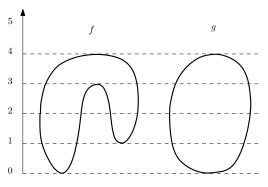
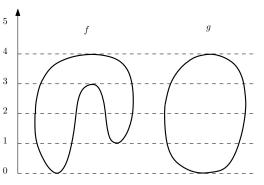
Floer theory and metrics in symplectic and contact topology

Egor Shelukhin, IAS, Princeton

September 27, 2016



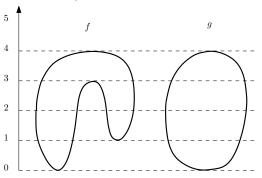
$$\inf_{\psi \in \mathrm{Diff}_0(\mathcal{S}^1)} |f - g \circ \psi|_{\mathcal{C}^0} = 1$$



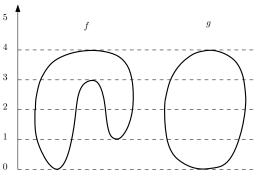
$$\inf_{\psi \in \mathrm{Diff}_0(S^1)} |f - g \circ \psi|_{C^0} = 1$$

Otherwise
$$|f - g \circ \psi|_{C^0} = 1 - \epsilon$$
,

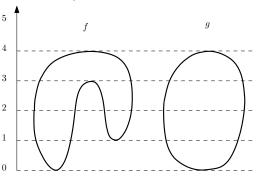
$$\{f<1+\epsilon\}\subset\{g\circ\psi<2\}\subset\{f<3-\epsilon\}$$



$$V^t(f) = H_0(\lbrace f < t \rbrace, \mathbb{K}), \ V^t(g) = V^t(g \circ \psi)$$



$$egin{align} V^t(f) &= H_0(\{f < t\}, \mathbb{K}), \ V^t(g) = V^t(g \circ \psi) \ &V^{1+\epsilon}(f)
ightarrow V^2(g)
ightarrow V^{3-\epsilon}(f) \ \end{aligned}$$

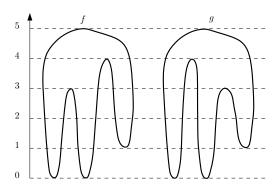


$$V^t(f) = H_0(\lbrace f < t \rbrace, \mathbb{K}), \ V^t(g) = V^t(g \circ \psi)$$

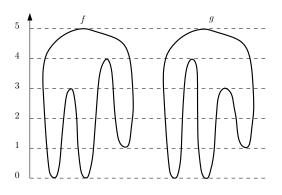
$$V^{1+\epsilon}(f) o V^2(g) o V^{3-\epsilon}(f)$$

composition iso:

$$2=\dim V^{1+\epsilon}(f)\leq \dim V^2(g)=1.$$



$$\inf_{\psi\in \mathrm{Diff}_0(S^1)} |f-g\circ\psi|_{\mathcal{C}^0} = 1$$



$$\inf_{\psi \in \mathrm{Diff}_0(S^1)} |f - g \circ \psi|_{\mathcal{C}^0} = 1$$

Not so easy. Dimensions are the same!

Hamiltonian diffeomorphisms

- (M, ω) closed symplectic manifold.
- ► $Ham := Ham(M, \omega)$ the group of Hamiltonian diffeomorphisms:

endpoints of paths $\{\phi_H^t\}_{t=0}^1 \quad \phi_H^0 = \mathit{id}$

Hamiltonian diffeomorphisms

- (M, ω) closed symplectic manifold.
- ► $Ham := Ham(M, \omega)$ the group of Hamiltonian diffeomorphisms:

endpoints of paths
$$\{\phi_H^t\}_{t=0}^1 \quad \phi_H^0 = \mathit{id}$$

generated by vector field X_H^t

$$\iota_{X_H^t}\omega = -d(H(t,-)) \quad H \in C^\infty([0,1] \times M,\mathbb{R})$$

Hamiltonian diffeomorphisms

- (M, ω) closed symplectic manifold.
- ▶ $Ham := Ham(M, \omega)$ the group of Hamiltonian diffeomorphisms:

endpoints of paths
$$\{\phi_H^t\}_{t=0}^1$$
 $\phi_H^0 = id$ generated by vector field X_H^t

$$\iota_{X_H^t}\omega = -d(H(t,-)) \quad H \in C^{\infty}([0,1] \times M, \mathbb{R})$$

▶ universal cover $Ham = \{\{\phi_H^t\}_{t=0}^1 | H ...\}/\sim$, \sim is homotopy with fixed endpoints.

