Rigidity Phenomena in random point sets and Applications

Subhro Ghosh Princeton University

Subhro Ghosh Princeton University Rigidity Phenomena in random point sets

通 とう ほうとう ほうど

Poisson Process

□ > < ∃ >

くヨ♪

æ

Poisson Process Ginibre Ensemble

● ▶ < ミ ▶

< ≣⇒

Э

Poisson Process Ginibre Ensemble Gaussian Zeroes

(4日) (日)

- < ≣ →

æ

• Finite *n*: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})

・回 ・ ・ ヨ ・ ・ ヨ ・

• Finite *n*: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})

•
$$\underline{n = \infty}$$
: $\mu = \lim_{n \to \infty} \mu_n$ (Ginibre ensemble)

・回 ・ ・ ヨ ・ ・ ヨ ・

• Finite *n*: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})

•
$$\underline{n = \infty}$$
: $\mu = \lim_{n \to \infty} \mu_n$ (Ginibre ensemble)

• Translation Invariant (in fact Ergodic)

▲□→ ▲ 国→ ▲ 国→

• Finite n:
$$f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$$

 $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$

回 と く ヨ と く ヨ と

æ

• Finite n:
$$f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$$

 $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$

• $\underline{n = \infty}$:

•
$$\nu = \lim_{n \to \infty} \nu_n$$

• Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

- Finite n: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$ $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- $\underline{n = \infty}$:
 - $\nu = \lim_{n \to \infty} \nu_n$
 - Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$
- ν is Translation Invariant (and Ergodic)

御 と く き と く き と

• Finite n:
$$f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$$

 $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$

• $\underline{n = \infty}$:

•
$$\nu = \lim_{n \to \infty} \nu_n$$

• Zeroes of
$$f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$$

• ν is Translation Invariant (and Ergodic)

Theorem (Sodin rigidity)

f(z) is the unique (up to a deterministic multiplier) Gaussian entire function with a translation invariant zero process of intensity 1.

同 と く ヨ と く ヨ と

We consider the conditional distribution ρ_ω(ζ) of the points (denoted by ζ) inside a disk D given the points outside D (denoted by ω)

(4回) (4回) (日)

- We consider the conditional distribution ρ_ω(ζ) of the points (denoted by ζ) inside a disk D given the points outside D (denoted by ω)
- $\bullet\,$ In Poisson point process, the points inside and outside $\mathbb D$ are independent of each other

伺下 イヨト イヨト

In the Ginibre ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D}

- 4 回 ト - 4 回 ト - 4 回 ト

In the Ginibre ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more"

高 とう モン・ く ヨ と

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω ,

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$,

伺 ト イヨト イヨト

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω ,

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω ,

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$

Subhro Ghosh Princeton University Rigidity Phenomena in random point sets

向下 イヨト イヨト

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω ,

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$

(c) $m(\omega)|\Delta(\zeta)|^2 \le f_{\omega}(\zeta) \le M(\omega)|\Delta(\zeta)|^2$

高 とう モン・ く ヨ と

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω .

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$ (c) $m(\omega)|\Delta(\zeta)|^2 < f_{\omega}(\zeta) < M(\omega)|\Delta(\zeta)|^2$

 $M(\omega)$ and $m(\omega)$ positive constants $\Delta(\zeta) = \prod_{i < j} (\zeta_i - \zeta_j)$ (Vandermonde)

伺 と く き と く き と

• Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.

・ロト ・回ト ・ヨト ・ヨト

æ

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble

(ロ) (同) (E) (E) (E)

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix

・ロト ・回ト ・ヨト ・ヨト

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid

(4回) (4回) (4回)

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

・ロト ・回ト ・ヨト ・ヨト

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

Take n points in a disk of area n. Finite, rigid.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

Take *n* points in a disk of area *n*. Finite, rigid. Limit as $n \to \infty$ is Poisson : Not Rigid !

