Motivic Decomposition of Projective Pseudo-Homogeneous Varieties

Srimathy Srinivasan

IAS

Notations

- G-semisimple linear algebraic group over a perfect field k of characteristic $p>0$

Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p>0$
- $\Delta_{G}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ denote the set of simple roots of G

Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p>0$
- $\Delta_{G}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D}.

Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p>0$
- $\Delta_{G}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D}.
- $\{$ Nodes of $\mathfrak{D}\}$

Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p>0$
- $\Delta_{G}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D}.
- $\{$ Nodes of $\mathfrak{D}\} \leftrightarrow\left\{\Delta_{G}\right\}$

Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p>0$
- $\Delta_{G}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D}.
- $\{$ Nodes of $\mathfrak{D}\} \leftrightarrow\left\{\Delta_{G}\right\} \leftrightarrow\{$ Conjugacy class of Max'I Parabolics $\}$

Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p>0$
- $\Delta_{G}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D}.
- $\{$ Nodes of $\mathfrak{D}\} \leftrightarrow\left\{\Delta_{G}\right\} \leftrightarrow\{$ Conjugacy class of Max'I Parabolics $\}$
- \{Subsets of nodes of $\mathfrak{D}\}$

Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p>0$
- $\Delta_{G}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D}.
- \{Nodes of $\mathfrak{D}\} \leftrightarrow\left\{\Delta_{G}\right\} \leftrightarrow\{$ Conjugacy class of Max'I Parabolics $\}$
- \{Subsets of nodes of $\mathfrak{D}\} \leftrightarrow\{$ Conjugacy class of Parabolics $\}$

The *-action

- The Galois group $\Gamma=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ acts on the maximal parabolics

The *-action

- The Galois group $\Gamma=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ acts on the maximal parabolics
- Therefore we get an action on the nodes of \mathfrak{D} called the *-action

The *-action

- The Galois group $\Gamma=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ acts on the maximal parabolics
- Therefore we get an action on the nodes of \mathfrak{D} called the *-action
- If the $*$-action is trivial, then G is said to be of inner type over k

The *-action

- The Galois group $\Gamma=\operatorname{Gal}\left(k_{\text {sep }} / k\right)$ acts on the maximal parabolics
- Therefore we get an action on the nodes of \mathfrak{D} called the *-action
- If the *-action is trivial, then G is said to be of inner type over k
- Else it is of outer type over k

Projective Homogeneous Varieties

- Flag varieties are varieties of the form G / P for some parabolic subgroup P

Projective Homogeneous Varieties

- Flag varieties are varieties of the form G / P for some parabolic subgroup P (by defn they are reduced)

Projective Homogeneous Varieties

- Flag varieties are varieties of the form G / P for some parabolic subgroup P (by defn they are reduced)
Examples: \mathbb{P}^{n}, Grassmannians, quadrics

Projective Homogeneous Varieties

- Flag varieties are varieties of the form G / P for some parabolic subgroup P (by defn they are reduced)
Examples: \mathbb{P}^{n}, Grassmannians, quadrics
- X over k is a projective homogeneous variety for G if $X_{\bar{k}} \simeq G / P$ for some parabolic subgroup P

Projective Homogeneous Varieties

- Flag varieties are varieties of the form G / P for some parabolic subgroup P (by defn they are reduced)
Examples: \mathbb{P}^{n}, Grassmannians, quadrics
- X over k is a projective homogeneous variety for G if $X_{\bar{k}} \simeq G / P$ for some parabolic subgroup P
- These are twisted forms of flag varieties

Projective Homogeneous Varieties

- Flag varieties are varieties of the form G / P for some parabolic subgroup P (by defn they are reduced)
Examples: \mathbb{P}^{n}, Grassmannians, quadrics
- X over k is a projective homogeneous variety for G if $X_{\bar{k}} \simeq G / P$ for some parabolic subgroup P
- These are twisted forms of flag varieties Examples: Severi-Brauer Varieties $S B_{n}(A)$ corresponding to a central simple algebra A

The category of Chow Motives

- The category $\operatorname{Chow}(k, \Lambda)$ where k - field, Λ - coefficient ring

The category of Chow Motives

- The category $\operatorname{Chow}(k, \Lambda)$ where k - field, Λ - coefficient ring
- Objects $=(X, n, p)$ where X - variety over $k, n \in \mathbb{Z}$ and $p \in E n d(X)$ a projector or idempotent, i.e, $p^{2}=p$

The category of Chow Motives

- The category $\operatorname{Chow}(k, \Lambda)$ where k - field, Λ - coefficient ring
- Objects $=(X, n, p)$ where X - variety over $k, n \in \mathbb{Z}$ and $p \in$ End (X) a projector or idempotent, i.e, $p^{2}=p$
- What are Hom sets?

