Points

September 27, 2016

An elliptic curve

defined by $V\left(y^{2}=x^{3}-x\right)$

An elliptic curve

$$
\text { defined by } V\left(y^{2}=x^{3}-x\right) \cup \stackrel{I d_{E}}{\|}
$$

An elliptic curve

$$
\text { defined by } V\left(y^{2}=x^{3}-x\right) \cup \stackrel{I d_{E}}{\|}
$$

$E(\mathbb{R})$:

An elliptic curve

$E(\mathbb{R})$:

An elliptic curve

defined by $V\left(y^{2}=x^{3}-x\right) \cup \stackrel{I d_{E}}{\|}$
$E(\mathbb{R})$:

An elliptic curve

defined by $V\left(y^{2}=x^{3}-x\right) \cup \stackrel{I d_{E}}{\|}$
$E(\mathbb{R})$:

$$
P+Q+R=I d_{E}
$$

Question: how many points are in E

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$ such that:

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$ such that:

- $P(t)=(t-\alpha)(t-\beta)$ is a polynomial in $\mathbb{Z}[t]$

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$ such that:

- $P(t)=(t-\alpha)(t-\beta)$ is a polynomial in $\mathbb{Z}[t]$
- $|\alpha|=|\beta|=\sqrt{3}$

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$ such that:

- $P(t)=(t-\alpha)(t-\beta)$ is a polynomial in $\mathbb{Z}[t]$
- $|\alpha|=|\beta|=\sqrt{3}$

In particular

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$ such that:

- $P(t)=(t-\alpha)(t-\beta)$ is a polynomial in $\mathbb{Z}[t]$
- $|\alpha|=|\beta|=\sqrt{3}$

In particular

- $\alpha+\beta \in \mathbb{Z}$ and $|\alpha+\beta| \leq 2 \sqrt{3}$

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$ such that:

- $P(t)=(t-\alpha)(t-\beta)$ is a polynomial in $\mathbb{Z}[t]$
- $|\alpha|=|\beta|=\sqrt{3}$

In particular

- $\alpha+\beta \in \mathbb{Z}$ and $|\alpha+\beta| \leq 2 \sqrt{3}$
- $\alpha \beta \in \mathbb{Z}$ and $|\alpha \beta|=3$

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$ such that:

- $P(t)=(t-\alpha)(t-\beta)$ is a polynomial in $\mathbb{Z}[t]$
- $|\alpha|=|\beta|=\sqrt{3}$

In particular

- $\alpha+\beta \in \mathbb{Z}$ and $|\alpha+\beta| \leq 2 \sqrt{3}$
- $\alpha \beta \in \mathbb{Z}$ and $|\alpha \beta|=3$

$$
\Rightarrow P(t)=t^{2}+a t \pm 3
$$

Question: how many points are in $E\left(\mathbb{F}_{3^{d}}\right)$?

Theorem
$\# E\left(\mathbb{F}_{3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}$ such that:

- $P(t)=(t-\alpha)(t-\beta)$ is a polynomial in $\mathbb{Z}[t]$
- $|\alpha|=|\beta|=\sqrt{3}$

In particular

- $\alpha+\beta \in \mathbb{Z}$ and $|\alpha+\beta| \leq 2 \sqrt{3}$
- $\alpha \beta \in \mathbb{Z}$ and $|\alpha \beta|=3$

$$
\Rightarrow P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3
$$

$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

- $E[2]=(0,0),(1,0),(-1,0), \stackrel{\substack{l d \\\| \\ \|}}{\infty} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$
$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

- $E[2]=(0,0),(1,0),(-1,0), \stackrel{\substack{l d \\\| \\ \|}}{\infty} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$
- $(\operatorname{Frob}(x), \operatorname{Frob}(y))=\left(x^{3}, y^{3}\right)$
$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

- $E[2]=(0,0),(1,0),(-1,0), \stackrel{\substack{l d \\\| \\ \|}}{\infty} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$
- $(\operatorname{Frob}(x), \operatorname{Frob}(y))=\left(x^{3}, y^{3}\right)$
- Frob $_{E[2]}$
$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

- $E[2]=(0,0),(1,0),(-1,0), \stackrel{\substack{l d_{E} \\ \|}}{\infty} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$
- $(\operatorname{Frob}(x), \operatorname{Frob}(y))=\left(x^{3}, y^{3}\right)$
- Frob $_{E[2]}=I d$
$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

