Motivic Decomposition of Projective Pseudo-Homogeneous Varieties

Srimathy Srinivasan

IAS

• G - semisimple linear algebraic group over a perfect field k of characteristic p > 0

- G semisimple linear algebraic group over a perfect field k of characteristic p > 0
- $\Delta_G = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ denote the set of simple roots of G

- G semisimple linear algebraic group over a perfect field k of characteristic p > 0
- $\Delta_G = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D} .

- G semisimple linear algebraic group over a perfect field k of characteristic p > 0
- $\Delta_G = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D} .
- $\{ Nodes of \mathfrak{D} \}$

- G semisimple linear algebraic group over a perfect field k of characteristic p > 0
- $\Delta_G = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D} .
- $\bullet \ \{\mathsf{Nodes} \ \mathsf{of} \ \mathfrak{D}\} \leftrightarrow \{\Delta_G \ \}$

- G semisimple linear algebraic group over a perfect field k of characteristic p > 0
- $\Delta_G = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D} .
- $\bullet \ \{\mathsf{Nodes} \ \mathsf{of} \ \mathfrak{D}\} \leftrightarrow \{\Delta_{\mathsf{G}} \ \} \leftrightarrow \{\mathsf{Conjugacy} \ \mathsf{class} \ \mathsf{of} \ \mathsf{Max'l} \ \mathsf{Parabolics}\}$

- G semisimple linear algebraic group over a perfect field k of characteristic p > 0
- $\Delta_G = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D} .
- $\bullet \ \{\mathsf{Nodes} \ \mathsf{of} \ \mathfrak{D}\} \leftrightarrow \{\Delta_G \ \} \leftrightarrow \{\mathsf{Conjugacy} \ \mathsf{class} \ \mathsf{of} \ \mathsf{Max'l} \ \mathsf{Parabolics}\}$
- $\bullet \ \{ \mathsf{Subsets} \ \mathsf{of} \ \mathsf{nodes} \ \mathsf{of} \ \mathfrak{D} \}$

- G semisimple linear algebraic group over a perfect field k of characteristic p > 0
- $\Delta_G = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathfrak{D} .
- $\bullet \ \{\mathsf{Nodes} \ \mathsf{of} \ \mathfrak{D}\} \leftrightarrow \{\Delta_{\mathsf{G}}\ \} \leftrightarrow \{\mathsf{Conjugacy} \ \mathsf{class} \ \mathsf{of} \ \mathsf{Max'l} \ \mathsf{Parabolics}\}$
- {Subsets of nodes of \mathfrak{D} } \leftrightarrow {Conjugacy class of Parabolics}

• The Galois group $\Gamma = Gal(k_{sep}/k)$ acts on the maximal parabolics

- The Galois group $\Gamma = Gal(k_{sep}/k)$ acts on the maximal parabolics
- ullet Therefore we get an action on the nodes of ${\mathfrak D}$ called the *-action

- The Galois group $\Gamma = Gal(k_{sep}/k)$ acts on the maximal parabolics
- Therefore we get an action on the nodes of D called the *-action
- If the *-action is trivial, then G is said to be of inner type over k

- The Galois group $\Gamma = Gal(k_{sep}/k)$ acts on the maximal parabolics
- Therefore we get an action on the nodes of $\mathfrak D$ called the *-action
- If the *-action is trivial, then G is said to be of inner type over k
- Else it is of outer type over *k*

• Flag varieties are varieties of the form G/P for some parabolic subgroup P

• Flag varieties are varieties of the form G/P for some parabolic subgroup P (by defn they are reduced)

• Flag varieties are varieties of the form G/P for some parabolic subgroup P (by definithely are reduced)

Examples: \mathbb{P}^n , Grassmannians, quadrics

- Flag varieties are varieties of the form G/P for some parabolic subgroup P (by defn they are reduced)

 Examples: \mathbb{P}^n , Grassmannians, quadrics
- X over k is a projective homogeneous variety for G if $X_{\overline{k}} \simeq G/P$ for some parabolic subgroup P

- Flag varieties are varieties of the form G/P for some parabolic subgroup P (by definithely are reduced)

 Examples: \mathbb{P}^n , Grassmannians, quadrics
- X over k is a projective homogeneous variety for G if $X_{\overline{k}} \simeq G/P$ for some parabolic subgroup P
- These are twisted forms of flag varieties