The category of Chow Motives

- The category $\operatorname{Chow}(k, \Lambda)$ where k - field, Λ - coefficient ring
- Objects $=(X, n, p)$ where X - variety over $k, n \in \mathbb{Z}$ and $p \in$ End (X) a projector or idempotent, i.e, $p^{2}=p$
- What are Hom sets? If X is irreducible, $\operatorname{Hom}_{\operatorname{Chow}(k, \Lambda)}((X, n, p),(Y, m, q))=q \circ\left[C H_{\operatorname{dim}} X+n-m X \times Y \otimes_{\mathbb{Z}} \Lambda\right] \circ p$

Composition of Morphisms

- How to compose morphisms
$\alpha \in \operatorname{Hom}((X, n, p),(Y, m, q))$ and $\beta \in \operatorname{Hom}((Y, m, q),(Z, r, s))$.

Composition of Morphisms

- How to compose morphisms
$\alpha \in \operatorname{Hom}((X, n, p),(Y, m, q))$ and $\beta \in \operatorname{Hom}((Y, m, q),(Z, r, s))$. Then $\beta \circ \alpha=p_{13 *}\left(p_{12}^{*} \alpha \cdot p_{23}^{*} \beta\right)$

Composition of Morphisms

- How to compose morphisms
$\alpha \in \operatorname{Hom}((X, n, p),(Y, m, q))$ and $\beta \in \operatorname{Hom}((Y, m, q),(Z, r, s))$. Then $\beta \circ \alpha=p_{13 *}\left(p_{12}^{*} \alpha \cdot p_{23}^{*} \beta\right)$

Properties of $\operatorname{Chow}(k, \wedge)$

- $\operatorname{Chow}(k, \Lambda)$ admits tensor product: $(X, n, p) \otimes(Y, m, q)=(X \times Y, n+m, p \times q)$

Properties of $\operatorname{Chow}(k, \wedge)$

- $\operatorname{Chow}(k, \Lambda)$ admits tensor product: $(X, n, p) \otimes(Y, m, q)=(X \times Y, n+m, p \times q)$
- Notation: $\mathcal{M}(X)=\left(X, 0, \Delta_{X}\right)$ - the motive of X

Properties of $\operatorname{Chow}(k, \wedge)$

- $\operatorname{Chow}(k, \Lambda)$ admits tensor product: $(X, n, p) \otimes(Y, m, q)=(X \times Y, n+m, p \times q)$
- Notation: $\mathcal{M}(X)=\left(X, 0, \Delta_{X}\right)$ - the motive of X Tate motive $\Lambda=(\operatorname{Spec} k, 0, \Delta), \Lambda(i)=(\operatorname{Spec} k, i, \Delta)$

Properties of $\operatorname{Chow}(k, \wedge)$

- $\operatorname{Chow}(k, \Lambda)$ admits tensor product: $(X, n, p) \otimes(Y, m, q)=(X \times Y, n+m, p \times q)$
- Notation: $\mathcal{M}(X)=\left(X, 0, \Delta_{X}\right)$ - the motive of X Tate motive $\Lambda=(\operatorname{Spec} k, 0, \Delta), \Lambda(i)=(\operatorname{Spec} k, i, \Delta)$ Twisting a motive: $M(i)=M \otimes \Lambda(i)$ i.e., $(X, n, p)(i)=(X, n+i, p)$

Properties of $\operatorname{Chow}(k, \Lambda)$

- $\operatorname{Chow}(k, \Lambda)$ admits tensor product:
$(X, n, p) \otimes(Y, m, q)=(X \times Y, n+m, p \times q)$
- Notation: $\mathcal{M}(X)=\left(X, 0, \Delta_{X}\right)$ - the motive of X Tate motive $\Lambda=(\operatorname{Spec} k, 0, \Delta), \Lambda(i)=(\operatorname{Spec} k, i, \Delta)$
Twisting a motive: $M(i)=M \otimes \Lambda(i)$ i.e., $(X, n, p)(i)=(X, n+i, p)$
- Chow (k, Λ) admits direct sum:

$$
(X, n, p) \oplus(Y, m, q)=\left(X \coprod\left(Y \times \mathbb{P}^{m-n}\right), n, p+\left(q \times \alpha_{m-n}\right)\right)
$$