Metrics on groups

G - group.

A metric d on G - right-invariant: d(ag, bg) = d(a, b) for all $a, b, g \in G$.

d is bi-invariant: d(ga, gb) = d(a, b) for all $a, b, g \in G$

Metrics on groups

G - group.

A metric d on G - right-invariant: d(ag, bg) = d(a, b) for all $a, b, g \in G$.

d is bi-invariant: d(ga, gb) = d(a, b) for all $a, b, g \in G$

Hofer norm

Definition

$$d_{ ext{Hofer}}(f,g) = \inf_{H:\phi_H^1 = gf^{-1}} \int_0^1 (\max_M H(t,-) - \min_M H(t,-)) \ dt.$$

Hofer norm

Definition

$$d_{\mathrm{Hofer}}(f,g) = \inf_{H:\phi_H^1 = gf^{-1}} \int_0^1 (\max_M H(t,-) - \min_M H(t,-)) dt.$$

Theorem

(Hofer, Viterbo, Polterovich, Lalonde-McDuff) d_{Hofer} is a bi-invariant metric on Ham.

Hofer norm

Definition

$$d_{ ext{Hofer}}(f,g) = \inf_{H:\phi_H^1 = gf^{-1}} \int_0^1 (\max_M H(t,-) - \min_M H(t,-)) \ dt.$$

Theorem

(Hofer, Viterbo, Polterovich, Lalonde-McDuff) d_{Hofer} is a bi-invariant metric on Ham.

Remark

- ▶ With normalization $\int_M H(t,-)\omega^n = 0$, can take $|H(t,-)|_{L^\infty(M)} = \max_M |H(t,-)| \rightsquigarrow$ equivalent metric (cf. Bukhovsky-Ostrover).
- ▶ In contrast: false for $|H(t,-)|_{L^p}$ (Eliashberg-Polt.), no fine conj. invt. norms on $Diff_0$, $Cont_0$ (Burago-Ivanov-Polt.,Fraser-Polt.-Rosen).

"Morse theory for action functional $\mathcal{A}_H:\mathcal{L}M\to\mathbb{R},$ for H - Hamiltonian"

$$A_H(z) = \int_0^1 H(t, z(t)) dt - \int_{\overline{z}} \omega$$

"Morse theory for action functional $\mathcal{A}_H:\mathcal{L}M\to\mathbb{R},$ for H - Hamiltonian"

$$A_H(z) = \int_0^1 H(t, z(t)) dt - \int_{\overline{z}} \omega$$

$$\mathit{Crit}(\mathcal{A}_{\mathit{H}}) = 1\text{-periodic orbits of } \{\phi_{\mathit{H}}^t\}.$$

"Morse theory for action functional $\mathcal{A}_H:\mathcal{L}M\to\mathbb{R},$ for H - Hamiltonian"

$$A_H(z) = \int_0^1 H(t, z(t)) dt - \int_{\overline{z}} \omega$$

$$Crit(A_H) = 1$$
-periodic orbits of $\{\phi_H^t\}$.

For f - Morse on closed mfld,

$$V^{a}(f)_{*} = H_{*}(\{f < a\}).$$

"Morse theory for action functional $\mathcal{A}_H:\mathcal{L}M\to\mathbb{R},$ for H - Hamiltonian"

$$A_H(z) = \int_0^1 H(t, z(t)) dt - \int_{\overline{z}} \omega$$

 $Crit(A_H) = 1$ -periodic orbits of $\{\phi_H^t\}$.

For f - Morse on closed mfld,

$$V^{a}(f)_{*} = H_{*}(\{f < a\}).$$

Inclusion induces maps $\pi^{a,b}: V^a \to V^b$, for $a \leq b$

Triangles for $a \le b \le c$ commute

"Morse theory for action functional $\mathcal{A}_H:\mathcal{L}M\to\mathbb{R},$ for H - Hamiltonian"

$$A_H(z) = \int_0^1 H(t, z(t)) dt - \int_{\overline{z}} \omega$$

 $Crit(\mathcal{A}_H) = 1$ -periodic orbits of $\{\phi_H^t\}$.