・ 同 ト ・ ヨ ト ・ ヨ ト

In the GAF Zero ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$

高 とう モン・ く ヨ と

In the GAF Zero ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} ,

向下 イヨト イヨト

In the GAF Zero ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$),

高 とう モン・ く ヨ と

In the GAF Zero ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more"

In the GAF Zero ensemble, (i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$,

In the GAF Zero ensemble, (i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

In the GAF Zero ensemble, (i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$

伺 ト イヨト イヨト

In the GAF Zero ensemble, (i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$ (c) $m(\omega) |\Delta(\zeta)|^2 \leq f_{\omega}(\zeta) \leq M(\omega) |\Delta(\zeta)|^2$ a.e.

伺 と く き と く き と

In the GAF Zero ensemble, (i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$ (c) $m(\omega) |\Delta(\zeta)|^2 \leq f_{\omega}(\zeta) \leq M(\omega) |\Delta(\zeta)|^2$ a.e.

 $\Sigma_{S(\omega)}$: constant sum hypersurface $\sum_{i=1}^{N(\omega)} \zeta_i = S(\omega)$ inside $\mathbb{D}^{N(\omega)}$

 $M(\omega)$, $m(\omega)$ and $\Delta(\zeta)$ are as before.

(4回) (1日) (日)
• Given: outside zeroes of GAF Want: number of inside zeroes

伺 とう ヨン うちょう

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$

Image: A image: A

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) var[$\int \varphi_L d\nu$] = $O\left(\frac{1}{L^2}\right)$

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) var[$\int \varphi_L d\nu$] = $O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in C_c^2$)

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) var[$\int \varphi_L d\nu$] = $O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) var[$\int \varphi_L d\nu$] = $O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z)\rho_1(z)dm(z)$
- But $\int \varphi_L d\nu = n(\mathbb{D}) + \int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu$

伺 ト イヨト イヨト

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) $\operatorname{var}[\int \varphi_L d\nu] = O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$
- But $\int \varphi_L d\nu = n(\mathbb{D}) + \int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu$
- Know outside zeroes \Rightarrow Know $\int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu \Rightarrow$ Compute $n(\mathbb{D})$ approximately, now let $L \to \infty$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 Put a disk of deterministic radius r around each point of a point process π.

回 と く ヨ と く ヨ と …

æ

- Put a disk of deterministic radius r around each point of a point process π.
- Two points are neighbours \iff their disks intersect.

回 と く ヨ と く ヨ と …

- Put a disk of deterministic radius r around each point of a point process π.
- Two points are neighbours \iff their disks intersect.
- For Poisson point process, it is known that:
- ∃ 0 < r_{crit} < ∞ such that for r < r_{crit}, there is no infinite cluster a.s., and for r > r_{crit}, there is an infinite cluster a.s.

伺 と く き と く き と

- Put a disk of deterministic radius r around each point of a point process π.
- Two points are neighbours \iff their disks intersect.
- For Poisson point process, it is known that:
- ∃ 0 < r_{crit} < ∞ such that for r < r_{crit}, there is no infinite cluster a.s., and for r > r_{crit}, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.

- Put a disk of deterministic radius r around each point of a point process π.
- Two points are neighbours \iff their disks intersect.
- For Poisson point process, it is known that:
- ∃ 0 < r_{crit} < ∞ such that for r < r_{crit}, there is no infinite cluster a.s., and for r > r_{crit}, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.
- Proofs use spatial independence in a strong way : what about correlated point processes?

- Put a disk of deterministic radius r around each point of a point process π.
- Two points are neighbours \iff their disks intersect.
- For Poisson point process, it is known that:
- ∃ 0 < r_{crit} < ∞ such that for r < r_{crit}, there is no infinite cluster a.s., and for r > r_{crit}, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.
- Proofs use spatial independence in a strong way : what about correlated point processes? No "finite energy" either !

- Put a disk of deterministic radius r around each point of a point process π.
- Two points are neighbours \iff their disks intersect.
- For Poisson point process, it is known that:
- ∃ 0 < r_{crit} < ∞ such that for r < r_{crit}, there is no infinite cluster a.s., and for r > r_{crit}, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.
- Proofs use spatial independence in a strong way : what about correlated point processes? No "finite energy" either !

Theorem (G., Krishnapur, Peres)

For Gaussian zeroes and Ginibre eigenvalues, we establish both phase transition and uniqueness.