Properties of $\operatorname{Chow}(k, \Lambda)$

- $\operatorname{Chow}(k, \Lambda)$ admits tensor product:
$(X, n, p) \otimes(Y, m, q)=(X \times Y, n+m, p \times q)$
- Notation: $\mathcal{M}(X)=\left(X, 0, \Delta_{X}\right)$ - the motive of X Tate motive $\Lambda=(\operatorname{Spec} k, 0, \Delta), \Lambda(i)=(\operatorname{Spec} k, i, \Delta)$
Twisting a motive: $M(i)=M \otimes \Lambda(i)$ i.e., $(X, n, p)(i)=(X, n+i, p)$
- Chow (k, Λ) admits direct sum:

$$
(X, n, p) \oplus(Y, m, q)=\left(X \coprod\left(Y \times \mathbb{P}^{m-n}\right), n, p+\left(q \times \alpha_{m-n}\right)\right)
$$

where $\alpha_{m-n}=\left[p t \times \mathbb{P}^{m-n}\right] \in \operatorname{End} \mathcal{M}\left(\mathbb{P}^{m-n}\right)$

How to decompose a motive?

- Find a non-trivial projector:

How to decompose a motive?

- Find a non-trivial projector:

If $p \in \operatorname{End} \mathcal{M}(X)$ is a non-trivial projector, then

$$
\mathcal{M}(X) \simeq(X, 0, p) \oplus(X, 0,1-p)
$$

How to decompose a motive?

- Find a non-trivial projector:

If $p \in \operatorname{End} \mathcal{M}(X)$ is a non-trivial projector, then

$$
\mathcal{M}(X) \simeq(X, 0, p) \oplus(X, 0,1-p)
$$

- Example: $p=\left[p t \times \mathbb{P}^{1}\right] \in \operatorname{End} \mathcal{M}\left(\mathbb{P}^{1}\right)$ is a projector. So get

$$
\mathcal{M}\left(\mathbb{P}^{1}\right) \simeq\left(\mathbb{P}^{1}, 0, p\right) \oplus\left(\mathbb{P}^{1}, 0,1-p\right) \simeq \Lambda \oplus \Lambda(1)
$$

How to decompose a motive?

- Find a non-trivial projector:

If $p \in E n d \mathcal{M}(X)$ is a non-trivial projector, then

$$
\mathcal{M}(X) \simeq(X, 0, p) \oplus(X, 0,1-p)
$$

- Example: $p=\left[p t \times \mathbb{P}^{1}\right] \in \operatorname{End} \mathcal{M}\left(\mathbb{P}^{1}\right)$ is a projector. So get

$$
\mathcal{M}\left(\mathbb{P}^{1}\right) \simeq\left(\mathbb{P}^{1}, 0, p\right) \oplus\left(\mathbb{P}^{1}, 0,1-p\right) \simeq \Lambda \oplus \Lambda(1)
$$

- In general,

$$
\mathcal{M}\left(\mathbb{P}^{n}\right) \simeq \Lambda \oplus \Lambda(1) \oplus \cdots \oplus \Lambda(n)
$$

How do we find projectors?

- Useful technique: Rost Nilpotence (RN)

How do we find projectors?

- Useful technique: Rost Nilpotence (RN)
- We say that Rost Nilpotence holds for a variety X over F if for every field extension E / F the kernel of the base change map

$$
\begin{aligned}
\operatorname{End}_{F}(\mathcal{M}(X)) & \rightarrow \operatorname{End}_{E}\left(\mathcal{M}\left(X_{E}\right)\right) \\
\alpha & \rightarrow \alpha_{E}
\end{aligned}
$$

consists of nilpotents. That is, if $\alpha \in \operatorname{End}_{F}(\mathcal{M}(X))$ is such that $\alpha_{E}=0$, then $\alpha^{\circ N}=0$ for some $N>0$.

How do we find projectors?