- $E[2]=(0,0),(1,0),(-1,0), \stackrel{\substack{l d \\\| \\ \|}}{\infty} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$
- $(\operatorname{Frob}(x), \operatorname{Frob}(y))=\left(x^{3}, y^{3}\right)$
- Frob $_{E[2]}=I d$
$\in G L_{2}(\mathbb{Z} / 2 \mathbb{Z})$
$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

- $E[2]=(0,0),(1,0),(-1,0), \stackrel{\substack{l d_{E} \\ \|}}{\infty} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$
- $(\operatorname{Frob}(x), \operatorname{Frob}(y))=\left(x^{3}, y^{3}\right)$
- $\operatorname{Frob}_{E[2]}=I d \quad \in G L_{2}(\mathbb{Z} / 2 \mathbb{Z})$
- $\operatorname{char}\left(\operatorname{Frob}_{E[2]}\right)=t^{2}+1$
$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

- $E[2]=(0,0),(1,0),(-1,0), \stackrel{\substack{l d_{E} \\ \|}}{\infty} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$
- $(\operatorname{Frob}(x), \operatorname{Frob}(y))=\left(x^{3}, y^{3}\right)$
- Frob $_{E[2]}=I d$
$\in G L_{2}(\mathbb{Z} / 2 \mathbb{Z})$
- $\operatorname{char}\left(\operatorname{Frob}_{E[2]}\right)=t^{2}+1 \quad \in(\mathbb{Z} / 2 \mathbb{Z})[t]$
$E[2] \quad$ and $P(t)=t^{2}+a t \pm 3 \quad-3 \leq a \leq 3$

- $E[2]=(0,0),(1,0),(-1,0), \stackrel{\substack{l d_{E} \\ \|}}{\infty} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$
- $(\operatorname{Frob}(x), \operatorname{Frob}(y))=\left(x^{3}, y^{3}\right)$
- Frob $_{E[2]}=I d$
$\in G L_{2}(\mathbb{Z} / 2 \mathbb{Z})$
- $\operatorname{char}\left(\operatorname{Frob}_{E[2]}\right)=t^{2}+1 \quad \in(\mathbb{Z} / 2 \mathbb{Z})[t]$
- $\Rightarrow P(t) \equiv t^{2}+1$ modulo 2
$E[4]$

$$
E: y^{2}=x^{3}-x
$$

$E[4] \simeq(\mathbb{Z} / 4 \mathbb{Z})^{2}$,

$$
E: y^{2}=x^{3}-x
$$

$$
\begin{gathered}
E[4] \simeq(\mathbb{Z} / 4 \mathbb{Z})^{2}, \text { a basis: } e_{1}=(i, i-1), e_{2}=(i+1, i-1) \\
E: y^{2}=x^{3}-x \quad\left(i^{2}=-1 \in \mathbb{F}_{9}\right)
\end{gathered}
$$

$E[4] \simeq(\mathbb{Z} / 4 \mathbb{Z})^{2}$, a basis: $e_{1}=(\mathrm{i}, \mathrm{i}-1), e_{2}=(\mathrm{i}+1, \mathrm{i}-1)$

$$
E: y^{2}=x^{3}-x \quad\left(i^{2}=-1 \in \mathbb{F}_{9}\right)
$$

+	$0 e_{1}$	$1 e_{1}$	$2 e_{1}$	$3 e_{1}$
$0 e_{2}$	$[0: 1: 0]$	$(i, i-1)$	$(0,0)$	$(i,-i+1)$
$1 e_{2}$	$(i+1, i-1)$	$(i-1,-i+1)$	$(-i+1,-i-1)$	$(-i-1,-i-1)$
$2 e_{2}$	$(1,0)$	$(-i, i+1)$	$(-1,0)$	$(-i,-i-1)$
$3 e_{2}$	$(i+1,-i+1)$	$(-i-1, i+1)$	$(-i+1, i+1)$	$(i-1, i-1)$

$E[4] \simeq(\mathbb{Z} / 4 \mathbb{Z})^{2}, \quad$ a basis: $e_{1}=(i, i-1), e_{2}=(i+1, i-1)$

$$
E: y^{2}=x^{3}-x \quad\left(i^{2}=-1 \in \mathbb{F}_{9}\right)
$$

+	$0 e_{1}$	$1 e_{1}$	$2 e_{1}$	$3 e_{1}$
$0 e_{2}$	$[0: 1: 0]$	$(i, i-1)$	$(0,0)$	$(i,-i+1)$
$1 e_{2}$	$(i+1, i-1)$	$(i-1,-i+1)$	$(-i+1,-i-1)$	$(-i-1,-i-1)$
$2 e_{2}$	$(1,0)$	$(-i, i+1)$	$(-1,0)$	$(-i,-i-1)$
$3 e_{2}$	$(i+1,-i+1)$	$(-i-1, i+1)$	$(-i+1, i+1)$	$(i-1, i-1)$

