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Weil’s conjecture for curves

Consider the equation

y2 = x3 + x2 + x + 1

How many solutions in Fp = {0, 1, . . . , p � 1}?

How many solutions in Fpn?

Answer: pn + O(pn/2)

This is a case of Weil’s conjecture.
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Frobenius endomorphism

y2 = x3 + x2 + x + 1

In characteristic p, (a+ b)p = ap + bp.

If (a, b) is a solution, then (ap, bp) is a solution:

0 = (b2 � a3 � a2 � a� 1)p = (bp)2 � (ap)3 � (ap)2 � ap � 1

=) there is a symmetry (a, b) 7! (ap, bp) on the space of solutions,

called the Frobenius endomorphism.
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Weil’s conjecture

There is a generalization to more complicated systems of equations Z ,

called Weil’s Conjecture, proved by Deligne (1974).

Fundamental identity (Grothendieck)

#{solutions to Z in Fpn} = Tr(Frob
n
p,H

⇤(Z )).

Enables geometric and algebraic tools:

nearby cycles, monodromy, Lefschetz pencils, spectral sequences, etc.
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Categorical traces

Ben-Zvi–Nadler, Gaitsgory: an endomorphism of a category has a trace.

Applications:

Categorical proof of Hirzebruch-Riemann-Roch

(Xiao-Zhu) Tate conjecture on products of Shimura varieties
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The commuting variety conjecture

Lie algebra g = vector space (of matrices) with notion of commutator

[X ,Y ] for X ,Y 2 g.

(“Type A”) gln = {X 2 Matn(C)},

[X ,Y ] = XY � YX .

(“Type B”) so2n+1 = {X 2 Mat2n+1(C) : X + X t = 0}

[X ,Y ] = XY � YX .

Conjecture
The commuting variety {X ,Y 2 g : [X ,Y ] = 0} is reduced, i.e.

f 2 = 0 =) f = 0.
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The commuting variety conjecture

Example: gl2

⇢✓
a b
c d

◆
,

✓
e f
g h

◆
:

✓
a b
c d

◆✓
e f
g h

◆
=

✓
e f
g h

◆✓
a b
c d

◆�

Reduced means if P2 = 0 2 C[a, b, c , d , e, f , g , h]/(ae + bg = ae + fc , . . .),
then P = 0 2 C[a, b, c , d , e, f , g , h]/(ae + bg = ae + fc , . . .).

Example of something non-reduced: C[a]/a2
.

Note: GL2(C) acts on the space of solutions by simultaneous conjugation.

Conjecture
The variety {X ,Y 2 g : [X ,Y ] = 0}/conjugation by G is reduced.
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derived Hecke algebra for bG
(Venkatesh)

trace of Frob

Arinkin-Bezrukavnikov

trace of Frob

Theorem
If this picture is correct, then

commuting variety of g
conjugation by G is reduced in types

A,B ,C (as a consequence of a much more precise theorem).

Theorem
If this picture is correct, then the derived Hecke algebra for bG is

commutative (except possibly in small characteristics).
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For T : V ! V , Tr(T ) is

k ! V ⌦ V _ T⌦Id���! V ⌦ V _ ! k .



(Derived commuting variety of g)
bG ⇠�! (Derived commuting variety of t)W