- Useful technique: Rost Nilpotence (RN)
- We say that Rost Nilpotence holds for a variety X over F if for every field extension E / F the kernel of the base change map

$$
\begin{aligned}
\operatorname{End}_{F}(\mathcal{M}(X)) & \rightarrow \operatorname{End}_{E}\left(\mathcal{M}\left(X_{E}\right)\right) \\
\alpha & \rightarrow \alpha_{E}
\end{aligned}
$$

consists of nilpotents. That is, if $\alpha \in \operatorname{End}_{F}(\mathcal{M}(X))$ is such that $\alpha_{E}=0$, then $\alpha^{\circ N}=0$ for some $N>0$.

- Many interesting consequences. One of them - finding projectors

What is known?

- RN holds for projective homogeneous varieties, surfaces in characteristic 0

What is known?

- RN holds for projective homogeneous varieties, surfaces in characteristic 0
- Not known if RN holds in general

Motivic Decomposition of PHVs

- Fix $\operatorname{Chow}(k, \Lambda), \Lambda=$ finite connected coefficient ring. Eg: $\Lambda=\mathbb{F}_{q}$

Motivic Decomposition of PHVs

- Fix $\operatorname{Chow}(k, \Lambda), \Lambda=$ finite connected coefficient ring. Eg: $\Lambda=\mathbb{F}_{q}$
- Let G be of inner type over k. X - projective homogeneous variety for G.

Motivic Decomposition of PHVs

- Fix $\operatorname{Chow}(k, \Lambda), \Lambda=$ finite connected coefficient ring. Eg: $\Lambda=\mathbb{F}_{q}$
- Let G be of inner type over $k . X$ - projective homogeneous variety for G. Goal: Decompose $\mathcal{M}(X)$ if possible.

Motivic Decomposition of PHVs

- Fix $\operatorname{Chow}(k, \Lambda), \Lambda=$ finite connected coefficient ring. Eg: $\Lambda=\mathbb{F}_{q}$
- Let G be of inner type over k. X - projective homogeneous variety for G. Goal: Decompose $\mathcal{M}(X)$ if possible.
- Can we describe the indecomposable summands appearing in the decomposition of $\mathcal{M}(X)$?

Motivic Decomposition of PHVs

- Fix $\operatorname{Chow}(k, \Lambda), \Lambda=$ finite connected coefficient ring. Eg: $\Lambda=\mathbb{F}_{q}$
- Let G be of inner type over k. X - projective homogeneous variety for G. Goal: Decompose $\mathcal{M}(X)$ if possible.
- Can we describe the indecomposable summands appearing in the decomposition of $\mathcal{M}(X)$?
- Is the complete decomposition unique?

Motivic Decomposition of PHVs

- Fix $\operatorname{Chow}(k, \Lambda), \Lambda=$ finite connected coefficient ring. Eg: $\Lambda=\mathbb{F}_{q}$
- Let G be of inner type over k. X - projective homogeneous variety for G. Goal: Decompose $\mathcal{M}(X)$ if possible.
- Can we describe the indecomposable summands appearing in the decomposition of $\mathcal{M}(X)$?
- Is the complete decomposition unique?

Yes - Krull-Schmidt

Upper Indecomposable summand

- One special summand in complete decomposition of $\mathcal{M}(X)$ - Upper Indecomposable Summand

Upper Indecomposable summand

- One special summand in complete decomposition of $\mathcal{M}(X)$ - Upper Indecomposable Summand
- $M \rightarrow \mathcal{M}(X)$ is upper if $C H^{0}(M):=\operatorname{Hom}(M, \Lambda) \neq 0$

Upper Indecomposable summand

- One special summand in complete decomposition of $\mathcal{M}(X)$ - Upper Indecomposable Summand
- $M \rightarrow \mathcal{M}(X)$ is upper if $C H^{0}(M):=\operatorname{Hom}(M, \Lambda) \neq 0$
- Unique as a consequence of KS . Denoted by U_{X}

Upper Indecomposable summand

- One special summand in complete decomposition of $\mathcal{M}(X)$ - Upper Indecomposable Summand
- $M \rightarrow \mathcal{M}(X)$ is upper if $C H^{0}(M):=\operatorname{Hom}(M, \Lambda) \neq 0$
- Unique as a consequence of KS . Denoted by U_{X}
- Contains lot of information

Parabolic Subgroup Schemes

- Suppose $G=S L_{3}$. Consider

$$
\widetilde{P}=\left\{\left.\left(\begin{array}{ccc}
* & * & * \\
x & * \\
y & * & *
\end{array}\right) \right\rvert\, x^{p^{3}}=0, y^{p^{3}}=0, z^{p^{4}}=0\right\}
$$

Then \widetilde{P} is not reduced.