- Flag varieties are varieties of the form G/P for some parabolic subgroup P (by definition they are reduced)

 Examples: \mathbb{P}^n , Grassmannians, quadrics
- X over k is a projective homogeneous variety for G if $X_{\overline{k}} \simeq G/P$ for some parabolic subgroup P
- These are twisted forms of flag varieties Examples: Severi-Brauer Varieties $SB_n(A)$ corresponding to a central simple algebra A

• The category $Chow(k, \Lambda)$ where k - field, Λ - coefficient ring

- The category $Chow(k, \Lambda)$ where k field, Λ coefficient ring
- Objects = (X, n, p) where X variety over k, $n \in \mathbb{Z}$ and $p \in End(X)$ a projector or idempotent, i.e, $p^2 = p$

- The category $Chow(k, \Lambda)$ where k field, Λ coefficient ring
- Objects = (X, n, p) where X variety over k, $n \in \mathbb{Z}$ and $p \in End(X)$ a projector or idempotent, i.e, $p^2 = p$
- What are Hom sets?

- The category $Chow(k, \Lambda)$ where k field, Λ coefficient ring
- Objects = (X, n, p) where X variety over k, $n \in \mathbb{Z}$ and $p \in End(X)$ a projector or idempotent, i.e, $p^2 = p$
- What are Hom sets? If X is irreducible, $Hom_{Chow(k,\Lambda)}((X,n,p),(Y,m,q)) = q \circ [CH_{dim\ X+n-m}X \times Y \otimes_{\mathbb{Z}} \Lambda] \circ p$

Composition of Morphisms

• How to compose morphisms $\alpha \in Hom((X, n, p), (Y, m, q))$ and $\beta \in Hom((Y, m, q), (Z, r, s))$.

Composition of Morphisms

• How to compose morphisms $\alpha \in Hom((X, n, p), (Y, m, q))$ and $\beta \in Hom((Y, m, q), (Z, r, s))$. Then $\beta \circ \alpha = p_{13*}(p_{12}^*\alpha \cdot p_{23}^*\beta)$

Composition of Morphisms

• How to compose morphisms $\alpha \in Hom((X, n, p), (Y, m, q))$ and $\beta \in Hom((Y, m, q), (Z, r, s))$. Then $\beta \circ \alpha = p_{13*}(p_{12}^*\alpha \cdot p_{23}^*\beta)$

• Chow(k, Λ) admits tensor product: $(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$

- Chow (k, Λ) admits tensor product: $(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$
- Notation: $\mathcal{M}(X) = (X, 0, \Delta_X)$ the motive of X

- Chow (k, Λ) admits tensor product: $(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$
- Notation: $\mathcal{M}(X) = (X, 0, \Delta_X)$ the motive of XTate motive $\Lambda = (Spec \ k, 0, \Delta)$, $\Lambda(i) = (Spec \ k, i, \Delta)$

- Chow (k, Λ) admits tensor product: $(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$
- Notation: $\mathcal{M}(X) = (X, 0, \Delta_X)$ the motive of XTate motive $\Lambda = (Spec \ k, 0, \Delta)$, $\Lambda(i) = (Spec \ k, i, \Delta)$ Twisting a motive: $M(i) = M \otimes \Lambda(i)$ i.e., (X, n, p)(i) = (X, n + i, p)

- Chow(k, Λ) admits tensor product: $(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$
- Notation: $\mathcal{M}(X) = (X, 0, \Delta_X)$ the motive of XTate motive $\Lambda = (Spec \ k, 0, \Delta)$, $\Lambda(i) = (Spec \ k, i, \Delta)$ Twisting a motive: $M(i) = M \otimes \Lambda(i)$ i.e., (X, n, p)(i) = (X, n + i, p)
- $Chow(k, \Lambda)$ admits direct sum:

$$(X, n, p) \oplus (Y, m, q) = (X \coprod (Y \times \mathbb{P}^{m-n}), n, p + (q \times \alpha_{m-n}))$$