For f - Morse on closed mfld,

$$V^a(f)_* = H_*(\{f < a\}).$$

Inclusion induces maps $\pi^{a,b}: V^a \to V^b$, for $a \leq b$

Triangles for $a \le b \le c$ commute

→ (pointwise fin. dim. constructible) persistence module

Similarly, assuming $[\omega]|_{tori}=0, \ [c_1]|_{tori}=0$ (otherwise need to work with coeff. in "Novikov ring"),

H with graph $(\phi_H^1) \cap \Delta$,

Similarly, assuming $[\omega]|_{tori} = 0$, $[c_1]|_{tori} = 0$ (otherwise need to work with coeff. in "Novikov ring"),

H with graph $(\phi_H^1) \pitchfork \Delta$, $\rightsquigarrow V^a(H)_* = "HF^{(-\infty,a)}(H)_*"$

Similarly, assuming $[\omega]|_{tori} = 0$, $[c_1]|_{tori} = 0$ (otherwise need to work with coeff. in "Novikov ring"),

$$H$$
 with graph $(\phi_H^1) \pitchfork \Delta$, $\rightsquigarrow V^a(H)_* = "HF^{(-\infty,a)}(H)_*"$

Can show: dep. only on ϕ_H^1 (more generally on $[\{\phi_H^t\}]$)

$$\rightsquigarrow V^a(\phi)_*$$
 persistence module.

$$I = (a, b]$$
 or (a, ∞) - interval;

I=(a,b] or (a,∞) - interval; Interval p-mod: Q(I) with $Q(I)^a=\mathbb{K}$ iff $a\in I$, otherwise 0. $(\pi^{a,b}$ iso whenever can)

$$I=(a,b]$$
 or (a,∞) - interval;
Interval p-mod: $Q(I)$ with $Q(I)^a=\mathbb{K}$ iff $a\in I$, otherwise 0. $(\pi^{a,b}$ iso whenever can)

Theorem

(Carlsson-Zomorodian, Crawley-Boevey) Every p.-mod. as above is isomorphic to a finite direct sum of interval p-modules.

$$I=(a,b]$$
 or (a,∞) - interval;

Interval p-mod: Q(I) with $Q(I)^a = \mathbb{K}$ iff $a \in I$, otherwise 0. $(\pi^{a,b}$ iso whenever can)

Theorem

(Carlsson-Zomorodian, Crawley-Boevey) Every p.-mod. as above is isomorphic to a finite direct sum of interval p-modules.

The multiset of intervals is canonical → "barcode".

 $(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) \Rightarrow$

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) \Rightarrow If $|f-g|_{C^0} \leq C$

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) ⇒

If $|f - g|_{C^0} \le C$ then barcodes of V(f), V(g) are related by "moving endpts of bars $\le C$ ".

 $(\mathsf{Edelsbrunner} \, \text{-} \, \mathsf{Harer} \, \text{-} \, \mathsf{Cohen-Steiner}, \dots, \mathsf{Bauer-Lesnick}) \Rightarrow$

If $|f - g|_{C^0} \le C$ then barcodes of V(f), V(g) are related by "moving endpts of bars $\le C$ ".

Similar conclusion of $V(\phi)$, $V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

 $(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) \Rightarrow$

If $|f - g|_{C^0} \le C$ then barcodes of V(f), V(g) are related by "moving endpts of bars $\le C$ ".

Similar conclusion of $V(\phi)$, $V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

 \Rightarrow "length of maximal bar"

 $(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) \Rightarrow$

If $|f - g|_{C^0} \le C$ then barcodes of V(f), V(g) are related by "moving endpts of bars $\le C$ ".

Similar conclusion of $V(\phi)$, $V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

 \Rightarrow "length of maximal bar" (= boundary depth - Usher),

 $(\mathsf{Edelsbrunner} \, \text{-} \, \mathsf{Harer} \, \text{-} \, \mathsf{Cohen-Steiner}, \dots, \mathsf{Bauer-Lesnick}) \Rightarrow$

If $|f - g|_{C^0} \le C$ then barcodes of V(f), V(g) are related by "moving endpts of bars $\le C$ ".

