis Gaitsgory)

Theorem

If this picture is correct, then $\frac{\text { commuting variety of } \mathfrak{g}}{\text { conjugation by } G}$ is reduced in types A, B, C (as a consequence of a much more precise theorem).

Theorem

If this picture is correct, then the derived Hecke algebra for \widehat{G} is commutative (except possibly in small characteristics).

For $T: V \rightarrow V, \operatorname{Tr}(T)$ is

$$
k \rightarrow V \otimes V^{\vee} \xrightarrow{T \otimes \mathrm{ld}} V \otimes V^{\vee} \rightarrow k
$$

$(\text { Derived commuting variety of } \mathfrak{g})^{\widehat{G}} \xrightarrow{\sim}(\text { Derived commuting variety of } \mathfrak{t})^{W}$

