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Single Particle Cryo-Electron Microscopy

Drawing of the imaging process:
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Single Particle Cryo-Electron Microscopy: Model

Projection Ii
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Electronsource
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Projection images Ii (x , y) =
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−∞ φ(xR1

i + yR2
i + zR3

i ) dz + “noise”.

φ : R3 7→ R is the electric potential of the molecule.

Cryo-EM problem: Find φ and R1, . . . ,Rn given I1, . . . , In.
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Toy Example
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E. coli 50S ribosomal subunit: sample images
Fred Sigworth, Yale Medical School

 

 

Movie by Lanhui Wang and Zhizhen (Jane) Zhao
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Algorithmic Pipeline

Particle Picking: manual, automatic or experimental image
segmentation.

Class Averaging: classify images with similar viewing directions,
register and average to improve their signal-to-noise ratio (SNR).
S, Zhao, Shkolnisky, Hadani, SIIMS, 2011.

Orientation Estimation:
S, Shkolnisky, SIIMS, 2011.

Three-dimensional Reconstruction:
a 3D volume is generated by a tomographic inversion algorithm.

Iterative Refinement
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Geometry: Fourier projection-slice theorem

Projection Ii

Projection Ij

Îi

Îj

3D Fourier space

3D Fourier space

(xij , yij)

(xji , yji )

Ricij cij = (xij , yij , 0)
T

Ricij = Rjcji
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Angular Reconstitution (Van Heel 1987, Vainshtein and Goncharov 1986)
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The Heterogeneity Problem

A key assumption in classical algorithms for cryo-EM is that the
sample consists of (rotated versions of) identical molecules.

In many datasets this assumption does not hold.

Some molecules of interest exist in more than one conformational
state.

Examples: A subunit of the molecule might be present or absent,
occur in several different arrangements, or be able to move in a
continuous fashion from one position to another.

These structural variations are of great interest to biologists, as they
provide insight into the functioning of the molecule.

Determining the structural variability from a set of cryo-EM images
obtained from a mixture of particles of two or more different kinds or
different conformations is known as the heterogeneity problem.
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The Heterogeneity Problem

Given 2D projection images of a heterogenous set of 3D volumes,
classify the images and reconstruct the 3D volumes.

One projection image per particle, the projection directions are
unknown, and the correspondence between projections and volumes is
unknown.

The underlying distribution of the 3D volumes is unknown: could be a
mixture of continuous and discrete, number of classes and/or number
of degrees of freedom are also unknown.

Compared to usual SPR, the effective signal-to-noise ratio (SNR) is
even lower, because the signal we seek to reconstruct is the variation
of the molecules around their mean, as opposed to the mean volume
itself.
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Current Approaches

Penczek et al (JSB 2006): bootstrapping using resampling.

Scheres et al (Nature Methods 2007): maximum likelihood.

Shatsky et al (JSB 2010): common lines and spectral clustering.
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Do we need more approaches?

While existing methods have their success stories they suffer from certain
shortcomings:

Penczek et al (JSB 2006): bootstrapping using resampling.
A heuristic sampling method that lacks in theoretical guarantees.

Scheres et al (Nature Methods 2007): maximum likelihood.
Requires explicit a-priori distributions, no guarantee for finding global
solution, slow (many parameters).

Shatsky et al (JSB 2010): common lines and spectral clustering.
Common lines do not exploit all possible information in images.

We would like to have a provable, fast method with low sample complexity
that succeeds at low SNR.
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Basic Assumption: Small Structural Variability

We assume that structural variability is small compared to the overall
structure.
For example, variability is confined to a local region.

Pose parameters of all images are estimated initially as if there is no
conformational variability (e.g., using iterative refinement).

The reconstructed volume is an estimate of the averaged volume
(we will address this issue later).

At this stage, the orientations of all images have been estimated, but
classification is still required.

Our approach would be to perform Principal Component Analysis
(PCA) for the 3D volumes given 2D images with known pose
parameters.

