Applications of the trace of Frobenius past, present, and future

Tony Feng

September 25, 2020

Applications of the trace of Frobenius past, present, and future

Tony Feng

September 25, 2020

Consider the equation

$$y^2 = x^3 + x^2 + x + 1$$

Consider the equation

$$y^2 = x^3 + x^2 + x + 1$$

How many solutions in $\mathbb{F}_p = \{0, 1, \dots, p-1\}$?

Consider the equation

$$y^2 = x^3 + x^2 + x + 1$$

How many solutions in $\mathbb{F}_p = \{0, 1, \dots, p-1\}$?

How many solutions in \mathbb{F}_{p^n} ?

Consider the equation

$$y^2 = x^3 + x^2 + x + 1$$

How many solutions in $\mathbb{F}_p = \{0, 1, \dots, p-1\}$?

How many solutions in \mathbb{F}_{p^n} ?

Answer:
$$p^n + O(p^{n/2})$$

Consider the equation

$$y^2 = x^3 + x^2 + x + 1$$

How many solutions in $\mathbb{F}_p = \{0, 1, \dots, p-1\}$?

How many solutions in \mathbb{F}_{p^n} ?

Answer:
$$p^n + O(p^{n/2})$$

This is a case of Weil's conjecture.

$$y^2 = x^3 + x^2 + x + 1$$

$$y^2 = x^3 + x^2 + x + 1$$

In characteristic p, $(a+b)^p = a^p + b^p$.

$$y^2 = x^3 + x^2 + x + 1$$

In characteristic p, $(a + b)^p = a^p + b^p$.

If (a, b) is a solution, then (a^p, b^p) is a solution:

$$y^2 = x^3 + x^2 + x + 1$$

In characteristic p, $(a+b)^p = a^p + b^p$.

If (a, b) is a solution, then (a^p, b^p) is a solution:

$$0 = (b^2 - a^3 - a^2 - a - 1)^p$$

$$y^2 = x^3 + x^2 + x + 1$$

In characteristic p, $(a+b)^p = a^p + b^p$.

If (a, b) is a solution, then (a^p, b^p) is a solution:

$$0 = (b^2 - a^3 - a^2 - a - 1)^p = (b^p)^2 - (a^p)^3 - (a^p)^2 - a^p - 1$$

$$y^2 = x^3 + x^2 + x + 1$$

In characteristic p, $(a+b)^p = a^p + b^p$.

If (a, b) is a solution, then (a^p, b^p) is a solution:

$$0 = (b^2 - a^3 - a^2 - a - 1)^p = (b^p)^2 - (a^p)^3 - (a^p)^2 - a^p - 1$$

 \implies there is a **symmetry** $(a,b) \mapsto (a^p,b^p)$ on the space of solutions, called the Frobenius endomorphism.

Consider the equation

$$y^2 = x^3 + x^2 + x + 1$$

How many solutions in $\mathbb{F}_p = \{0, 1, \dots, p-1\}$?

How many solutions in \mathbb{F}_{p^n} ?

Answer:
$$p^n + O(p^{n/2})$$

This is a case of Weil's conjecture.

Weil's conjecture

There is a generalization to more complicated systems of equations Z, called Weil's Conjecture, proved by Deligne (1974).

Weil's conjecture

There is a generalization to more complicated systems of equations Z, called Weil's Conjecture, proved by Deligne (1974).

Fundamental identity (Grothendieck)

$$\#\{\text{solutions to }Z\text{ in }\mathbb{F}_{p^n}\}=\text{Tr}(\text{Frob}_p^n,H^*(Z)).$$

Weil's conjecture

There is a generalization to more complicated systems of equations Z, called Weil's Conjecture, proved by Deligne (1974).

Fundamental identity (Grothendieck)

$$\#\{\text{solutions to }Z\text{ in }\mathbb{F}_{p^n}\}=\text{Tr}(\text{Frob}_p^n,H^*(Z)).$$

Enables geometric and algebraic tools:

nearby cycles, monodromy, Lefschetz pencils, spectral sequences, etc.

The past

$$\underbrace{\#\{\text{solutions to } Z \text{ in } \mathbb{F}_{p^n}\}}_{\text{number}} = \mathsf{Tr}(\mathsf{Frob}_p^n, \underbrace{H^*(Z)}_{\text{vector space}})$$

The past

$$\underbrace{\#\{\text{solutions to } Z \text{ in } \mathbb{F}_{p^n}\}}_{\text{number}} = \mathsf{Tr}(\mathsf{Frob}_p^n, \underbrace{H^*(Z)}_{\text{vector space}})$$

What's next?

Hierarchy of traces

Hierarchy of traces

Equality between objects.

- Maps between objects.
- Equality between maps.

Hierarchy of traces

Equality between objects.

- Maps between objects.
- Equality between maps.

- Maps between objects.
- Maps between maps.

Ben-Zvi-Nadler, Gaitsgory: an endomorphism of a category has a trace.

Ben-Zvi-Nadler, Gaitsgory: an endomorphism of a category has a trace.

Ben-Zvi-Nadler, Gaitsgory: an endomorphism of a category has a trace.