(4月) イヨト イヨト

- Put a disk of deterministic radius r around each point of a point process π.
- Two points are neighbours \iff their disks intersect.
- For Poisson point process, it is known that:
- ∃ 0 < r_{crit} < ∞ such that for r < r_{crit}, there is no infinite cluster a.s., and for r > r_{crit}, there is an infinite cluster a.s.
 - The infinite cluster, when it exists, is unique.
- Proofs use spatial independence in a strong way : what about correlated point processes? No "finite energy" either !

Theorem (G., Krishnapur, Peres)

For Gaussian zeroes and Ginibre eigenvalues, we establish both phase transition and uniqueness.

Uniqueness involves understanding of rigidity and tolerance.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem (Reconstruction of Gaussian Analytic Function, G.-Peres)

The zeroes of the GAF determine the function a.s. (up to a multiplicative factor of modulus 1). In other words, if ν denotes the zeroes of the GAF f, then \exists an analytic function $g(z) = \sum_{k=0}^{\infty} a_k(\nu) z^k$ such that $f(z) = \gamma . g(z)$ Here γ follows Unif(S¹) and is independent of ν .

伺 ト イヨト イヨト

Theorem (Reconstruction of Gaussian Analytic Function, G.-Peres)

The zeroes of the GAF determine the function a.s. (up to a multiplicative factor of modulus 1). In other words, if ν denotes the zeroes of the GAF f, then \exists an analytic function $g(z) = \sum_{k=0}^{\infty} a_k(\nu) z^k$ such that $f(z) = \gamma . g(z)$ Here γ follows Unif(S¹) and is independent of ν .

Theorem (Stability of Inverse Sums, G.-Peres)

Let z denote the points of Ginibre ensemble. Then the random series $\sum_{|z|\uparrow} \frac{1}{z}$ converges almost surely, and in fact, has finite first moment.

・ 同 ト ・ ヨ ト ・ ヨ ト …

個 と く ヨ と く ヨ と …

æ

- Completeness of random exponential systems
- A conjecture of Lyons-Steif

白 ト イヨト イヨト

- Completeness of random exponential systems
- A conjecture of Lyons-Steif
- Studying mixtures of point processes

For a discrete point set Λ ⊂ ℝ, consider the space of exponential functions *E*_Λ := {*e*_λ(*x*) = *e*^{*i*λ*x*} : λ ∈ Λ}

伺 とう ヨン うちょう

- For a discrete point set Λ ⊂ ℝ, consider the space of exponential functions *E*_Λ := {*e*_λ(*x*) = *e*^{*i*λx} : λ ∈ Λ}
- Span(\mathcal{E}_{Λ}) $\subset L_2(-\pi,\pi)$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- For a discrete point set Λ ⊂ ℝ, consider the space of exponential functions *E*_Λ := {*e*_λ(*x*) = *e*^{*i*λ*x*} : λ ∈ Λ}
- Span(\mathcal{E}_{Λ}) $\subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

- For a discrete point set Λ ⊂ ℝ, consider the space of exponential functions *E*_Λ := {*e*_λ(*x*) = *e*^{*i*λ*x*} : λ ∈ Λ}
- Span(\mathcal{E}_{Λ}) $\subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?
- Classical question in harmonic analysis (Levinson, Redheffer, Beurling, Malliavin,)

・ 同 ト ・ ヨ ト ・ ヨ ト

- For a discrete point set Λ ⊂ ℝ, consider the space of exponential functions E_Λ := {e_λ(x) = e^{iλx} : λ ∈ Λ}
- Span(\mathcal{E}_{Λ}) $\subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi,\pi)$?
- Classical question in harmonic analysis (Levinson, Redheffer, Beurling, Malliavin,)
- Classical results are parametrized by some sort of asymptotic density of Λ; complete if supercritical, incomplete if subcritical.