Amit Singer (Princeton University) November 2013 13 / 34



Principal Component Analysis (PCA)

PCA is one of the most popular and useful tools in multivariate
statistical analysis for dimensionality reduction, compression and
de-noising.

Let x1, x2, . . . , xn ∈ R
p be independent samples of a random vector X

with mean and covariance

E[X ] = µ, E[(X − µ)(X − µ)T ] = Σ

The sample mean and sample covariance matrix are defined as

µn =
1

n

n
∑

i=1

xi , Σn =
1

n

n
∑

i=1

(xi − µn)(xi − µn)
T

The principal components are the eigenvectors of Σn, ordered by
decreasing eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0:

Σnvi = λivi , i = 1, . . . , p.
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Classification of 3D Volumes after PCA

Motivating example: Suppose there are just two dominant
conformations, then µ is the average volume and Σ is a rank-1 matrix
whose eigenvector is proportional to the difference of the two volumes.

In general, if there are K classes, then the rank of Σ is at most K − 1.

The eigenvectors v1, . . . , vK−1 are the “eigen-volumes” and enable
classification of the projection images.

If φ = µ+
∑K−1

k=1 akvk , then the projection image for rotation R is

IR = PRφ+ ǫ = PRµ+

K−1
∑

k=1

akPRvk + ǫ

For each image extract the coefficients a1, . . . , aK−1 (least squares).

Use a clustering algorithm (spectral clustering, K-means) to define
image classes.
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How to estimate the 3D covariance matrix from 2D
images?

In standard PCA, we get samples x1, . . . , xn and we directly construct
the sample mean and the sample covariance.

In the classification problem, the sample mean and sample covariance
cannot be computed directly: the covariance matrix of the 3D
volumes needs to be estimated from 2D images

Ad-hoc heuristic solution: Re-sampling — Construct multiple 3D
volumes by randomly sampling images and perform PCA for the
reconstructed volumes.

Problems with the resampling approach:
1 The volumes do not correspond to actual conformations and need not

lie on the linear subspace spanned by the conformations
2 Dependency of volumes due to re-sampling
3 No theoretical guarantee for accuracy, number of required images, and

noise dependency.
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Can we estimate the 3D covariance matrix from the 2D
images?

Basic Idea: Fourier projection-slice theorem
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Can we estimate the 3D covariance matrix from the 2D
images?

Work in the Fourier domain: It is easier to estimate the covariance
matrix of the Fourier transformed volumes

For any pair of frequencies there is a central slice that contains them.
Use all corresponding images to estimate the covariance between
those frequencies.

Repeat to populate the entire covariance matrix.

If φ̂ = Fφ, where F is the 3D DFT matrix, then µ̂ = Fµ and
Σ̂ = FΣF ∗

From Σ̂ we can get Σ. Alternatively, F is a unitary transformation,
hence the eigenvectors of Σ and Σ̂ are related by F .
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Limitations of the basic approach - Part I

Interpolation error: The central slices are sampled on a Cartesian grid
that do not coincide with the 3D Cartesian grid. The näıve nearest
neighbor interpolation can produce large noticeable errors.

Statistical error: There are more slices going through some
frequencies than others. Examples: low frequency vs. high frequency,
frequencies that are on the same central line. Some entries of the
covariance matrix are statistically more accurate than others.
Classical PCA does not take this into account.
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Limitations of the basic approach - Part II

Sample complexity: How many images are needed as a function of
the SNR? How can we tell the “signal” eigenvalues from the “noise”
ones? What is the number of groups K? Different from classical PCA
since the observations are partial.

Computational cost: For a volume of size N × N × N = N3, the
covariance matrix is of size N3 × N3. For N = 100 this requires 1012

storage (4TB), out of RAM. Also computational complexity is nN4

(where n is the number of images) (typical parameter values n = 105,
N = 100 give nN4 = 1013 = 10 teraflops).
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Research Program

Interpolation error: We represent the volumes in a spherical-Bessel
basis, only using components that satisfy the Nyquist sampling
criterion (extension of Klug and Crowther, Nature 1972; Zhao and S,
JOSA A 2013).

