Lagrangian and Legendrian skeleta

Zack Sylvan

September 27, 2016

Zack Sylvan

Lagrangian and Legendrian skeleta

September 27, 2016 1 / 9

3

イロト イポト イヨト イヨト

- 2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• A symplectic manifold (M^{2n+2}, ω) is a smooth manifold M, together with a closed 2-form ω whose top exterior power ω^{n+1} is a volume form.

- 3

- 4 同 6 4 日 6 4 日 6

- A symplectic manifold (M²ⁿ⁺², ω) is a smooth manifold M, together with a closed 2-form ω whose top exterior power ωⁿ⁺¹ is a volume form.
- A Lagrangian subvariety Λ ⊂ M is an (n + 1)-dimensional C[∞] subvariety such that ω|_{Λ_{smooth}} = 0.

(日) (周) (日) (日)

- A symplectic manifold (M²ⁿ⁺², ω) is a smooth manifold M, together with a closed 2-form ω whose top exterior power ωⁿ⁺¹ is a volume form.
- A Lagrangian subvariety Λ ⊂ M is an (n + 1)-dimensional C[∞] subvariety such that ω|_{Λ_{smooth}} = 0.
- A Liouville domain (M, θ) is a compact manifold M with boundary, together with a 1-form θ such that $\omega := d\theta$ is symplectic and such that the vector field Z defined by $i_Z \omega = \theta$ points out along ∂M .

・ 同 ト ・ ヨ ト ・ ヨ ト

- A symplectic manifold (M²ⁿ⁺², ω) is a smooth manifold M, together with a closed 2-form ω whose top exterior power ωⁿ⁺¹ is a volume form.
- A Lagrangian subvariety Λ ⊂ M is an (n + 1)-dimensional C[∞] subvariety such that ω|_{Λ_{smooth}} = 0.
- A Liouville domain (M, θ) is a compact manifold M with boundary, together with a 1-form θ such that $\omega := d\theta$ is symplectic and such that the vector field Z defined by $i_Z \omega = \theta$ points out along ∂M .
 - The skeleton of θ is the locus of points which never reach ∂M under the flow of Z.

- 4 同 6 4 日 6 4 日 6

- A symplectic manifold (M²ⁿ⁺², ω) is a smooth manifold M, together with a closed 2-form ω whose top exterior power ωⁿ⁺¹ is a volume form.
- A Lagrangian subvariety Λ ⊂ M is an (n + 1)-dimensional C[∞] subvariety such that ω|_{Λ_{smooth}} = 0.
- A Liouville domain (M, θ) is a compact manifold M with boundary, together with a 1-form θ such that $\omega := d\theta$ is symplectic and such that the vector field Z defined by $i_Z \omega = \theta$ points out along ∂M .
 - The skeleton of θ is the locus of points which never reach ∂M under the flow of Z.
 - ∂M is naturally equipped with the contact 1-form $\alpha := \theta|_{\partial M}$, which means $\alpha \wedge (d\alpha)^n$ is a volume form.

(日) (周) (三) (三)

- A symplectic manifold (M²ⁿ⁺², ω) is a smooth manifold M, together with a closed 2-form ω whose top exterior power ωⁿ⁺¹ is a volume form.
- A Lagrangian subvariety Λ ⊂ M is an (n + 1)-dimensional C[∞] subvariety such that ω|_{Λ_{smooth}} = 0.
- A Liouville domain (M, θ) is a compact manifold M with boundary, together with a 1-form θ such that $\omega := d\theta$ is symplectic and such that the vector field Z defined by $i_Z \omega = \theta$ points out along ∂M .
 - The skeleton of θ is the locus of points which never reach ∂M under the flow of Z.
 - ∂M is naturally equipped with the contact 1-form $\alpha := \theta|_{\partial M}$, which means $\alpha \wedge (d\alpha)^n$ is a volume form.
- A Legendrian subvariety L ⊂ ∂M is an n-dimensional C[∞] subvariety such that α|_{L_{smooth}} = 0.

イロト 不得下 イヨト イヨト 二日

Example 1: Surfaces

• M an oriented surface with boundary and volume form ω .

3

・ロン ・四 ・ ・ ヨン ・ ヨン

- M an oriented surface with boundary and volume form ω .
- Z a divergence 1 vector field which points out along the boundary.

3

- 4 週 ト - 4 三 ト - 4 三 ト

- M an oriented surface with boundary and volume form ω .
- Z a divergence 1 vector field which points out along the boundary.
- $skel(\theta)$ is some singular curve.