- Chow(k, Λ) admits tensor product: $(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$
- Notation: $\mathcal{M}(X) = (X, 0, \Delta_X)$ the motive of XTate motive $\Lambda = (Spec \ k, 0, \Delta)$, $\Lambda(i) = (Spec \ k, i, \Delta)$ Twisting a motive: $M(i) = M \otimes \Lambda(i)$ i.e., (X, n, p)(i) = (X, n + i, p)
- $Chow(k, \Lambda)$ admits direct sum:

$$(X, n, p) \oplus (Y, m, q) = (X \coprod (Y \times \mathbb{P}^{m-n}), n, p + (q \times \alpha_{m-n}))$$
 where $\alpha_{m-n} = [pt \times \mathbb{P}^{m-n}] \in End \ \mathcal{M}(\mathbb{P}^{m-n})$

• Find a non-trivial projector:

• Find a non-trivial projector: If $p \in End \mathcal{M}(X)$ is a non-trivial projector, then

$$\mathcal{M}(X) \simeq (X,0,p) \oplus (X,0,1-p)$$

• Find a non-trivial projector: If $p \in End \mathcal{M}(X)$ is a non-trivial projector, then

$$\mathcal{M}(X) \simeq (X,0,p) \oplus (X,0,1-p)$$

• Example: $p = [pt \times \mathbb{P}^1] \in End \ \mathcal{M}(\mathbb{P}^1)$ is a projector. So get

$$\mathcal{M}(\mathbb{P}^1) \simeq (\mathbb{P}^1,0,\rho) \oplus (\mathbb{P}^1,0,1-\rho) \simeq \Lambda \oplus \Lambda(1)$$

• Find a non-trivial projector: If $p \in End \mathcal{M}(X)$ is a non-trivial projector, then

$$\mathcal{M}(X) \simeq (X,0,p) \oplus (X,0,1-p)$$

• Example: $p = [pt \times \mathbb{P}^1] \in End \ \mathcal{M}(\mathbb{P}^1)$ is a projector. So get

$$\mathcal{M}(\mathbb{P}^1) \simeq (\mathbb{P}^1,0,\rho) \oplus (\mathbb{P}^1,0,1-\rho) \simeq \Lambda \oplus \Lambda(1)$$

• In general,

$$\mathcal{M}(\mathbb{P}^n) \simeq \Lambda \oplus \Lambda(1) \oplus \cdots \oplus \Lambda(n)$$

How do we find projectors?

• Useful technique: Rost Nilpotence (RN)

How do we find projectors?

- Useful technique: Rost Nilpotence (RN)
- We say that Rost Nilpotence holds for a variety X over F if for every field extension E/F the kernel of the base change map

$$End_F(\mathcal{M}(X)) \to End_E(\mathcal{M}(X_E))$$

 $\alpha \to \alpha_E$

consists of nilpotents. That is , if $\alpha \in End_F(\mathcal{M}(X))$ is such that $\alpha_E = 0$, then $\alpha^{\circ N} = 0$ for some N > 0.

How do we find projectors?

- Useful technique: Rost Nilpotence (RN)
- We say that Rost Nilpotence holds for a variety X over F if for every field extension E/F the kernel of the base change map

$$End_F(\mathcal{M}(X)) \to End_E(\mathcal{M}(X_E))$$

 $\alpha \to \alpha_E$

consists of nilpotents. That is , if $\alpha \in End_F(\mathcal{M}(X))$ is such that $\alpha_E = 0$, then $\alpha^{\circ N} = 0$ for some N > 0.

Many interesting consequences. One of them - finding projectors

What is known?

 RN holds for projective homogeneous varieties, surfaces in characteristic 0

What is known?

- RN holds for projective homogeneous varieties, surfaces in characteristic 0
- Not known if RN holds in general

• Fix $Chow(k, \Lambda)$, $\Lambda =$ finite connected coefficient ring. Eg: $\Lambda = \mathbb{F}_q$

- Fix $Chow(k, \Lambda)$, $\Lambda =$ finite connected coefficient ring. Eg: $\Lambda = \mathbb{F}_q$
- Let G be of inner type over k. X projective homogeneous variety for G.

- Fix $Chow(k, \Lambda)$, $\Lambda =$ finite connected coefficient ring. Eg: $\Lambda = \mathbb{F}_q$
- Let G be of inner type over k. X projective homogeneous variety for G.
 - Goal: Decompose $\mathcal{M}(X)$ if possible.