Similar conclusion of $V(\phi)$, $V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

 \Rightarrow "length of maximal bar" (= boundary depth - Usher)," max starting pt inf. bar"

 $(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) \Rightarrow$

If $|f - g|_{C^0} \le C$ then barcodes of V(f), V(g) are related by "moving endpts of bars $\le C$ ".

Similar conclusion of $V(\phi)$, $V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

 \Rightarrow "length of maximal bar" (= boundary depth - Usher)," max starting pt inf. bar" (= fund. class spectral invt - Viterbo, Oh, Schwarz,...), etc.

Isometry theorem

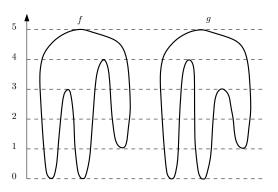
 $(\mathsf{Edelsbrunner} \, \text{-} \, \mathsf{Harer} \, \text{-} \, \mathsf{Cohen-Steiner}, \dots, \mathsf{Bauer-Lesnick}) \Rightarrow$

If $|f - g|_{C^0} \le C$ then barcodes of V(f), V(g) are related by "moving endpts of bars $\le C$ ".

Similar conclusion of $V(\phi)$, $V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

 \Rightarrow "length of maximal bar" (= boundary depth - Usher)," max starting pt inf. bar" (= fund. class spectral invt - Viterbo, Oh, Schwarz,...), etc. are Lipschitz in Hofer's metric.

f and g: one answer

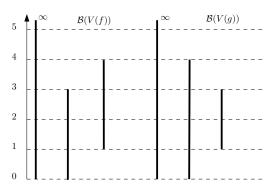


$$\inf_{\psi \in \mathrm{Diff}_0(\mathcal{S}^1)} |f - g \circ \psi| = 1$$

since

$$d(\mathcal{B}(V(f)),\mathcal{B}(V(g))) \geq 1$$

f and g: one answer



$$\inf_{\psi \in \mathrm{Diff}_0(S^1)} |f - g \circ \psi| = 1$$

since

$$d(\mathcal{B}(V(f)),\mathcal{B}(V(g))) \geq 1$$

Far from a power

Theorem

(Polterovich-S., 2015) In $G = Ham(\Sigma_4 \times N)$ exist ϕ_j s.t.

$$d_{\mathrm{Hofer}}(\phi_j, \{\theta^2 | \theta \in G\}) \xrightarrow{j \to \infty} \infty,$$

N symp. aspherical or a point.

Far from a power

Theorem

(Polterovich-S., 2015) In $G = Ham(\Sigma_4 \times N)$ exist ϕ_j s.t.

$$d_{\mathrm{Hofer}}(\phi_j, \{\theta^2 | \theta \in G\}) \xrightarrow{j \to \infty} \infty,$$

N symp. aspherical or a point.

Question

Same for $Ham(S^2)$? Even for im(exp)?

Far from a power

Theorem

(Polterovich-S., 2015) In $G = Ham(\Sigma_4 \times N)$ exist ϕ_j s.t.

$$d_{\mathrm{Hofer}}(\phi_j, \{\theta^2 | \theta \in G\}) \xrightarrow{j \to \infty} \infty,$$

N symp. aspherical or a point.

Question

Same for $Ham(S^2)$? Even for im(exp)?

Theorem

(Polterovich-S.-Stojisavljevic, in progress) Same for $G = Ham(\Sigma_4 \times \mathbb{C}P^n)$.

Uses action of quantum homology on Floer persistence. (Zhang - same for any M, where power p-large)

Lagrangian submanifolds

 $L\subset M$ closed Lagrangian submanifold, dim $L=\frac{1}{2}\dim M, \omega|_L=0$. Assume $\pi_2(M,L)=0$. Then $HF(L,L)\cong H(L)$.

If $\phi \in Ham$, $\phi L \neq L$, then $d_{\mathrm{Hofer}}(\phi, 1) > 0$. (Chekanov, Barraud-Cornea, Charette,...)

Proof:

- ▶ barcodes of $HF(L, \phi L)^t$, $HF(L, L)^t$ are at distance at most $d_{\mathrm{Hofer}}(\phi, 1)$. Hence dim H(L) inifinite bars which start below $d_{\mathrm{Hofer}}(\phi, 1)$
- ▶ so are $pt * HF(L, \phi L)^t$, $pt * HF(L, L)^t$, hence one infinite bar that starts above $-d_{\text{Hofer}}(\phi, 1)$.
- ▶ hence exist $x, y \in CF(L, \phi L)$ with pt * x = y and $A(x) A(y) \le 2d_{\text{Hofer}}(\phi, 1)$.