$\operatorname{Frob}\left(e_{1}\right)$
$E[4] \simeq(\mathbb{Z} / 4 \mathbb{Z})^{2}$, a basis: $e_{1}=(i, i-1), e_{2}=(i+1, i-1)$

$$
E: y^{2}=x^{3}-x \quad\left(i^{2}=-1 \in \mathbb{F}_{9}\right)
$$

+	$0 e_{1}$	$1 e_{1}$	$2 e_{1}$	$3 e_{1}$
$0 e_{2}$	$[0: 1: 0]$	$(i, i-1)$	$(0,0)$	$(i,-i+1)$
$1 e_{2}$	$(i+1, i-1)$	$(i-1,-i+1)$	$(-i+1,-i-1)$	$(-i-1,-i-1)$
$2 e_{2}$	$(1,0)$	$(-i, i+1)$	$(-1,0)$	$(-i,-i-1)$
$3 e_{2}$	$(i+1,-i+1)$	$(-i-1, i+1)$	$(-i+1, i+1)$	$(i-1, i-1)$

$\operatorname{Frob}\left(e_{1}\right)=\left(i^{3}, i^{3}-1^{3}\right)$
$E[4] \simeq(\mathbb{Z} / 4 \mathbb{Z})^{2}$, a basis: $e_{1}=(\mathrm{i}, \mathrm{i}-1), e_{2}=(\mathrm{i}+1, \mathrm{i}-1)$

$$
E: y^{2}=x^{3}-x \quad\left(i^{2}=-1 \in \mathbb{F}_{9}\right)
$$

+	$0 e_{1}$	$1 e_{1}$	$2 e_{1}$	$3 e_{1}$
$0 e_{2}$	$[0: 1: 0]$	$(i, i-1)$	$(0,0)$	$(i,-i+1)$
$1 e_{2}$	$(i+1, i-1)$	$(i-1,-i+1)$	$(-i+1,-i-1)$	$(-i-1,-i-1)$
$2 e_{2}$	$(1,0)$	$(-i, i+1)$	$(-1,0)$	$(-i,-i-1)$
$3 e_{2}$	$(i+1,-i+1)$	$(-i-1, i+1)$	$(-i+1, i+1)$	$(i-1, i-1)$

$$
\begin{aligned}
\operatorname{Frob}\left(e_{1}\right) & =\left(i^{3}, i^{3}-1^{3}\right) \\
& =(-i,-i-1)
\end{aligned}
$$

$E[4] \simeq(\mathbb{Z} / 4 \mathbb{Z})^{2}$, a basis: $e_{1}=(\mathrm{i}, \mathrm{i}-1), e_{2}=(\mathrm{i}+1, \mathrm{i}-1)$

$$
E: y^{2}=x^{3}-x \quad\left(i^{2}=-1 \in \mathbb{F}_{9}\right)
$$

+	$0 e_{1}$	$1 e_{1}$	$2 e_{1}$	$3 e_{1}$
$0 e_{2}$	$[0: 1: 0]$	$(i, i-1)$	$(0,0)$	$(i,-i+1)$
$1 e_{2}$	$(i+1, i-1)$	$(i-1,-i+1)$	$(-i+1,-i-1)$	$(-i-1,-i-1)$
$2 e_{2}$	$(1,0)$	$(-i, i+1)$	$(-1,0)$	$(-i,-i-1)$
$3 e_{2}$	$(i+1,-i+1)$	$(-i-1, i+1)$	$(-i+1, i+1)$	$(i-1, i-1)$

$$
\begin{aligned}
\operatorname{Frob}\left(e_{1}\right) & =\left(i^{3}, i^{3}-1^{3}\right) \\
& =(-i,-i-1)=3 e_{1}+2 e_{2}
\end{aligned}
$$