- Fix $Chow(k, \Lambda)$, $\Lambda =$ finite connected coefficient ring. Eg: $\Lambda = \mathbb{F}_q$
- Let G be of inner type over k. X projective homogeneous variety for G.
 - Goal: Decompose $\mathcal{M}(X)$ if possible.
- Can we describe the indecomposable summands appearing in the decomposition of $\mathcal{M}(X)$?

- Fix $Chow(k, \Lambda)$, $\Lambda =$ finite connected coefficient ring. Eg: $\Lambda = \mathbb{F}_q$
- Let G be of inner type over k. X projective homogeneous variety for G.
 - Goal: Decompose $\mathcal{M}(X)$ if possible.
- Can we describe the indecomposable summands appearing in the decomposition of $\mathcal{M}(X)$?
- Is the complete decomposition unique?

- Fix $Chow(k, \Lambda)$, $\Lambda =$ finite connected coefficient ring. Eg: $\Lambda = \mathbb{F}_q$
- Let G be of inner type over k. X projective homogeneous variety for G.
 - Goal: Decompose $\mathcal{M}(X)$ if possible.
- Can we describe the indecomposable summands appearing in the decomposition of $\mathcal{M}(X)$?
- Is the complete decomposition unique?
 Yes Krull-Schmidt

ullet One special summand in complete decomposition of $\mathcal{M}(X)$ - Upper Indecomposable Summand

- ullet One special summand in complete decomposition of $\mathcal{M}(X)$ Upper Indecomposable Summand
- $M \hookrightarrow \mathcal{M}(X)$ is upper if $CH^0(M) := Hom(M, \Lambda) \neq 0$

- ullet One special summand in complete decomposition of $\mathcal{M}(X)$ Upper Indecomposable Summand
- $M \hookrightarrow \mathcal{M}(X)$ is upper if $CH^0(M) := Hom(M, \Lambda) \neq 0$
- ullet Unique as a consequence of KS. Denoted by U_X

- ullet One special summand in complete decomposition of $\mathcal{M}(X)$ Upper Indecomposable Summand
- $M \hookrightarrow \mathcal{M}(X)$ is upper if $CH^0(M) := Hom(M, \Lambda) \neq 0$
- ullet Unique as a consequence of KS. Denoted by U_X
- Contains lot of information

• Suppose $G = SL_3$. Consider

$$\widetilde{P} = \left\{ \begin{pmatrix} * & * & * \\ x & * & * \\ y & z & * \end{pmatrix} \middle| x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \widetilde{P} is not reduced.

• Suppose $G = SL_3$. Consider

$$\widetilde{P} = \left\{ \begin{pmatrix} * & * & * \\ x & * & * \\ y & z & * \end{pmatrix} \middle| x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \widetilde{P} is not reduced.

Underlying reduced scheme is the standard Borel.

• Suppose $G = SL_3$. Consider

$$\widetilde{P} = \left\{ \begin{pmatrix} * & * & * \\ x & * & * \\ y & z & * \end{pmatrix} \middle| x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \widetilde{P} is not reduced.

Underlying reduced scheme is the standard Borel.

• In char p, subgroups schemes of G need not be reduced

• Suppose $G = SL_3$. Consider

$$\widetilde{P} = \left\{ \begin{pmatrix} * & * & * \\ x & * & * \\ y & z & * \end{pmatrix} \middle| x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \widetilde{P} is not reduced.

Underlying reduced scheme is the standard Borel.

- In char p, subgroups schemes of G need not be reduced
- A parabolic subgroup scheme is a subgroup containing Borel that is not necessarily reduced.

• Suppose $G = SL_3$. Consider

$$\widetilde{P} = \left\{ \begin{pmatrix} * & * & * \\ x & * & * \\ y & z & * \end{pmatrix} \middle| x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \widetilde{P} is not reduced.

Underlying reduced scheme is the standard Borel.

- In char p, subgroups schemes of G need not be reduced
- A parabolic subgroup scheme is a subgroup containing Borel that is not necessarily reduced.