3

< 回 > < 三 > < 三 >

- M an oriented surface with boundary and volume form ω .
- Z a divergence 1 vector field which points out along the boundary.
- $skel(\theta)$ is some singular curve.
- A Lagrangian $\Lambda \subset M$ is a curve.

・ 同 ト ・ ヨ ト ・ ヨ ト

- M an oriented surface with boundary and volume form ω .
- Z a divergence 1 vector field which points out along the boundary.
- $skel(\theta)$ is some singular curve.
- A Lagrangian $\Lambda \subset M$ is a curve.
- A Legendrian $L \subset \partial M$ is a finite union of boundary points.

・ 同 ト ・ ヨ ト ・ ヨ ト

・ロト ・四ト ・ヨト ・ヨト

• $M = DT^*X$ for a smooth manifold X, with symplectic form $\omega = \sum dp_i \wedge dq_i$ in local coordinates.

M = DT*X for a smooth manifold X, with symplectic form ω = ∑ dp_i ∧ dq_i in local coordinates.
Z = ∑ p_i ∂/∂p_i.

イロト 不得下 イヨト イヨト 二日

- $M = DT^*X$ for a smooth manifold X, with symplectic form $\omega = \sum dp_i \wedge dq_i$ in local coordinates.
- $Z = \sum p_i \frac{\partial}{\partial p_i}$.
- $\operatorname{skel}(\theta)$ is the 0-section.

(人間) システン イラン

- $M = DT^*X$ for a smooth manifold X, with symplectic form $\omega = \sum dp_i \wedge dq_i$ in local coordinates.
- $Z = \sum p_i \frac{\partial}{\partial p_i}$.
- $\operatorname{skel}(\theta)$ is the 0-section.
- Any smooth submanifold $S \subset X$ gives rise to the smooth Lagrangian $N^*S \subset M$.

くほと くほと くほと

- $M = DT^*X$ for a smooth manifold X, with symplectic form $\omega = \sum dp_i \wedge dq_i$ in local coordinates.
- $Z = \sum p_i \frac{\partial}{\partial p_i}$.
- $\operatorname{skel}(\theta)$ is the 0-section.
- Any smooth submanifold $S \subset X$ gives rise to the smooth Lagrangian $N^*S \subset M$.
 - In particular, the 0-section is a Lagrangian, as is any cotangent fiber.

< 回 ト < 三 ト < 三 ト

- $M = DT^*X$ for a smooth manifold X, with symplectic form $\omega = \sum dp_i \wedge dq_i$ in local coordinates.
- $Z = \sum p_i \frac{\partial}{\partial p_i}$.
- $\operatorname{skel}(\theta)$ is the 0-section.
- Any smooth submanifold $S \subset X$ gives rise to the smooth Lagrangian $N^*S \subset M$.
 - In particular, the 0-section is a Lagrangian, as is any cotangent fiber.
 - Similarly, the union of the conormals to the strata of a stratification gives a singular Lagrangian.

< 回 ト < 三 ト < 三 ト

- $M = DT^*X$ for a smooth manifold X, with symplectic form $\omega = \sum dp_i \wedge dq_i$ in local coordinates.
- $Z = \sum p_i \frac{\partial}{\partial p_i}$.
- $\operatorname{skel}(\theta)$ is the 0-section.
- Any smooth submanifold $S \subset X$ gives rise to the smooth Lagrangian $N^*S \subset M$.
 - In particular, the 0-section is a Lagrangian, as is any cotangent fiber.
 - Similarly, the union of the conormals to the strata of a stratification gives a singular Lagrangian.
- All of these Lagrangians have Legendrian boundary.

< 回 ト < 三 ト < 三 ト

- 34

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 Let L ⊂ Y be a Legendrian submanifold of a contact manifold (Y, α).

< 回 > < 三 > < 三 >

- Let L ⊂ Y be a Legendrian submanifold of a contact manifold (Y, α).
- Take a nice, closed tubular neighborhood U ⊃ L.

A 🖓 h

- Let L ⊂ Y be a Legendrian submanifold of a contact manifold (Y, α).
- Take a nice, closed tubular neighborhood U ⊃ L.
- The quotient X of U by the Reeb line field ker(dα) is a symplectic manifold isomorphic to a closed neighborhood of the 0-section in T*L.

- Let L ⊂ Y be a Legendrian submanifold of a contact manifold (Y, α).
- Take a nice, closed tubular neighborhood U ⊃ L.
- The quotient X of U by the Reeb line field ker(dα) is a symplectic manifold isomorphic to a closed neighborhood of the 0-section in T*L.
- Write $\pi \colon U \to X$ for the quotient map.

