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Finite black hole entropy from the bulk

What accounts for the finiteness of the black hole entropy–from the
bulk point of view?

For an observer hovering outside the horizon, what are the signatures
of the Planckian “graininess” of the horizon?
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A diagnostic

A simple diagnostic [Maldacena]. Let O be a bulk (smeared boundary)
operator.

〈O(t)O(0)〉 = tr
(
e−βHO(t)O(0)

)
/tre−βH

=
∑
m,n

e−βEm |〈m|O|n〉|2e i(Em−En)t/
∑
n

e−βEn

At short times can treat the spectrum as continuous. 〈O(t)O(0)〉
generically decays exponentially.

Perturbative quantum gravity–quasinormal modes. [Horowitz-Hubeny]
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A diagnostic, contd.

〈O(t)O(0)〉 =
∑
m,n

e−βEm |〈m|O|n〉|2e i(Em−En)t/
∑
n

e−βEn

But we expect the black hole energy levels to be discrete (finite
entropy) and generically nondegenerate (chaos).

Then at long times 〈O(t)O(0)〉 oscillates in an erratic way. It is
exponentially small and no longer decreasing.

A nonperturbative effect in quantum gravity.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])
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Another diagnostic, Z (t)Z ∗(t)

To focus on the oscillating phases remove the matrix elements. Use a
related diagnostic: [Papadodimas-Raju]∑

m,n

e−β(Em+En)e i(Em−En)t = Z (β + it)Z (β − it) = Z (t)Z ∗(t)

The “spectral form factor”
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Properties of Z (t)Z ∗(t)

Z (t)Z ∗(t) =
∑
m,n

e−β(Em+En)e i(Em−En)t

Z (β, 0)Z ∗(β, 0) = Z (β)2

Assume the levels are discrete (finite entropy) and non-degenerate
(generic, implied by chaos)

In the long time average

〈Z (β, t)Z ∗(β, t)〉T0 = 1
2T0

∫ T0

−T0
dt Z (β, t)Z ∗(β, t)

the oscillating phases go to zero and only the n = m terms
contribute.

In the limit T0 →∞, 〈Z (β, t)Z ∗(β, t)〉T0 → Z (2β)

Z (β)2 → Z (2β). Roughly e2S → eS . An exponential change.

We will focus on the nature of this transition.
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A model system

The Sachdev-Ye-Kitaev model is a promising system in which to
investigate these questions

[Jordan Cotler, Guy Gur-Ari, Masanori Hanada, Joe Polchinski, Phil Saad, Stephen

Shenker, Douglas Stanford, Alex Streicher, Masaki Tezuka]

[in progress]
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SYK Model

Sachdev-Ye-Kitaev model: Quantum mechanics of N Majorana fermions
with random couplings

H =
∑

a,b,c,d

Jabcdχaχbχcχd

{χa, χb} = δab

〈J2abcd〉 =
1

N3
J2

dim H = 2N/2 = L

(We will often set J = 1.)
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SYK as a good model system

Maximally chaotic [Kitaev]

Gravitational sector with horizon (with enhanced amplitude), but
stringy states in bulk [Maldacena-Stanford]

J average plays role of time average.

〈Z (t)Z ∗(t)〉J is a smooth function of t.

Z =
∫
dG (t, t ′)dΣ(t, t ′) exp(−N I [G ,Σ])

Proxy for a bulk theory. 1/N ∼ GN .

Finite dimensional H. N = 34→ L = 217 = 128K .

Numerics feasible....
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SYK Z (t)Z ∗(t)
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The Slope

The Dip

The Ramp

The Plateau

What do they
mean?
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Random Matrix Theory

Chaotic quantum systems typically have fine grained energy level
statistics described by Random Matrix Theory (RMT) [Wigner; Dyson;

Bohigas-Giannoni-Schmit...]

Consider a simple model where H → M, an L× L (hermitian) random
matrix

Z ∼
∫
dMij exp(−L

2 trM
2)

GUE ensemble

Compute 〈Z (t)Z ∗(t)〉M
The spectral form factor of RMT (β = 0)

RMT connection and N mod 8 ensemble variation for near neighber
eigenvalue statistics [You-Ludwig-Xu]. We will focus on longer range
correlations, in fourier transform.
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Random Matrix Theory Z (t)Z ∗(t)
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RMT spectral form factor, contd.
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Z (t)Z ∗(t) =
∑
m,n

e−β(Em+En)e i(Em−En)t

The plateau: n = m only nonzero contribution

What about the rest of the features: the ramp, and the slope?
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Lightning review of RMT theory

Z =

∫
dMij exp(−L

2
trM2)

=

∫
dEj

∏
ij

(Ei − Ej)
2 exp(−L

2

∑
I

E 2
i )

=

∫
Dρ(E ) exp(−I [ρ(E )])

I [ρ(E )] = −L2(

∫
dEdE ′ρ(E )ρ(E ′) log((E − E ′)2) +

∫
dEρ(E )

E 2

2
)

ρ(E ) is the density of eigenvalues.