Parabolic Subgroup Schemes

- Suppose $G=S L_{3}$. Consider

$$
\widetilde{P}=\left\{\left.\left(\begin{array}{lll}
* & * & * \\
x & * \\
y & * \\
y & z
\end{array}\right) \right\rvert\, x^{p^{3}}=0, y^{p^{3}}=0, z^{p^{4}}=0\right\}
$$

Then \widetilde{P} is not reduced.
Underlying reduced scheme is the standard Borel.

Parabolic Subgroup Schemes

- Suppose $G=S L_{3}$. Consider

$$
\widetilde{P}=\left\{\left.\left(\begin{array}{lll}
* & * & * \\
x & * \\
y & * \\
y & z
\end{array}\right) \right\rvert\, x^{p^{3}}=0, y^{p^{3}}=0, z^{p^{4}}=0\right\}
$$

Then \widetilde{P} is not reduced.
Underlying reduced scheme is the standard Borel.

- In char p, subgroups schemes of G need not be reduced

Parabolic Subgroup Schemes

- Suppose $G=S L_{3}$. Consider

$$
\widetilde{P}=\left\{\left.\left(\begin{array}{lll}
* & * & * \\
x & * \\
y & * \\
y & z
\end{array}\right) \right\rvert\, x^{p^{3}}=0, y^{p^{3}}=0, z^{p^{4}}=0\right\}
$$

Then \widetilde{P} is not reduced.
Underlying reduced scheme is the standard Borel.

- In char p, subgroups schemes of G need not be reduced
- A parabolic subgroup scheme is a subgroup containing Borel that is not necessarily reduced.

Parabolic Subgroup Schemes

- Suppose $G=S L_{3}$. Consider

$$
\widetilde{P}=\left\{\left.\left(\begin{array}{lll}
* & * & * \\
x & * \\
y & * \\
y & z
\end{array}\right) \right\rvert\, x^{p^{3}}=0, y^{p^{3}}=0, z^{p^{4}}=0\right\}
$$

Then \widetilde{P} is not reduced.
Underlying reduced scheme is the standard Borel.

- In char p, subgroups schemes of G need not be reduced
- A parabolic subgroup scheme is a subgroup containing Borel that is not necessarily reduced.
Notation: \widetilde{P} - parabolic subgroup scheme, P - underlying reduced subscheme of \widetilde{P}

Variety of Unseparated Flags- VUFs

- VUFs are quotients G / \widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Variety of Unseparated Flags- VUFs

- VUFs are quotients G / \widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)
Example: $G=S L_{3}$. Consider the variety \widetilde{X} in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ given by the equation $\sum_{i=0}^{2} x_{i}^{p} y_{i}=0$ where

Variety of Unseparated Flags- VUFs

- VUFs are quotients G / \widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)
Example: $G=S L_{3}$. Consider the variety \widetilde{X} in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ given by the equation $\sum_{i=0}^{2} x_{i}^{p} y_{i}=0$ where
$g \cdot \vec{x}=g^{p^{3}} \vec{x}$ and $g \cdot \vec{y}=\left(g^{-t}\right)^{p^{4}} \vec{y}$

Variety of Unseparated Flags- VUFs

- VUFs are quotients G / \widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)
Example: $G=S L_{3}$. Consider the variety \widetilde{X} in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ given by the equation $\sum_{i=0}^{2} x_{i}^{p} y_{i}=0$ where
$g \cdot \vec{x}=g^{p^{3}} \vec{x}$ and $g \cdot \vec{y}=\left(g^{-t}\right)^{p^{4}} \vec{y}$
Then
$\widetilde{P}=\operatorname{Stab}([1: 0: 0] \times[0: 0: 1])=\left\{\left.\left(\begin{array}{ccc}* & * \\ x & * \\ y & * \\ y & *\end{array}\right) \right\rvert\, x^{p^{3}}=0, y^{p^{3}}=0, z^{p^{4}}=0\right\}$

