A_{∞} structures as a language for open Gromov-Witten theory

Short talks by postdoctoral members, IAS, fall 2017

Sara Tukachinsky

Gromov-Witten theory $\quad(g=0)$

Setting: (X, ω, J) symplectic manifold with almost complex structure

$$
\begin{aligned}
& X=X^{2 n}, \omega \text { 2-form such that } \omega^{\wedge n} \text { is a volume form } \\
& J \in \operatorname{End}(T X), J^{2}=- \text { Id , " } \omega \text {-tame" }
\end{aligned}
$$

Example: $\left(\mathbb{C} P^{n}, \omega_{F S}, J_{0}\right)$

Problem: Count J-holomorphic maps from the sphere

$$
u: S^{2} \rightarrow X
$$

that satisfy various constraints

The moduli space of sphere maps

$$
\overline{\mathcal{M}}_{l}(\beta)=\overline{\left\{\left(u: S^{2} \xrightarrow{J-\text { hol. }} X, w_{1}, \ldots, w_{l}\right) \cdot\left[\begin{array}{c}
{[u]=\beta \in H_{2}(X ; \mathbb{Z})} \\
. \\
w_{j} \in S^{2}, w_{i} \neq w_{j}
\end{array}\right\} / \sim\right.}
$$

Compactification:

Rephrasing the problem

Count elements of $\overline{\mathcal{M}}_{l}(\beta)$ such that the marked points are mapped to given constraints.

Can be expressed as an integral:

$$
G W_{\beta}\left(\gamma_{1}, \ldots, \gamma_{l}\right)=\int_{\overline{\mathcal{M}}_{l}(\beta)} e v_{1}^{*} \gamma_{1} \wedge \cdots \wedge e v_{l}^{*} \gamma_{l}
$$

Some facts

- $G W$ invariants are defined by the above integral if the space $\overline{\mathcal{M}}_{l}(\beta)$ is "nice"
- GW are generally hard to compute
- In some cases, can compute $G W$ invariants by the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation

Kontsevich (1994)

degree $=\mathrm{d}$	No. of degree-d curves in $\mathbb{C} P^{2}$ through 3d-1 points
1	1
2	1
3	12
4	620
5	87,304
6	$26,312,976$
7	$14,616,808,192$

Open Gromov-Witten theory $(g=0)$

Setting: (X, ω, J) symplectic manifold with almost complex structure $L \subset X$ a Lagrangian submanifold $\left(\operatorname{dim} L=\frac{1}{2} \operatorname{dim} X,\left.\omega\right|_{L}=0\right)$

Example: $(X, L, \omega, J)=\left(\mathbb{C} P^{n}, \mathbb{R} P^{n}, \omega_{F S}, J_{0}\right)$

Problem: Count J-holomorphic maps from the disk

$$
u:(D, \partial D) \rightarrow(X, L)
$$

that satisfy various constraints.

The moduli space of disk maps

$$
\overline{\mathcal{M}}_{k, l}(\beta)=\overline{\left\{\binom{u:(D, \partial D) \xrightarrow{J-h o l .}}{z_{1}, \ldots, z_{k}, w_{1}, \ldots, w_{l}}, \begin{array}{c}
(X, L), \\
z_{i} \in \partial D, w_{j} \in \operatorname{int}(D)
\end{array}\right\} / \sim}
$$

Compactification:

Rephrasing the problem

Count elements of $\overline{\mathcal{M}}_{k, l}(\beta)$ such that the marked points are mapped to given constraints

Can be expressed as an integral:

$$
\begin{aligned}
& O G W_{\beta}\left(\alpha_{1}, \ldots, \alpha_{k} ; \gamma_{1}, \ldots \gamma_{l}\right)= \\
& =\int_{\overline{\mathcal{M}}_{k, l}(\beta)} e v b_{1}^{*} \alpha_{1} \wedge \cdots \wedge e v b_{k}^{*} \alpha_{k} \wedge e v i_{1}^{*} \gamma_{1} \wedge \cdots \wedge e v i_{l}^{*} \gamma_{l} .
\end{aligned}
$$

Issue: $\partial \overline{\mathcal{M}}_{k, l}(\beta) \neq \varnothing$.

Some previous results

OGW are defined when

- S^{1} acts on (X, L) (Liu, 2004)
- (X, L, ω, J) is a real symplectic manifold with $\operatorname{dim}_{\mathbb{C}} X=2,3$, real interior constraints, point boundary constraints (Cho, Solomon, 2006)
- (X, L, ω, J) is a real symplectic manifold with $\operatorname{dim}_{\mathbb{C}} X$ odd, no boundary constraints (Georgieva, 2013)

OGW are computable via a WDVV-like equation when

- (X, L, ω, J) is a real symplectic manifold with $\operatorname{dim}_{\mathbb{C}} X=2$, real interior constraints, point boundary constraints (Horev-Solomon, 2012)
- (X, L, ω, J) is a real symplectic manifold with $\operatorname{dim}_{\mathbb{C}} X$ odd, no boundary constraints (Georgieva-Zinger, 2013)

A_{∞} structure

= Algebraic language to describe boundary behavior

- A_{∞} operators describe disks with prescribed boundary constraints
- A_{∞} relations describe disk bubbling

- Special kind of boundary constraint: "bounding chain"

More results (joint with Jake Solomon)

- $O G W$ can be defined using bounding chains when $\operatorname{dim}_{\mathbb{C}} X$ is odd, under cohomological conditions. E.g., $H^{*}(L ; \mathbb{R})=H^{*}\left(S^{n} ; \mathbb{R}\right)$.
- The boundary constraints can be interpreted as points.
- Whenever defined, $O G W$ satisfy open WDVV equations.
- For $\left(\mathbb{C} P^{n}, \mathbb{R} P^{n}\right)$, all invariants are determined by the open WDVV.

$$
(X, L)=\left(\mathbb{C} P^{n}, \mathbb{R} P^{n}\right)
$$

Initial condition: $\boldsymbol{O} \boldsymbol{G} \boldsymbol{W}_{\mathbf{1 , 2}}^{\boldsymbol{n}}=\mathbf{2}$

dim $=\mathrm{n}$	degree $=\mathrm{d}$	No. of boundary points $=\mathrm{k}$	Resulting invariant OGW ${ }_{d, k}^{n}$
3	3	6	-2
	5	10	90
	7	14	$-29,178$
	9	18	$35,513,586$
5	5	8	-2
	9	14	1974
	13	20	$-42,781,410$
	17	26	$7,024,726,794,150$
7	7	10	-2
	13	18	35,498
	19	26	$-40,083,246,650$
	25	34	$680,022,893,749,060,370$
9	9	12	-2
	17	22	587,334
	25	32	$-31,424,766,229,890$
	33	42	$49,920,592,599,715,322,910,150$
15	29	34	$2,247,512,778$

More questions

- Reduce cohomological assumptions
- Find structure suitable for $g>0$

- Explore relative quantum cohomology
open WDVV \leftrightarrow associativity of relative quantum product

Thank you