Statistical error: We formulate a statistical framework that does not
assume an underlying distribution (which is not necessarily Gaussian),
and addresses the difficulty imposed by the new basis in which
projection operators are no longer “coordinate selection”/restriction.

Sample complexity: We formulate a certain problem in random matrix
theory regarding the limiting spectral density of the eigenvalues of a
certain random matrix ensemble.

Computational cost: We propose different sub-sampling strategies to
exploit either the low rank structure of Σ and/or the localized nature
of the structural variability.
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Mitigating the interpolation error

Instead of representing a volume using N3 Cartesian grid voxels, we
use a spherical-Bessel expansion:

φ(r , θ, ϕ) =
∑

n,l ,m

anlmfnlm(r)Y
m
l (θ, ϕ)

fnlm(r) =
J
l+1

2
(Rlnr)
√
r

are the spherical-Bessel functions,

Rln is the n’th root of Jl+ 1
2
(r) = 0.

Ym
l (θ, ϕ) are the spherical harmonics.

fnlm(r)Y
m
l (θ, ϕ) are the eigenfunctions of the Laplacian in the unit

ball with Dirichlet boundary conditions.

R2
ln are the eigenvalues of the Laplacian, can be considered as proxy

for (squared) frequencies.

Sampling criterion: keep n, l ,m with l + 2n below a certain threshold.

p is the number of coefficients in the expansion.
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Statistical Framework

We denote the expansion coefficient vectors of the n volumes
φ1, . . . , φn by x1, . . . , xn ∈ R

p.

These are sampled independently from a distribution over Rp, where
p = O(N3), with

E[X ] = µ, E[(X − µ)(X − µ)T ] = Σ.

The distribution is not necessarily Gaussian.

The linear projection operators P1, . . . ,Pn from R
p to R

q

(here q = N2) depend on the rotations and the CTFs.

Image formation model:

Ik = Pkxk + ǫk , k = 1, . . . , n,

where ǫk ∼ N (0, σ2Iq×q).

Mean and covariance of an image:

E[Ik ] = Pkµ, E[(Ik − Pkµ)(Ik − Pkµ)
T ] = PkΣP

T
k + σ2I
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Statistical Framework

Define estimators µn and Σn as minimizers of

µn = argmin
µ

n
∑

k=1

‖Ik − Pkµ‖
2

Σn = argmin
Σ

n
∑

k=1

‖(Ik − Pkµn)(Ik − Pkµn)
T − (PkΣP

T
k + σ2I )‖2F

The estimators satisfy
(

n
∑

k=1

PT
k Pk

)

µn =

n
∑

k=1

PT
k Ik

n
∑

k=1

PT
k PkΣnP

T
k Pk =

n
∑

k=1

PT
k [(Ik − Pkµn)(Ik − Pkµn)

T − σ2I ]Pk

µn is simply the reconstructed volume in the homogeneous case.

Notice that Σn reduces to the usual sample covariance matrix when
no projections are involved.
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Statistical Properties of Estimators

The following hold:

The estimator µn is unbiased: E[µn] = E[X ] (for n large enough so
that

∑n
k=1 P

T
k Pk is full-rank)

The estimators Σn and µn are asymptotically consistent:

µn → E[X ] and Σn → Cov(X ) almost surely as n → ∞.

Sample complexity requires further investigation, since in practice we are
outside the realm of classical statistics (n ≫ p), but rather in our case
n ≈ p.