Variety of Unseparated Flags- VUFs

- VUFs are quotients G / \widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)
Example: $G=S L_{3}$. Consider the variety \widetilde{X} in $\mathbb{P}^{2} \times \mathbb{P}^{2}$ given by the equation $\sum_{i=0}^{2} x_{i}^{p} y_{i}=0$ where
$g \cdot \vec{x}=g^{p^{3}} \vec{x}$ and $g \cdot \vec{y}=\left(g^{-t}\right)^{p^{4}} \vec{y}$
Then
$\widetilde{P}=\operatorname{Stab}([1: 0: 0] \times[0: 0: 1])=\left\{\left.\left(\begin{array}{ccc}* & * & * \\ x & * \\ y & * & *\end{array}\right) \right\rvert\, x^{p^{3}}=0, y^{p^{3}}=0, z^{p^{4}}=0\right\}$
- $\widetilde{X}=G / \widetilde{P}$ is a VUF

What is known about VUFs?

- VUFs are not in general isomorphic to flag varieties

What is known about VUFs?

- VUFs are not in general isomorphic to flag varieties
- VUFs behave very differently from flag varieties

What is known about VUFs?

- VUFs are not in general isomorphic to flag varieties
- VUFs behave very differently from flag varieties
- Nothing much known for their twisted forms over non-algebraically closed fields

Are they related?

Question: Is there any relation between them at all?

Are they related?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms ?

Are they related?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms ?
Answer: Yes

Are they related?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms ?
Answer: Yes \& Yes

Are they related?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms ?
Answer: Yes \& Yes

I show that their motives are isomorphic in $\operatorname{Chow}(k, \Lambda)$

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\bar{k}} \simeq G / \widetilde{P}, \widetilde{P}$ not necessarily reduced

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\bar{k}} \simeq G / \widetilde{P}, \widetilde{P}$ not necessarily reduced
- Twisted forms of VUFs

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\bar{k}} \simeq G / \widetilde{P}, \widetilde{P}$ not necessarily reduced
- Twisted forms of VUFs
- Denote by X the G-variety such that $X_{\bar{k}} \simeq G / P$ where P is the underlying reduced scheme of \widetilde{P}.

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\bar{k}} \simeq G / \widetilde{P}, \widetilde{P}$ not necessarily reduced
- Twisted forms of VUFs
- Denote by X the G-variety such that $X_{\bar{k}} \simeq G / P$ where P is the underlying reduced scheme of \widetilde{P}.
- Call X the projective homogeneous variety corresponding to \widetilde{X}

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\bar{k}} \simeq G / \widetilde{P}, \widetilde{P}$ not necessarily reduced
- Twisted forms of VUFs
- Denote by X the G-variety such that $X_{\bar{k}} \simeq G / P$ where P is the underlying reduced scheme of \widetilde{P}.
- Call X the projective homogeneous variety corresponding to \widetilde{X} Theorem: $\mathcal{M}(X) \simeq \mathcal{M}(\widetilde{X})$

Rost Nilpotence and Krull-Schmidt for \widetilde{X}

I also show the following
Theorem
Rost nilpotence holds for projective pseudo-homogeneous varieties for G

Corollary

Krull-Schmidt holds for projective pseudo-homogeneous varieties for G

Generic Criterion for Isomorphic Motives

To prove the main theorem first I prove the following

Theorem

Let X be projective G-homogeneous variety any field k of any characteristic. Let Z be any geometrically split projective k-variety satisfying $R N$ such that the following holds in $\operatorname{Chow}(k, \Lambda)$:
(1) $U_{X} \simeq U_{Z}$
(2) $\mathcal{M}\left(X_{L}\right) \simeq \mathcal{M}\left(Z_{L}\right)$ where $L=k(X)$

Then $\mathcal{M}(X) \simeq \mathcal{M}(Z)$.

Proof of main result

Theorem

$$
\mathcal{M}(X) \simeq \mathcal{M}(\widetilde{X})
$$

Proof of main result

Theorem

$$
\mathcal{M}(X) \simeq \mathcal{M}(\widetilde{X})
$$

Proof.

