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The objects of interest

A symplectic manifold (M2n+2, ω) is a smooth manifold M, together
with a closed 2-form ω whose top exterior power ωn+1 is a volume
form.

A Lagrangian subvariety Λ ⊂ M is an (n + 1)-dimensional C∞

subvariety such that ω|Λsmooth
= 0.

A Liouville domain (M, θ) is a compact manifold M with boundary,
together with a 1-form θ such that ω := dθ is symplectic and such
that the vector field Z defined by ıZω = θ points out along ∂M.

The skeleton of θ is the locus of points which never reach ∂M under
the flow of Z .
∂M is naturally equipped with the contact 1-form α := θ|∂M , which
means α ∧ (dα)n is a volume form.

A Legendrian subvariety L ⊂ ∂M is an n-dimensional C∞ subvariety
such that α|Lsmooth

= 0.
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Example 1: Surfaces

M an oriented surface with boundary and volume form ω.

Z a divergence 1 vector field which points out along the boundary.

skel(θ) is some singular curve.

A Lagrangian Λ ⊂ M is a curve.

A Legendrian L ⊂ ∂M is a finite union of boundary points.
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Example 2: Cotangent bundles

M = DT ∗X for a smooth manifold X , with symplectic form
ω =

∑
dpi ∧ dqi in local coordinates.

Z =
∑

pi
∂
∂pi

.

skel(θ) is the 0-section.

Any smooth submanifold S ⊂ X gives rise to the smooth Lagrangian
N∗S ⊂ M.

In particular, the 0-section is a Lagrangian, as is any cotangent fiber.
Similarly, the union of the conormals to the strata of a stratification
gives a singular Lagrangian.

All of these Lagrangians have Legendrian boundary.
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Thickening smooth Legendrians

Let L ⊂ Y be a Legendrian submanifold
of a contact manifold (Y , α).

Take a nice, closed tubular
neighborhood U ⊃ L.

The quotient X of U by the Reeb line
field ker(dα) is a symplectic manifold
isomorphic to a closed neighborhood of
the 0-section in T ∗L.

Write π : U → X for the quotient map.

By the Legendrian neighborhood
theorem, there is a lift σ : X → U such
that σ ◦ π(L) = L and σ∗α = θstd .

This σ is the “thickening” of L.

L

Y

R

X

π σ
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Why thicken?

General expectation

Floer theory
for L

←→ Floer theory
for σ

While we know how to do microlocal
sheaf theory for singular L, it is less
clear how to do Floer theory.

Question

Can the previous thickening procedure be
carried out for singular Legendrians? In
other words, can we produce a lift σ such
that σ ◦ π(L) = L and such that (X , σ∗α) is
a Liouville domain?

L

Y

R

X

π σ
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The straightforward approach

The straightforward approach breaks into two steps:

1 Construct local lifts near the singularities.

2 Patch the local lifts together.

I won’t talk about problem 1. For problem 2, we can observe that any two
lifts are Reeb graphs of one another, i.e.

σ′ = φfR ◦ σ

with f : X → R some function.
Looking at the effect on 1-forms, we obtain

(σ′)∗α = σ∗α + df .
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The straightforward approach, continued

If we’re patching, then X is modeled on X 0 × [0, 1], and we want f to
interpolate between 0 near X 0 × {0} and some given function near
X 0 × {1}.

By cutting into time slices, we roughly want to solve the following problem:

Question

Given a Lagrangian subvariety L ⊂ X in a symplectic manifold (X , ω) with
boundary, denote by Liou(L) the space of Liouville forms for ω with
skeleton L. Is Liou(L) connected?

I don’t know any good theorems in this direction. The strongest existing
statements are technical lemmas in a book of Cieliebak–Eliashberg.
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Thank you!
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