- Let L ⊂ Y be a Legendrian submanifold of a contact manifold (Y, α).
- Take a nice, closed tubular neighborhood U ⊃ L.
- The quotient X of U by the Reeb line field ker(dα) is a symplectic manifold isomorphic to a closed neighborhood of the 0-section in T*L.
- Write $\pi \colon U \to X$ for the quotient map.
- By the Legendrian neighborhood theorem, there is a lift $\sigma: X \to U$ such that $\sigma \circ \pi(L) = L$ and $\sigma^* \alpha = \theta_{std}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let L ⊂ Y be a Legendrian submanifold of a contact manifold (Y, α).
- Take a nice, closed tubular neighborhood U ⊃ L.
- The quotient X of U by the Reeb line field ker(dα) is a symplectic manifold isomorphic to a closed neighborhood of the 0-section in T*L.
- Write $\pi \colon U \to X$ for the quotient map.
- By the Legendrian neighborhood theorem, there is a lift $\sigma: X \to U$ such that $\sigma \circ \pi(L) = L$ and $\sigma^* \alpha = \theta_{std}$.
- This σ is the "thickening" of *L*.

< 4 → <

<ロ> <問> <問> < 回> < 回>

3

Lagrangian and Legendrian skeleta

Zack Sylvan

< 4 → <

$\begin{array}{ccc} \text{General expectation} \\ \text{Floer theory} & \leftarrow & \text{Floer theory} \\ \text{for } L & & \text{for } \sigma \end{array}$

• While we know how to do microlocal sheaf theory for singular *L*, it is less clear how to do Floer theory.

General expectation

 $\begin{array}{ccc} \text{Floer theory} & & \text{Floer theory} \\ \text{for } L & & \text{for } \sigma \end{array}$

• While we know how to do microlocal sheaf theory for singular *L*, it is less clear how to do Floer theory.

Question

Can the previous thickening procedure be carried out for singular Legendrians? In other words, can we produce a lift σ such that $\sigma \circ \pi(L) = L$ and such that $(X, \sigma^* \alpha)$ is a Liouville domain?

- 2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The straightforward approach breaks into two steps:

3

(人間) トイヨト イヨト

The straightforward approach breaks into two steps:

Construct local lifts near the singularities.

一日、

The straightforward approach breaks into two steps:

- Construct local lifts near the singularities.
- Patch the local lifts together.

A 🖓 h

The straightforward approach breaks into two steps:

- Construct local lifts near the singularities.
- Patch the local lifts together.

I won't talk about problem 1. For problem 2, we can observe that any two lifts are Reeb graphs of one another, i.e.

$$\sigma' = \phi_R^f \circ \sigma$$

with $f: X \to \mathbb{R}$ some function.

The straightforward approach breaks into two steps:

- Construct local lifts near the singularities.
- Patch the local lifts together.

I won't talk about problem 1. For problem 2, we can observe that any two lifts are Reeb graphs of one another, i.e.

$$\sigma' = \phi_R^f \circ \sigma$$

with $f: X \to \mathbb{R}$ some function.

Looking at the effect on 1-forms, we obtain

$$(\sigma')^*\alpha = \sigma^*\alpha + df.$$

If we're patching, then X is modeled on $X^0 \times [0, 1]$, and we want f to interpolate between 0 near $X^0 \times \{0\}$ and some given function near $X^0 \times \{1\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

If we're patching, then X is modeled on $X^0 \times [0, 1]$, and we want f to interpolate between 0 near $X^0 \times \{0\}$ and some given function near $X^0 \times \{1\}$.

By cutting into time slices, we roughly want to solve the following problem:

If we're patching, then X is modeled on $X^0 \times [0, 1]$, and we want f to interpolate between 0 near $X^0 \times \{0\}$ and some given function near $X^0 \times \{1\}$.

By cutting into time slices, we roughly want to solve the following problem:

Question

Given a Lagrangian subvariety $L \subset X$ in a symplectic manifold (X, ω) with boundary, denote by Liou(L) the space of Liouville forms for ω with skeleton L. Is Liou(L) connected?

If we're patching, then X is modeled on $X^0 \times [0, 1]$, and we want f to interpolate between 0 near $X^0 \times \{0\}$ and some given function near $X^0 \times \{1\}$.

By cutting into time slices, we roughly want to solve the following problem:

Question

Given a Lagrangian subvariety $L \subset X$ in a symplectic manifold (X, ω) with boundary, denote by Liou(L) the space of Liouville forms for ω with skeleton L. Is Liou(L) connected?

I don't know any good theorems in this direction. The strongest existing statements are technical lemmas in a book of Cieliebak–Eliashberg.

Thank you!

3

<ロ> (日) (日) (日) (日) (日)