The Dyson gas.
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The Wigner semicircle

I [ρ(E )] = −L2(

∫
dEdE ′ρ(E )ρ(E ′) log((E − E ′)2) +

∫
dEρ(E )

E 2

2
)

The Dyson gas.

Saddle point at large L gives
ρW (E ) ∼

√
1− 4E 2

The Wigner semicircle law.

Smallest energy spacing
δE ∼ 1/L.
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The slope in RMT
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At early times we can approximate 〈Z (t)Z ∗(t)〉 ∼ 〈Z (t)〉〈Z ∗(t)〉
〈Z (t)〉 ∼ L

∫
dE ρW (E )e−(β+it)E

Long time behavior dominated by sharp edge of semicircle

〈Z (t)〉 ∼ L
∫
dE (E − E0)

1
2 e−(β+it)E

At long times, 〈Z (t)〉 ∼ L/t3/2 (β = 0)

〈Z (t)Z ∗(t)〉 ∼ L2/t3
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The ramp

At later times fluctuations become important.

〈Z (t)Z ∗(t)〉 = 〈
∑
n,m

e−β(En+Em)+it(En−Em)〉

= Z (2β) + 〈
∑
n 6=m

e−β(En+Em)+it(En−Em)〉

= Z (2β) + L2
∫

dEdE ′ρ(2)(E ,E ′)e−β(E+E ′)+it(E−E ′)

ρ(2)(E ,E ′) is the eigenvalue pair correlation function.

〈Z (t)Z ∗(t)〉 is essentially the fourier transform of ρ(2), the spectral form
factor.
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Spectral form factor in RMT

(take β = 0 for convenience)

Near the center of the semicircle
ρ(2)(E ,E ′) has a simple
universal form given by the Sine
kernel (GUE)
[Dyson; Gaudin; Mehta]

ρ(2)(E ,E ′) ∼ 1−sin2(L(E − E ′))

(L(E − E ′))2
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Fourier transform of ρ(2)

Its fourier transform (accounting for the n = m terms)
gives 〈Z (t)Z ∗(t)〉 in GUE (β = 0)

Plateau height is ∼ L, tp ∼ L, ramp is ∼ t.
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Physical meaning of ramp

For times shorter than tp ∼ L, can average over the rapidly oscillating
sin2(L(E − E ′)) factor.

ρ(2)(E − E ′) ∼ 1− 1/(L(E − E ′))2. This gives the ramp.

The ramp is lower than the plateau because of long range
anticorrelation.

Long wavelength fluctuations in the Dyson gas are strongly
suppressed by the long distance log interaction.

For example, near neighbor eigenvalue couplings would yield
ρ ∼ |E − E ′|
Spectral rigidity

Analog of incompressibility in FQHE fluid
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The dip time in RMT

(β = 0)

The slope in RMT is ∼ L2/t3

The ramp is ∼ t

They meet at the dip time
td ∼ L1/2

The plateau time tp ∼ L

td/tp ∼ L−1/2 ∼ e−S/2

An exponentially long period
dominated by spectral rigidity
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SYK analysis

We now try to repeat this analysis for the SYK model.

we assume the ramp and plateau structure are given by RMT, with an
appropriate number of states.

We then need to analyze the early time slope behavior
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SYK free energy

At low temperature and large N the SYK free energy is given by the
dominant saddle and is that of the near extremal black hole ([Sachdev-Ye;
Parcollet-Georges; Kitaev; Maldacena-Stanford; Maldacena-Stanford-Yang; Jensen]):

−βF (β) = c1N/β + Ns0 −
3

2
log β

Z (β) ∼ 1

β3/2
exp (

c1N

β
+ Ns0)

Here Ns0 is the zero temperature extremal entropy.
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The early time slope

At early times 〈Z (t)Z ∗(t)〉 = 〈Z (t)〉〈Z ∗(t)〉. (self averaging)
Compute Z (β + it) by analytically continuing the large N saddle.

Z (β + it) ∼ 1

(β + it)3/2
exp (

c1N

β + it
+ Ns0)

Z (β + it)Z ∗(β + it)) ∼ 1

(β2 + t2)3/2
exp (

2c1Nβ

β2 + t2
+ 2Ns0)

So in this approximation the slope is given by e2Ns0/t3.
Large t is a bit like large β.
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Corrections

The very low temperature dynamics is governed by the
reparametrization mode. The dynamics of this mode is described by
the Schwarzian action ([Kitaev]).

This produces β/N perturbative corrections. At large time these
should grow like |β + it|/N.

This makes the slope difficult to analyze analytically for times t > N,
the entropy time.