- For a discrete point set Λ ⊂ ℝ, consider the space of exponential functions E_Λ := {e_λ(x) = e^{iλx} : λ ∈ Λ}
- Span(\mathcal{E}_{Λ}) $\subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?
- Classical question in harmonic analysis (Levinson, Redheffer, Beurling, Malliavin,)
- Classical results are parametrized by some sort of asymptotic density of Λ; complete if supercritical, incomplete if subcritical.
- Tricky situation at criticality (density 1).

・ 同 ト ・ ヨ ト ・ ヨ ト

- For a discrete point set Λ ⊂ ℝ, consider the space of exponential functions E_Λ := {e_λ(x) = e^{iλx} : λ ∈ Λ}
- Span(\mathcal{E}_{Λ}) $\subset L_2(-\pi,\pi)$.
- Question: Is $Span(\mathcal{E}_{\Lambda}) = L_2(-\pi, \pi)$?
- Classical question in harmonic analysis (Levinson, Redheffer, Beurling, Malliavin,)
- Classical results are parametrized by some sort of asymptotic density of Λ; complete if supercritical, incomplete if subcritical.
- Tricky situation at criticality (density 1).
- What if pathological configurations are eliminated by choosing a "generic" point configuration i.e., a point process ?

(日) (同) (E) (E) (E)

Let Π be a determinantal point process with kernel K and background measure μ , such that K is the integral kernel corresponding to a projection on to a subspace \mathcal{H} of $L_2(\mu)$. Clearly, $\mathcal{E}_{\Pi} = \{K(x, \cdot) : x \in \Pi\} \subset \mathcal{H}$.

伺 ト イミト イミト

Let Π be a determinantal point process with kernel K and background measure μ , such that K is the integral kernel corresponding to a projection on to a subspace \mathcal{H} of $L_2(\mu)$. Clearly, $\mathcal{E}_{\Pi} = \{K(x, \cdot) : x \in \Pi\} \subset \mathcal{H}$. If Π is rigid, then we have $Span(\mathcal{E}_{\Pi}) = \mathcal{H}$ with probability 1.

伺 ト イヨト イヨト

Let Π be a determinantal point process with kernel K and background measure μ , such that K is the integral kernel corresponding to a projection on to a subspace \mathcal{H} of $L_2(\mu)$. Clearly, $\mathcal{E}_{\Pi} = \{K(x, \cdot) : x \in \Pi\} \subset \mathcal{H}$. If Π is rigid, then we have $Span(\mathcal{E}_{\Pi}) = \mathcal{H}$ with probability 1.

 Theorem + Fourier transform gives positive answer to the completeness question for Λ sampled from the sine kernel process.

Let Π be a determinantal point process with kernel K and background measure μ , such that K is the integral kernel corresponding to a projection on to a subspace \mathcal{H} of $L_2(\mu)$. Clearly, $\mathcal{E}_{\Pi} = \{K(x, \cdot) : x \in \Pi\} \subset \mathcal{H}$. If Π is rigid, then we have $Span(\mathcal{E}_{\Pi}) = \mathcal{H}$ with probability 1.

- Theorem + Fourier transform gives positive answer to the completeness question for Λ sampled from the sine kernel process.
- Theorem implies positive answer to analogous completeness question in 2-d for random exponentials (sampled from the Ginibre ensemble) inside the Fock Bargmann space.

伺下 イヨト イヨト

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$

▲圖▶ ★ 国▶ ★ 国▶

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1, ..., (k − 1) moments being conserved.

・ 同 ト ・ ヨ ト ・ ヨ ト

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1, ..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1, ..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)

伺下 イヨト イヨト
A Hierarchy of Point Processes

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1, ..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)

・ 同 ト ・ ヨ ト ・ ヨ ト

A Hierarchy of Point Processes

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1, ..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)
- Natural point processes for Levels $k \ge 3$??

(4月) イヨト イヨト

• k rigidity There is a family of analytic functions with Gaussian coefficients such that the points outside a disk determine the first k moments of the points inside, and "nothing more".

伺 とう ヨン うちょう

- k rigidity There is a family of analytic functions with Gaussian coefficients such that the points outside a disk determine the first k moments of the points inside, and "nothing more".
- Rigidity for dpp If a determinantal point process has a kernel which is a proper contraction, then it must be insertion and deletion tolerant.

Thank you !!

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