- ▶ A bit of Gromov compactness shows that via any point $p \in L \setminus \phi L$ and any J, there is a J-holomorphic strip with $Area \leq 2d_{\mathrm{Hofer}}(\phi,1)$
- ▶ choosing good J, and standard monotonicity argument: $Area \ge \pi r^2/2$, with B(r) standard symplectic ball of radius r, embedded (only) with real part on L, and disjoint from L'.
- $d_{\text{Hofer}}(\phi, 1) \ge \pi r^2/4$

(Cornea-S., 2015) Generalize to certain Lagragian cobordisms (Biran-Cornea-S., in progress) Generalize to multi-ended cobordisms, and isomorphisms in the Fukaya category.

Eliashberg's dichotomy, 2014:

Eliashberg's dichotomy, 2014:

"Holomorphic curves or nothing"

Eliashberg's dichotomy, 2014:

"Holomorphic curves or nothing"

or:

 $\mathsf{something} \Rightarrow \mathsf{holomorphic} \ \mathsf{curves!}$

Eliashberg's dichotomy, 2014:

"Holomorphic curves or nothing"

or:

something \Rightarrow holomorphic curves!

pf of some rigidity statement \leadsto pf with hol. curves \leadsto new methods, new results.

Theorem

(Givental, 1990, using fin.-dim. methods):

$$\exists \nu_0 : \widetilde{\mathrm{Cont}}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R}$$
 unbounded quasi-morphism $\sup_{x,y} |\nu_0(xy) - \nu_0(x) - \nu_0(y)| < \infty.$

Theorem

(Givental, 1990, using fin.-dim. methods):

 $\exists \nu_0 : \widehat{\mathrm{Cont}}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R}$ unbounded quasi-morphism $\sup_{x,y} |\nu_0(xy) - \nu_0(x) - \nu_0(y)| < \infty.$

Theorem

(Entov-Polterovich, 2003, using Floer theory): same for $\mu: \widetilde{Ham}(\mathbb{C}P^n, \omega_{\mathsf{st}}) \to \mathbb{R}$.

Theorem

(Givental, 1990, using fin.-dim. methods):

 $\exists \nu_0 : \widehat{\mathrm{Cont}}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R}$ unbounded quasi-morphism $\sup_{x,y} |\nu_0(xy) - \nu_0(x) - \nu_0(y)| < \infty.$

Theorem

(Entov-Polterovich, 2003, using Floer theory): same for $\mu : \widetilde{Ham}(\mathbb{C}P^n, \omega_{st}) \to \mathbb{R}$.

Question

Are these two related?

Answer: no idea, but

Theorem

(Ben-Simon, 2006) $i^*\nu_0$ has the Calabi property, like μ , where $i: \widetilde{Ham}(\mathbb{C}P^n) \to \widetilde{\mathrm{Cont}}_0(\mathbb{R}P^{2n+1})$ natural inclusion.

Theorem

(Albers-S.-Zapolsky, in progress, using Floer theory):

 $\exists \nu : \widetilde{\mathrm{Cont}}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R}$ unbounded quasi-morphism, for which

$$i^*\nu=\mu.$$

Answer: no idea, but

Theorem

(Ben-Simon, 2006) $i^*\nu_0$ has the Calabi property, like μ , where $i: \widetilde{Ham}(\mathbb{C}P^n) \to \widetilde{\mathrm{Cont}}_0(\mathbb{R}P^{2n+1})$ natural inclusion.

Theorem

(Albers-S.-Zapolsky, in progress, using Floer theory):

 $\exists \nu : \mathrm{Cont}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R}$ unbounded quasi-morphism, for which

$$i^*\nu = \mu$$
.

Idea: use package of filtered Lagragian Floer homology for $\mathbb{R}P^{2n+1}\hookrightarrow S(\mathbb{R}P^{2n+1})\times (\mathbb{C}P^n)^-$, Lagrangian correspondence. Obstacle: concave end. Upshot: new results e.g. on topology of Cont .

Thank you!