Numerics are only marginally useful in the asymptotic regime because
of large coefficients.
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The dip time in SYK

At what time does new nonperturbative physics dominate over the
slope? At what time does the gravitational description of horizon
fluctuations break down?
We can make a heuristic argument bounding the dip time td at low
enough T by assuming the slope is governed by the low energy
reparametrization mode. Then the slope would depend weakly on T .
But the plateau depends exponentially on T .
This argument gives an exponential separation between the dip and

plateau, td/tp < e−
cN
β .

There would be an exponentially long period where long range
spectral rigidity describes the physics of the model.
td could be as early as the entropy time N....
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Comments on SYM

We can now try to apply these ideas to the canonical AdS/CFT
example of N=4 SYM.

Black holes in this system are known to saturate the chaos bound (at
large λ). ([Kitaev; SS-Stanford; Maldacena-SS-Stanford])

So it is natural to expect the fine grained structure of SYM energy
eigenvalues to have RMT statistics (break T symmetry with θ to
consider GUE ensemble).

We do not average over Hamiltonians here. Expect large irregular
fluctuations for one H. ([Barbon-Rabinovici])
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SYK one sample

Order one fractional variance in
one sample of J

“The spectral form factor is not
self averaging” ([Prange])

Autocorrelation time ∼ 1/(∆E ),
∆E ∼

√
NT is energy spread in

system.

Parametrically many
independent intervals along the
ramp. Time averaging makes a
smooth signal.
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SYM ramp

At high T (small β) SYM has parametrically large entropy,
S(β) ∼ N2/β3, so the plateau is parametrically high.

Entropy of SYM varies rapidly with energy so the level spacing does
also.

Need to “unfold,” consider many small energy intervals with roughly
constant level spacing.

Each interval has its own ramp and plateau. Sum them up.

r(t) = exp[−cβN−2/3(log t)4/3] t . (1)
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SYM at early time

To compute the slope we compute Z (β + it).

Follow the dominant euclidean large black hole saddle as β → β + it

Z (β + it) ∼ exp(N2/(β + it)3)

Z (t)Z ∗(t) drops extremely rapidly.

At t ∼ β,Z (t)Z ∗(t) < 1 and the thermal AdS saddle becomes
dominant. Like going to low temperature.

ZZ ∗ ∼ 1.

But, at t ∼ RAdS the black hole saddle dominates again (1/N2

corrections large).

ZZ ∗ ∼ ecN
2
.

Other saddles could be involved, like the small 10D black hole.

A complicated pattern that is a challenge to unravel.

D = 3 is a promising arena ([Dyer–Gur-Ari])
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SYM dip time

To estimate the dip time we ask when these estimates for the slope
intersect the ramp discussed above.

If we assume the slope has ZZ ∗ ∼ 1 (from the thermal AdS saddle)
then td ∼ eβN

2

If the slope has ZZ ∗ ∼ ecN
2

(from the large black hole saddle) then
td ∼ ecN

2
.

In both cases tp ∼ eS ∼ eN
2/β3

and so td/tp ∼ e−N
2/β3

, an enormous
hierarchy.

Again, there would be an exponentially long time between the
gravitational regime and the plateau where spectral rigidity controls
the dynamics of this system.
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Implications for bulk quantum gravity

It is plausible that the late time dynamics of horizon fluctuations are
governed by random matrix dynamics.

What are the implications of the ramp and plateau for
nonperturbative bulk quantum gravity?
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A research program

A research program:

In SYK we have an exact nonperturbative expression in terms of
singlet bilocal fields: a proxy for a bulk theory.

Z =
∫
dG (t, t ′)dΣ(t, t ′) exp(−N I [G ,Σ])

What part of the G ,Σ functional integral accounts for this behavior?
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Nonperturbative effects

ρ(2)(E ,E ′) ∼ 1− sin2(L(E−E ′))
(L(E−E ′))2

t � tp, ρ(2)(E ,E ′) ∼ 1− 1
L2(E−E ′)2

1/L2 perturbative in RMT, ∼ e−cN nonperturbative in 1/N, SYK

A single saddle?, more likely a sum over saddles

sin2(L(E − E ′))→ exp(−2L(E − E ′)) ∼ exp(−ecN)

!
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Seiberg duality?

Or, a Seiberg style duality at late (real) time? 1/N expansion would
break down at late time. A new weakly coupled theory would take
over, with 1/L as a coupling and RMT type degrees of freedom. e−L

effects would be analogous to the Andreev-Altshuler instanton.

We hope to have things to say about this by...

Stephen Shenker (Stanford University) Black holes and random matrices Natifest 36 / 38



SEPTEMBER 22, 2017

Stephen Shenker (Stanford University) Black holes and random matrices Natifest 37 / 38



Stephen Shenker (Stanford University) Black holes and random matrices Natifest 38 / 38