- By induction on $n=\operatorname{rank}(G)$. Trivially true for $n=0$. Assume true for all groups with rank less than n.
- Let $\operatorname{rank}(G)=n$. Let $L=k(X)$ and G^{\prime} the anisotropic kernel of G_{L}. Then $\operatorname{rank}\left(G^{\prime}\right)<\operatorname{rank}(G)$.
- $\mathcal{M}\left(\widetilde{X}_{L}\right)=\amalg_{i} \mathcal{M}\left(\widetilde{Z}_{i}\right)\left(a_{i}\right)$ and $\mathcal{M}\left(X_{L}\right)=\amalg_{i} \mathcal{M}\left(Z_{i}\right)\left(a_{i}\right)$.
- By induction hypothesis, $\mathcal{M}\left(\widetilde{Z}_{i}\right) \simeq \mathcal{M}\left(Z_{i}\right)$
- $\mathcal{M}\left(\widetilde{X}_{L}\right) \simeq \mathcal{M}\left(X_{L}\right)$.
- Moreover, $U_{X} \simeq U_{\tilde{X}}$.
- Applying generic criterion for isomorphic motives, we are done.

Examples and Applications

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^{\otimes p}$. Then in the category $\operatorname{Chow}(k, \Lambda)$, the motives of twisted flag varieties $X\left(d_{1}, d_{2}, \cdots, d_{m}, A\right)$ and $X\left(d_{1}, d_{2}, \cdots, d_{m}, B\right)$ are isomorphic. That is,

$$
\mathcal{M}\left(X\left(d_{1}, d_{2}, \cdots, d_{m}, A\right)\right) \simeq \mathcal{M}\left(X\left(d_{1}, d_{2}, \cdots, d_{m}, B\right)\right)
$$

Examples and Applications

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^{\otimes p}$. Then in the category $\operatorname{Chow}(k, \Lambda)$, the motives of twisted flag varieties $X\left(d_{1}, d_{2}, \cdots, d_{m}, A\right)$ and $X\left(d_{1}, d_{2}, \cdots, d_{m}, B\right)$ are isomorphic. That is,

$$
\mathcal{M}\left(X\left(d_{1}, d_{2}, \cdots, d_{m}, A\right)\right) \simeq \mathcal{M}\left(X\left(d_{1}, d_{2}, \cdots, d_{m}, B\right)\right)
$$

Taking $m=1$, we get $\mathcal{M}\left(S B_{d}(A)\right) \simeq \mathcal{M}\left(S B_{d}(B)\right)$ for twisted Grassmannians.

Examples and Applications

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^{\otimes p}$. Then in the category $\operatorname{Chow}(k, \Lambda)$, the motives of twisted flag varieties $X\left(d_{1}, d_{2}, \cdots, d_{m}, A\right)$ and $X\left(d_{1}, d_{2}, \cdots, d_{m}, B\right)$ are isomorphic. That is,

$$
\mathcal{M}\left(X\left(d_{1}, d_{2}, \cdots, d_{m}, A\right)\right) \simeq \mathcal{M}\left(X\left(d_{1}, d_{2}, \cdots, d_{m}, B\right)\right)
$$

Taking $m=1$, we get $\mathcal{M}\left(S B_{d}(A)\right) \simeq \mathcal{M}\left(S B_{d}(B)\right)$ for twisted Grassmannians. In particular, for the case of Severi-Brauer varieties we have $\mathcal{M}(S B(A)) \simeq \mathcal{M}(S B(B))$.

Examples and Applications

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^{\otimes p}$. Then in the category $\operatorname{Chow}(k, \Lambda)$, the motives of twisted flag varieties $X\left(d_{1}, d_{2}, \cdots, d_{m}, A\right)$ and $X\left(d_{1}, d_{2}, \cdots, d_{m}, B\right)$ are isomorphic. That is,

$$
\mathcal{M}\left(X\left(d_{1}, d_{2}, \cdots, d_{m}, A\right)\right) \simeq \mathcal{M}\left(X\left(d_{1}, d_{2}, \cdots, d_{m}, B\right)\right)
$$

Taking $m=1$, we get $\mathcal{M}\left(S B_{d}(A)\right) \simeq \mathcal{M}\left(S B_{d}(B)\right)$ for twisted Grassmannians. In particular, for the case of Severi-Brauer varieties we have $\mathcal{M}(S B(A)) \simeq \mathcal{M}(S B(B))$.

Corollary

There exists examples of varieties whose motives are isomorphic when Λ is any finite field but not when $\Lambda=\mathbb{Z}$

Some open questions

- Are the motives of \widetilde{X} and X isomorphic even when G is outer?

Some open questions

- Are the motives of \widetilde{X} and X isomorphic even when G is outer?
- Does the Generic criterion for isomorphic motives hold in general i.e., when X and Z are arbitrary varieties?

Thank You