Notation: \widetilde{P} - parabolic subgroup scheme, P - underlying reduced subscheme of \widetilde{P}

• VUFs are quotients G/\widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)

• VUFs are quotients G/\widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = SL_3$. Consider the variety \widetilde{X} in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=0}^2 x_i^p y_i = 0$ where

• VUFs are quotients G/\widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = SL_3$. Consider the variety \widetilde{X} in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=0}^2 x_i^p y_i = 0$ where

$$g.\overrightarrow{x} = g^{p^3}\overrightarrow{x}$$
 and $g.\overrightarrow{y} = (g^{-t})^{p^4}\overrightarrow{y}$

• VUFs are quotients G/\widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = SL_3$. Consider the variety \widetilde{X} in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=0}^2 x_i^p y_i = 0$ where $g. \overrightarrow{X} = g^{p^3} \overrightarrow{X}$ and $g. \overrightarrow{V} = (g^{-t})^{p^4} \overrightarrow{V}$

Then

$$\widetilde{P} = Stab([1:0:0] \times [0:0:1]) = \{ \begin{pmatrix} * & * & * \\ x & * & * \\ y & z & * \end{pmatrix} | x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \}$$

• VUFs are quotients G/\widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = SL_3$. Consider the variety \widetilde{X} in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=0}^2 x_i^p y_i = 0$ where $g.\overrightarrow{X} = g^{p^3} \overrightarrow{X}$ and $g.\overrightarrow{y} = (g^{-t})^{p^4} \overrightarrow{y}$ Then

$$\widetilde{P} = Stab([1:0:0] \times [0:0:1]) = \{\begin{pmatrix} x & x & x \\ x & x & x \\ y & z & x \end{pmatrix} | x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0\}$$

• $\widetilde{X} = G/\widetilde{P}$ is a VUF

What is known about VUFs?

• VUFs are not in general isomorphic to flag varieties

What is known about VUFs?

- VUFs are not in general isomorphic to flag varieties
- VUFs behave very differently from flag varieties

What is known about VUFs?

- VUFs are not in general isomorphic to flag varieties
- VUFs behave very differently from flag varieties
- Nothing much known for their twisted forms over non-algebraically closed fields

Question: Is there any relation between them at all?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms?

Answer: Yes

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms?

Answer: Yes & Yes

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms?

Answer: Yes & Yes

I show that their motives are isomorphic in $Chow(k, \Lambda)$

Projective Pseudo-Homogeneous Varieties

• A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\overline{k}} \simeq G/\widetilde{P}$, \widetilde{P} not necessarily reduced

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\overline{k}} \simeq G/\widetilde{P}$, \widetilde{P} not necessarily reduced
- Twisted forms of VUFs

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\overline{k}} \simeq G/\widetilde{P}$, \widetilde{P} not necessarily reduced
- Twisted forms of VUFs
- Denote by X the G-variety such that $X_{\overline{k}} \simeq G/P$ where P is the underlying reduced scheme of \widetilde{P} .

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\overline{k}} \simeq G/\widetilde{P}$, \widetilde{P} not necessarily reduced
- Twisted forms of VUFs
- Denote by X the G-variety such that $X_{\overline{k}} \simeq G/P$ where P is the underlying reduced scheme of \widetilde{P} .
- ullet Call X the projective homogeneous variety corresponding to \widetilde{X}

Projective Pseudo-Homogeneous Varieties

- A variety \widetilde{X} over k is a projective pseudo-homogeneous variety for G, if $\widetilde{X}_{\overline{k}} \simeq G/\widetilde{P}$, \widetilde{P} not necessarily reduced
- Twisted forms of VUFs
- Denote by X the G-variety such that $X_{\overline{k}} \simeq G/P$ where P is the underlying reduced scheme of \widetilde{P} .
- ullet Call X the projective homogeneous variety corresponding to \widetilde{X}

Theorem:
$$\mathcal{M}(X) \simeq \mathcal{M}(\widetilde{X})$$

Rost Nilpotence and Krull-Schmidt for X

I also show the following

Theorem

Rost nilpotence holds for projective pseudo-homogeneous varieties for G

Corollary

Krull-Schmidt holds for projective pseudo-homogeneous varieties for G

Generic Criterion for Isomorphic Motives

To prove the main theorem first I prove the following

Theorem

Let X be projective G-homogeneous variety any field k of any characteristic. Let Z be any geometrically split projective k-variety satisfying RN such that the following holds in $Chow(k, \Lambda)$:

- $U_X \simeq U_Z$

Then $\mathcal{M}(X) \simeq \mathcal{M}(Z)$.