Applications:

• Categorical proof of Hirzebruch-Riemann-Roch

Ben-Zvi-Nadler, Gaitsgory: an endomorphism of a category has a trace.

Applications:

- Categorical proof of Hirzebruch-Riemann-Roch
- (Xiao-Zhu) Tate conjecture on products of Shimura varieties

Lie algebra $\mathfrak{g}=$ vector space (of matrices) with notion of commutator [X,Y] for $X,Y\in\mathfrak{g}$.

Lie algebra $\mathfrak{g}=$ vector space (of matrices) with notion of commutator [X,Y] for $X,Y\in\mathfrak{g}$.

• ("Type A") $\mathfrak{gl}_n = \{X \in \operatorname{Mat}_n(\mathbb{C})\},\$

$$[X,Y]=XY-YX.$$

Lie algebra $\mathfrak{g}=$ vector space (of matrices) with notion of commutator [X,Y] for $X,Y\in\mathfrak{g}$.

• ("Type A") $\mathfrak{gl}_n = \{X \in \operatorname{Mat}_n(\mathbb{C})\},\$

$$[X,Y]=XY-YX.$$

• ("Type B") $\mathfrak{so}_{2n+1} = \{X \in \mathrm{Mat}_{2n+1}(\mathbb{C}) \colon X + X^t = 0\}$

$$[X,Y]=XY-YX.$$

Lie algebra $\mathfrak{g}=$ vector space (of matrices) with notion of commutator [X,Y] for $X,Y\in\mathfrak{g}$.

• ("Type A") $\mathfrak{gl}_n = \{X \in \operatorname{Mat}_n(\mathbb{C})\},\$

$$[X,Y]=XY-YX.$$

• ("Type B") $\mathfrak{so}_{2n+1}=\{X\in \operatorname{Mat}_{2n+1}(\mathbb{C})\colon X+X^t=0\}$ [X,Y]=XY-YX.

Conjecture

The commuting variety $\{X, Y \in \mathfrak{g} \colon [X, Y] = 0\}$ is reduced, i.e. $f^2 = 0 \implies f = 0$.

Example: \mathfrak{gl}_2

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

Example: \mathfrak{gl}_2

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

Reduced means if $P^2 = 0 \in \mathbb{C}[a, b, c, d, e, f, g, h]/(ae + bg = ae + fc, ...)$, then $P = 0 \in \mathbb{C}[a, b, c, d, e, f, g, h]/(ae + bg = ae + fc, ...)$.

Example: \mathfrak{gl}_2

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

Reduced means if $P^2 = 0 \in \mathbb{C}[a, b, c, d, e, f, g, h]/(ae + bg = ae + fc, ...)$, then $P = 0 \in \mathbb{C}[a, b, c, d, e, f, g, h]/(ae + bg = ae + fc, ...)$.

Example of something non-reduced: $\mathbb{C}[a]/a^2$.

Example: \mathfrak{gl}_2

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

Reduced means if $P^2 = 0 \in \mathbb{C}[a, b, c, d, e, f, g, h]/(ae + bg = ae + fc, ...)$, then $P = 0 \in \mathbb{C}[a, b, c, d, e, f, g, h]/(ae + bg = ae + fc, ...)$.

Example of something non-reduced: $\mathbb{C}[a]/a^2$.

<u>Note:</u> $GL_2(\mathbb{C})$ acts on the space of solutions by simultaneous conjugation.

Example: \mathfrak{gl}_2

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} e & f \\ g & h \end{pmatrix} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right\}$$

Reduced means if $P^2 = 0 \in \mathbb{C}[a, b, c, d, e, f, g, h]/(ae + bg = ae + fc, ...)$, then $P = 0 \in \mathbb{C}[a, b, c, d, e, f, g, h]/(ae + bg = ae + fc, ...)$.

Example of something non-reduced: $\mathbb{C}[a]/a^2$.

<u>Note:</u> $GL_2(\mathbb{C})$ acts on the space of solutions by simultaneous conjugation.

Conjecture

The variety $\{X, Y \in \mathfrak{g} \colon [X, Y] = 0\}/$ conjugation by G is reduced.

```
(modular) coherent Satake category for G trace of Frob \downarrow \sim \frac{\text{commuting variety of }\mathfrak{g}}{\text{conjugation by }G}
```

(Joint with Dennis Gaitsgory)

Theorem

If this picture is correct, then $\frac{\text{commuting variety of }\mathfrak{g}}{\text{conjugation by }G}$ is reduced in types A,B,C (as a consequence of a much more precise theorem).

(Joint with Dennis Gaitsgory)

Theorem

If this picture is correct, then $\frac{\text{commuting variety of }\mathfrak{g}}{\text{conjugation by }G}$ is reduced in types A,B,C (as a consequence of a much more precise theorem).

Theorem

If this picture is correct, then the derived Hecke algebra for \widehat{G} is commutative (except possibly in small characteristics).

For $T \colon V \to V$, $\mathsf{Tr}(T)$ is

(Derived commuting variety of \mathfrak{g}) $^{\widehat{G}} \xrightarrow{\sim} (Derived \; commuting \; variety \; of \; \mathfrak{t})^W$