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Ginibre Ensemble

Finite n: µn = Eigenvalues of Gn = ((ξij))1≤i ,j≤n, ξij i.i.d
NC(0, 1) (NO normalization by

√
n)

n =∞: µ = limn→∞ µn (Ginibre ensemble)

Translation Invariant (in fact Ergodic)
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Gaussian Analytic Function

Finite n: fn(z) = ξ0 + ξ1√
1!

z + . . . ξk√
k!

zk + . . .+ ξn√
n!

zn

νn = Zeroes of fn (ξi iid NC(0, 1))

n =∞:

ν = limn→∞νn
Zeroes of f (z) =

∑∞
k=0

ξk√
k!

zk

ν is Translation Invariant (and Ergodic)

Theorem (Sodin rigidity)

f (z) is the unique (up to a deterministic multiplier) Gaussian entire
function with a translation invariant zero process of intensity 1.
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Preliminaries

We consider the conditional distribution ρω(ζ) of the points
(denoted by ζ) inside a disk D given the points outside D
(denoted by ω)

In Poisson point process, the points inside and outside D are
independent of each other
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Our Results: Ginibre Ensemble

Theorem (G.,Peres)

In the Ginibre ensemble,
(i)The points ω outside D determine exactly the Number N(ω) of
the points ζ inside D

“and nothing more”
(ii)A.e. ω,

(a) The conditional measure ρω(ζ) is absolutely continuous wrt
Lebesgue measure on DN(ω), and hence has a probability density
function fω(ζ)

(b)fω(ζ) > 0 a.e. wrt Lebesgue measure on DN(ω)

(c) m(ω)|∆(ζ)|2 ≤ fω(ζ) ≤ M(ω)|∆(ζ)|2

M(ω) and m(ω) positive constants
∆(ζ) =

∏
i<j(ζi − ζj) (Vandermonde)
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Rigidity

Rigidity A process is said to be rigid if, given the points
outside a domain D, we can predict the exact number of
points in D with probability 1 .

E.g. :

Ginibre ensemble
Finite point process (fixed size n) - e.g. eigenvalues of a n × n
random matrix

Non e.g.: Poisson point process is NOT rigid

Rigidity does Not pass to the Limit!

Take n points in a disk of area n. Finite, rigid.
Limit as n→∞ is Poisson : Not Rigid !
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Our Results: Zeroes of Gaussian Analytic Function

Theorem (G., Peres)

In the GAF Zero ensemble,
(i)The points ω outside D determine exactly the Number N(ω)

and Sum S(ω) of points ζ inside D, (so ζ ∈ constant sum
hypersurface ΣS(ω) ⊂ DN(ω)), “and nothing more”
(ii)A.e. ω,

(a) ρω(ζ) is absolutely continuous wrt Lebesgue measure on
ΣS(ω), and hence has a probability density function fω(ζ)

(b)fω(ζ) > 0 a.e. wrt Lebesgue measure on ΣS(ω)

(c) m(ω)|∆(ζ)|2 ≤ fω(ζ) ≤ M(ω)|∆(ζ)|2 a.e.

ΣS(ω) : constant sum hypersurface
∑N(ω)

i=1 ζi = S(ω) inside DN(ω)

M(ω), m(ω) and ∆(ζ) are as before.
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Proof Sketch: Rigidity of Number of Points of GAF

Given: outside zeroes of GAF
Want: number of inside zeroes

Linear Statistic:
∫
ϕdν, ϕ ∈ C 2

c (C)

Scaling: ϕL(z) = ϕ
(
z
L

)
(Sodin Tsirelson) var[

∫
ϕLdν] = O

(
1
L2

)
Take ϕ as roughly 1D (e.g. 1D ≤ ϕ ≤ 12D, ϕ ∈ C 2

c )

By Sodin Tsirelson,∫
ϕLdν ≈ E[

∫
ϕLdν] =

∫
ϕL(z)ρ1(z)dm(z)

But
∫
ϕLdν = n(D) +

∫
DL\D ϕLdν

Know outside zeroes ⇒ Know
∫
DL\D ϕLdν ⇒ Compute n(D)

approximately, now let L→∞
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Continuum percolation

Put a disk of deterministic radius r around each point of a
point process π.

Two points are neighbours ⇐⇒ their disks intersect.

For Poisson point process, it is known that:

∃ 0 < rcrit <∞ such that for r < rcrit, there is no infinite
cluster a.s., and for r > rcrit, there is an infinite cluster a.s.
The infinite cluster, when it exists, is unique.

Proofs use spatial independence in a strong way : what about
correlated point processes? No “finite energy” either !

Theorem (G., Krishnapur, Peres)

For Gaussian zeroes and Ginibre eigenvalues, we establish both
phase transition and uniqueness.

Uniqueness involves understanding of rigidity and tolerance.
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Some Interesting Results en route

Theorem (Reconstruction of Gaussian Analytic Function, G.-Peres)

The zeroes of the GAF determine the function a.s. (up to a
multiplicative factor of modulus 1). In other words, if ν denotes
the zeroes of the GAF f , then ∃ an analytic function
g(z) =

∑∞
k=0 ak(ν)zk such that f (z) = γ.g(z)

Here γ follows Unif (S1) and is independent of ν.

Theorem (Stability of Inverse Sums, G.-Peres)

Let z denote the points of Ginibre ensemble. Then the random
series

∑
|z|↑

1
z converges almost surely, and in fact, has finite first

moment.
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Other Applications

Completeness of random exponential systems

A conjecture of Lyons-Steif

Studying mixtures of point processes
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Completeness of random exponential systems

For a discrete point set Λ ⊂ R, consider the space of
exponential functions EΛ := {eλ(x) = e iλx : λ ∈ Λ}

Span(EΛ) ⊂ L2(−π, π).