Proof of main result

Theorem

$$\mathcal{M}(X) \simeq \mathcal{M}(\widetilde{X})$$

Proof of main result

Theorem

$$\mathcal{M}(X) \simeq \mathcal{M}(\widetilde{X})$$

Proof.

- By induction on n = rank(G). Trivially true for n = 0. Assume true for all groups with rank less than n.
- Let rank(G) = n. Let L = k(X) and G' the anisotropic kernel of G_L . Then rank(G') < rank(G).
- $\mathcal{M}(\widetilde{X}_L) = \coprod_i \mathcal{M}(\widetilde{Z}_i)(a_i)$ and $\mathcal{M}(X_L) = \coprod_i \mathcal{M}(Z_i)(a_i)$.
- By induction hypothesis, $\mathcal{M}(\widetilde{Z}_i) \simeq \mathcal{M}(Z_i)$
- $\mathcal{M}(\widetilde{X}_L) \simeq \mathcal{M}(X_L)$.
- Moreover, $U_X \simeq U_{\widetilde{X}}$.
- Applying generic criterion for isomorphic motives, we are done.

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^{\otimes p}$. Then in the category $Chow(k,\Lambda)$, the motives of twisted flag varieties $X(d_1,d_2,\cdots,d_m,A)$ and $X(d_1,d_2,\cdots,d_m,B)$ are isomorphic. That is,

$$\mathcal{M}(X(d_1,d_2,\cdots,d_m,A))\simeq \mathcal{M}(X(d_1,d_2,\cdots,d_m,B))$$

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^{\otimes p}$. Then in the category $Chow(k,\Lambda)$, the motives of twisted flag varieties $X(d_1,d_2,\cdots,d_m,A)$ and $X(d_1,d_2,\cdots,d_m,B)$ are isomorphic. That is,

$$\mathcal{M}(X(d_1,d_2,\cdots,d_m,A)) \simeq \mathcal{M}(X(d_1,d_2,\cdots,d_m,B))$$

Taking m = 1, we get $\mathcal{M}(SB_d(A)) \simeq \mathcal{M}(SB_d(B))$ for twisted Grassmannians.

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^{\otimes p}$. Then in the category $Chow(k,\Lambda)$, the motives of twisted flag varieties $X(d_1,d_2,\cdots,d_m,A)$ and $X(d_1,d_2,\cdots,d_m,B)$ are isomorphic. That is,

$$\mathcal{M}(X(d_1,d_2,\cdots,d_m,A)) \simeq \mathcal{M}(X(d_1,d_2,\cdots,d_m,B))$$

Taking m = 1, we get $\mathcal{M}(SB_d(A)) \simeq \mathcal{M}(SB_d(B))$ for twisted Grassmannians. In particular, for the case of Severi-Brauer varieties we have $\mathcal{M}(SB(A)) \simeq \mathcal{M}(SB(B))$.

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^{\otimes p}$. Then in the category $Chow(k,\Lambda)$, the motives of twisted flag varieties $X(d_1,d_2,\cdots,d_m,A)$ and $X(d_1,d_2,\cdots,d_m,B)$ are isomorphic. That is,

$$\mathcal{M}(X(d_1,d_2,\cdots,d_m,A))\simeq \mathcal{M}(X(d_1,d_2,\cdots,d_m,B))$$

Taking m = 1, we get $\mathcal{M}(SB_d(A)) \simeq \mathcal{M}(SB_d(B))$ for twisted Grassmannians. In particular, for the case of Severi-Brauer varieties we have $\mathcal{M}(SB(A)) \simeq \mathcal{M}(SB(B))$.

Corollary

There exists examples of varieties whose motives are isomorphic when Λ is any finite field but not when $\Lambda = \mathbb{Z}$

Some open questions

ullet Are the motives of \widetilde{X} and X isomorphic even when G is outer?

Some open questions

- ullet Are the motives of \widetilde{X} and X isomorphic even when G is outer?
- Does the Generic criterion for isomorphic motives hold in general i.e., when X and Z are arbitrary varieties?

Thank You