“High-dimensional” statistics.
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The operator L

n
∑

k=1

PT
k PkΣnP

T
k Pk =

n
∑

k=1

PT
k [(Ik − Pkµn)(Ik − Pkµn)

T − σ2I ]Pk

Σn requires the inversion of the linear operator L
(a matrix of size p2 × p2):

L(Σ) =
n
∑

k=1

PT
k PkΣP

T
k Pk

We devised a fast algorithm to invert L
(notice that the inversion is fast when Pk are “coordinate selection”
operators but not necessarily so in general).

The fast algorithm is based on the continuum limit of L

L(Σ) =

∫

SO(3)
P(R)TP(R)ΣP(R)TP(R) dµ(R)

where integration is with respect to the Haar measure over SO(3).
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Projection covariance transform

L(Σ) =

∫

SO(3)
P(R)TP(R)ΣP(R)TP(R) dµ(R)

L is positive semidefinite and commutes with rotations, and has a
block-diagonal sparse structure.

We call L the projection covariance transform.

L is important for covariance estimation for inverse problems
involving structural variation just as projection and back-projection
operators are important for classical inversion problems.
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Sample complexity – a problem in random matrix theory

Recall Σn is defined through

L(Σn) =

n
∑

k=1

PT
k [(Ik − Pkµn)(Ik − Pkµn)

T − σ2I ]Pk

First need to understand the spectrum (eigenvalues) due to pure noise
(i.e., µ = µn = 0, Σ = 0) for the random matrix in the rhs:

Sn =
1

n

n
∑

k=1

PT
k ǫkǫ

T
k Pk

Sn is the sample covariance of yk = PT
k ǫk .

E[yk ] = 0 and E[yky
T
k ] = σ2

E[PTP ].

E[PTP ] is a classical operator in tomography, eigenvalues can be
computed explicitly.

Marcenko and Pastur (1967) derived the spectral density (via the
Stieltjes transform) for non-isotropic distributions in the limit
p/n → γ.
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Sample complexity – a problem in random matrix theory

Recall Σn is defined through

L(Σn) =
n
∑

k=1

PT
k [(Ik − Pkµn)(Ik − Pkµn)

T − σ2I ]Pk

Sn =
1

n

n
∑

k=1

PT
k ǫkǫ

T
k Pk

The effect of inverting L is however less understood.

What is the limiting spectral density of L−1(Sn)?

What is the distribution of the largest eigenvalue of L−1(Sn)?
Important for determining the number of heterogeneous groups that
can be inferred reliably from the data.
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Numerical results

A: projection of the first phantom e−
1

100
‖r−c1‖2

B: projection of the second phantom e−
1

100
‖r−c1‖2 + e−

1
50
‖r−c2‖2

C: mean projection

D: deviation from mean

E: noisy projection SNR=0.05

F: noisy projection SNR=0.01

G: after subtraction of mean SNR=0.05

H: after subtraction of mean SNR=0.01.

Observe that the signal is much weaker in G,H compared to E,F.
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Numerical results

n = 10000 projection images

A: slice of the true mean

B, C, D: slices of reconstructed mean SNR=0.01, 0.006, 0.002 (resp.)

E: slice of true volume difference

F, G, H: slices of reconstructed leading eigenvector SNR=0.01, 0.006,
0.002 (resp.)
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Numerical results

A: Fourier Shell Correlation (FSC) curves for the top eigenvector at the
same three SNRs as before

B: normalized cross-correlation of the computed top eigenvector with its
true value for different SNRs

C, D, E: eigenvalue histograms of reconstructed covariance matrix for three
SNR values. Note that the noise distribution comes increasingly closer to
the top eigenvalue, and eventually the latter is no longer distinguishable.

The correlation values in A and B depend on the size of the spectral gap
in C, D, E.
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Summary

PCA is a viable method for tackling the heterogeneity problem.

It is possible to estimate the 3D covariance matrix directly from 2D
projection images accurately and efficiently.

No need to resort to heuristic approaches such as bootstrapping using
resampling.

No need to impose a prior on the distribution of conformations.

Random matrices play an important role in solving the heterogeneity
problem.
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