Question: Is Span(EΛ) = L2(−π, π) ?

Classical question in harmonic analysis (Levinson, Redheffer,
Beurling, Malliavin, ....)

Classical results are parametrized by some sort of asymptotic
density of Λ; complete if supercritical, incomplete if
subcritical.

Tricky situation at criticality (density 1).

What if pathological configurations are eliminated by choosing
a “generic” point configuration - i.e., a point process ?
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Completeness of random exponential systems

Theorem (G.)

Let Π be a determinantal point process with kernel K and
background measure µ, such that K is the integral kernel
corresponding to a projection on to a subspace H of L2(µ).
Clearly, EΠ = {K (x , ·) : x ∈ Π} ⊂ H.

If Π is rigid, then we have Span(EΠ) = H with probability 1.

Theorem + Fourier transform gives positive answer to the
completeness question for Λ sampled from the sine kernel
process.

Theorem implies positive answer to analogous completeness
question in 2-d for random exponentials (sampled from the
Ginibre ensemble) inside the Fock Bargmann space.
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A Hierarchy of Point Processes

π is rigid at level k if

The points of π outside D determine 0, 1, . . . , (k − 1)
moments of the points in D

Conditional distribution of the points of π inside D given the
outside has a non-vanishing density wrt Lebesgue measure on
the submanifold of DN(ω) defined by 0, 1, . . . , (k − 1) moments
being conserved.

Poisson is at Level 0 (i.e. no moments conserved)

Ginibre is at Level 1 (i.e. only 0th moment conserved)

GAF Zeros is at Level 2 (i.e. only 0th and 1st moment
conserved)

Natural point processes for Levels k ≥ 3 ??

Subhro Ghosh Princeton University Rigidity Phenomena in random point sets



A Hierarchy of Point Processes

π is rigid at level k if

The points of π outside D determine 0, 1, . . . , (k − 1)
moments of the points in D
Conditional distribution of the points of π inside D given the
outside has a non-vanishing density wrt Lebesgue measure on
the submanifold of DN(ω) defined by 0, 1, . . . , (k − 1) moments
being conserved.

Poisson is at Level 0 (i.e. no moments conserved)

Ginibre is at Level 1 (i.e. only 0th moment conserved)

GAF Zeros is at Level 2 (i.e. only 0th and 1st moment
conserved)

Natural point processes for Levels k ≥ 3 ??

Subhro Ghosh Princeton University Rigidity Phenomena in random point sets



A Hierarchy of Point Processes

π is rigid at level k if

The points of π outside D determine 0, 1, . . . , (k − 1)
moments of the points in D
Conditional distribution of the points of π inside D given the
outside has a non-vanishing density wrt Lebesgue measure on
the submanifold of DN(ω) defined by 0, 1, . . . , (k − 1) moments
being conserved.

Poisson is at Level 0 (i.e. no moments conserved)

Ginibre is at Level 1 (i.e. only 0th moment conserved)

GAF Zeros is at Level 2 (i.e. only 0th and 1st moment
conserved)

Natural point processes for Levels k ≥ 3 ??

Subhro Ghosh Princeton University Rigidity Phenomena in random point sets



A Hierarchy of Point Processes

π is rigid at level k if

The points of π outside D determine 0, 1, . . . , (k − 1)
moments of the points in D
Conditional distribution of the points of π inside D given the
outside has a non-vanishing density wrt Lebesgue measure on
the submanifold of DN(ω) defined by 0, 1, . . . , (k − 1) moments
being conserved.

Poisson is at Level 0 (i.e. no moments conserved)

Ginibre is at Level 1 (i.e. only 0th moment conserved)

GAF Zeros is at Level 2 (i.e. only 0th and 1st moment
conserved)

Natural point processes for Levels k ≥ 3 ??

Subhro Ghosh Princeton University Rigidity Phenomena in random point sets



A Hierarchy of Point Processes

π is rigid at level k if

The points of π outside D determine 0, 1, . . . , (k − 1)
moments of the points in D
Conditional distribution of the points of π inside D given the
outside has a non-vanishing density wrt Lebesgue measure on
the submanifold of DN(ω) defined by 0, 1, . . . , (k − 1) moments
being conserved.

Poisson is at Level 0 (i.e. no moments conserved)

Ginibre is at Level 1 (i.e. only 0th moment conserved)

GAF Zeros is at Level 2 (i.e. only 0th and 1st moment
conserved)

Natural point processes for Levels k ≥ 3 ??

Subhro Ghosh Princeton University Rigidity Phenomena in random point sets



A Hierarchy of Point Processes

π is rigid at level k if

The points of π outside D determine 0, 1, . . . , (k − 1)
moments of the points in D
Conditional distribution of the points of π inside D given the
outside has a non-vanishing density wrt Lebesgue measure on
the submanifold of DN(ω) defined by 0, 1, . . . , (k − 1) moments
being conserved.

Poisson is at Level 0 (i.e. no moments conserved)

Ginibre is at Level 1 (i.e. only 0th moment conserved)

GAF Zeros is at Level 2 (i.e. only 0th and 1st moment
conserved)

Natural point processes for Levels k ≥ 3 ??

Subhro Ghosh Princeton University Rigidity Phenomena in random point sets



Latest work: in progress with Krishnapur

k rigidity There is a family of analytic functions with Gaussian
coefficients such that the points outside a disk determine the
first k moments of the points inside, and “nothing more”.

Rigidity for dpp If a determinantal point process has a kernel
which is a proper contraction, then it must be insertion and
deletion tolerant.
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Thank you !!
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