A_{∞} structures as a language for open Gromov-Witten theory

Short talks by postdoctoral members, IAS, fall 2017 Sara Tukachinsky

Gromov-Witten theory (g = 0)

<u>Setting</u>: (X, ω, J) symplectic manifold with almost complex structure $X = X^{2n}, \ \omega$ 2-form such that $\omega^{\wedge n}$ is a volume form $J \in End(TX), J^2 = -\text{Id}, \ "\omega\text{-tame}"$

<u>Example</u>: $(\mathbb{C}P^n, \omega_{FS}, J_0)$

<u>Problem</u>: Count *J*-holomorphic maps from the sphere $u: S^2 \rightarrow X$

that satisfy various constraints

The moduli space of sphere maps

$$\overline{\mathcal{M}}_{l}(\beta) = \left\{ \begin{pmatrix} u: S^{2} \xrightarrow{J-hol.} X, w_{1}, \dots, w_{l} \end{pmatrix} : \begin{bmatrix} u \end{bmatrix} = \beta \in H_{2}(X; \mathbb{Z}) \\ w_{j} \in S^{2}, w_{i} \neq w_{j} \end{pmatrix} / \sim$$

Rephrasing the problem

Count elements of $\overline{\mathcal{M}}_l(\beta)$ such that the marked points are mapped to given constraints.

Can be expressed as an integral:

$$GW_{\beta}(\gamma_1,\ldots,\gamma_l) = \int_{\overline{\mathcal{M}}_l(\beta)} ev_1^*\gamma_1 \wedge \cdots \wedge ev_l^*\gamma_l.$$

Some facts

- *GW* invariants are defined by the above integral if the space $\overline{\mathcal{M}}_l(\beta)$ is "nice"
- *GW* are generally hard to compute
- In some cases, can compute GW invariants by the WDVV (Witten-

Dijkgraaf-Verlinde-Verlinde) equation

Kontsevich (1994)

degree = d	No. of degree-d curves in $\mathbb{C}P^2$	
	through 3d-1 points	
1	1	
2	1	
3	12	
4	620	
5	87,304	
6	26,312,976	
7	14,616,808,192	

Open Gromov-Witten theory (g = 0)

<u>Setting</u>: (X, ω, J) symplectic manifold with almost complex structure $L \subset X$ a Lagrangian submanifold $(\dim L = \frac{1}{2} \dim X, \omega|_L = 0)$

Example:
$$(X, L, \omega, J) = (\mathbb{C}P^n, \mathbb{R}P^n, \omega_{FS}, J_0)$$

<u>Problem</u>: Count *J*-holomorphic maps from the disk $u: (D, \partial D) \rightarrow (X, L)$

that satisfy various constraints.

The moduli space of disk maps

$$\overline{\mathcal{M}}_{k,l}(\beta) = \left\{ \begin{pmatrix} u: (D,\partial D) \xrightarrow{J-hol.} (X,L), \\ z_1, \dots, z_k, w_1, \dots, w_l \end{pmatrix} : \begin{bmatrix} u \end{bmatrix} = \beta \in H_2(X,L;\mathbb{Z}) \\ z_i \in \partial D, w_j \in int(D) \right\} / \sim$$

Rephrasing the problem

Count elements of $\overline{\mathcal{M}}_{k,l}(\beta)$ such that the marked points are mapped to given constraints

Can be expressed as an integral:

$$OGW_{\beta}(\alpha_{1}, ..., \alpha_{k}; \gamma_{1}, ..., \gamma_{l}) = \int_{\overline{\mathcal{M}}_{k,l}(\beta)} evb_{1}^{*}\alpha_{1} \wedge \cdots \wedge evb_{k}^{*}\alpha_{k} \wedge evi_{1}^{*}\gamma_{1} \wedge \cdots \wedge evi_{l}^{*}\gamma_{l}.$$

Issue:
$$\partial \overline{\mathcal{M}}_{k,l}(\beta) \neq \emptyset$$
.

Some previous results

OGW are defined when

- S^1 acts on (X, L) (*Liu*, 2004)
- (X, L, ω, J) is a real symplectic manifold with $\dim_{\mathbb{C}} X = 2,3$, real interior constraints, point boundary constraints (*Cho, Solomon, 2006*)
- (X, L, ω, J) is a real symplectic manifold with dim_C X odd, no boundary constraints (*Georgieva*, 2013)

OGW are computable via a WDVV-like equation when

- (X, L, ω, J) is a real symplectic manifold with $\dim_{\mathbb{C}} X = 2$, real interior constraints, point boundary constraints (*Horev-Solomon, 2012*)
- (X, L, ω, J) is a real symplectic manifold with dim_C X odd, no boundary constraints (*Georgieva-Zinger, 2013*)

A_{∞} structure

= Algebraic language to describe boundary behavior

- A_{∞} operators describe disks with prescribed boundary constraints
- A_{∞} relations describe disk bubbling

• Special kind of boundary constraint: "bounding chain"

More results (joint with Jake Solomon)

- *OGW* can be defined using bounding chains when $\dim_{\mathbb{C}} X$ is odd, under cohomological conditions. E.g., $H^*(L; \mathbb{R}) = H^*(S^n; \mathbb{R})$.
- The boundary constraints can be interpreted as points.
- Whenever defined, OGW satisfy open WDVV equations.
- For $(\mathbb{C}P^n, \mathbb{R}P^n)$, all invariants are determined by the open WDVV.

dim = n	degree = d	No. of boundary points = k	Resulting invariant $OGW^n_{d,k}$
3	3	6	-2
	5	10	90
	7	14	-29,178
	9	18	35,513,586
5	5	8	-2
	9	14	1974
	13	20	-42,781,410
	17	26	7,024,726,794,150
7	7	10	-2
	13	18	35,498
	19	26	-40,083,246,650
	25	34	680,022,893,749,060,370
9	9	12	-2
	17	22	587,334
	25	32	-31,424,766,229,890
	33	42	49,920,592,599,715,322,910,150
15	29	34	2,247,512,778

$$(X,L) = (\mathbb{C}P^n, \mathbb{R}P^n)$$

Initial condition: $OGW_{1,2}^n = 2$

More questions

- Reduce cohomological assumptions
- Find structure suitable for g > 0

• Explore relative quantum cohomology

open WDVV ↔ associativity of relative quantum product

Thank you