$E[4] \simeq(\mathbb{Z} / 4 \mathbb{Z})^{2}, \quad$ a basis: $e_{1}=(i, i-1), e_{2}=(i+1, i-1)$

$$
E: y^{2}=x^{3}-x \quad\left(i^{2}=-1 \in \mathbb{F}_{9}\right)
$$

+	$0 e_{1}$	$1 e_{1}$	$2 e_{1}$	$3 e_{1}$
$0 e_{2}$	$[0: 1: 0]$	$(i, i-1)$	$(0,0)$	$(i,-i+1)$
$1 e_{2}$	$(i+1, i-1)$	$(i-1,-i+1)$	$(-i+1,-i-1)$	$(-i-1,-i-1)$
$2 e_{2}$	$(1,0)$	$(-i, i+1)$	$(-1,0)$	$(-i,-i-1)$
$3 e_{2}$	$(i+1,-i+1)$	$(-i-1, i+1)$	$(-i+1, i+1)$	$(i-1, i-1)$

$$
\begin{aligned}
\operatorname{Frob}\left(e_{1}\right) & =\left(i^{3}, i^{3}-1^{3}\right) \\
& =(-i,-i-1)=3 e_{1}+2 e_{2} \\
\operatorname{Frob}\left(e_{2}\right) & =\left(i^{3}+1, i^{3}-1^{3}\right) \\
& =(-i+1,-i-1)=2 e_{1}+1 e_{2}
\end{aligned}
$$

$\mathrm{E}[4]$ and $P(t)=t^{2}+a t \pm 3$

$$
\Rightarrow \operatorname{Frob}_{E[4]} \quad=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right) \quad \in G L_{2}(\mathbb{Z} / 4 \mathbb{Z})
$$

$\mathrm{E}[4]$ and $P(t)=t^{2}+a t \pm 3$

$$
\begin{aligned}
& \Rightarrow \operatorname{Frob}_{E[4]}
\end{aligned}=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right) \quad \in G L_{2}(\mathbb{Z} / 4 \mathbb{Z}), ~\left(\operatorname{char}\left(\operatorname{Frob}_{E[4]}\right) \quad=t^{2}+3 \quad \in \mathbb{Z} / 4 \mathbb{Z}[t]\right.
$$

$\mathrm{E}[4]$ and $P(t)=t^{2}+a t \pm 3$

$$
\begin{array}{ll}
\Rightarrow \operatorname{Frob}_{E[4]} & =\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right)
\end{array} \quad \in G L_{2}(\mathbb{Z} / 4 \mathbb{Z}) \text { }
$$

$\mathrm{E}[4]$ and $P(t)=t^{2}+a t \pm 3$

$$
\begin{aligned}
& \Rightarrow \operatorname{Frob}_{E[4]} \\
& =\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right) \quad \in G L_{2}(\mathbb{Z} / 4 \mathbb{Z}) \\
& \Rightarrow \operatorname{char}\left(\text { Frob }_{E[4]}\right) \\
& \Rightarrow P(t)
\end{aligned}=t^{2}+3 \quad \in \mathbb{Z} / 4 \mathbb{Z}[t] \quad \text { modulo 4 }
$$

Recall that Theorem $\Rightarrow P(t)=t^{2}+a x \pm 3, \quad-3 \leq a \leq 3$
$\mathrm{E}[4]$ and $P(t)=t^{2}+a t \pm 3$

$$
\begin{aligned}
& \Rightarrow \operatorname{Frob}_{\mathrm{E}[4]} \quad=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right) \in G L_{2}(\mathbb{Z} / 4 \mathbb{Z}) \\
& \Rightarrow \operatorname{char}\left(\text { Frob }_{\mathrm{E}[4]}\right) \quad=t^{2}+3 \quad \in \mathbb{Z} / 4 \mathbb{Z}[t] \\
& \Rightarrow P(t) \quad \equiv t^{2}+3 \quad \text { modulo } 4
\end{aligned}
$$

Recall that Theorem $\Rightarrow P(t)=t^{2}+a x \pm 3, \quad-3 \leq a \leq 3$

$$
\Rightarrow P(t)=t^{2}+3
$$

$\# E\left(\mathbb{F}_{3^{d}}\right)$

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem \Rightarrow

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}
$$

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem \Rightarrow

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}
$$

where α, β are the roots of

$$
P(t)=t^{2}+3 .
$$

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem \Rightarrow

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}
$$

where α, β are the roots of

$$
P(t)=t^{2}+3
$$

$$
\alpha=\sqrt{-3}, \quad \beta=-\sqrt{-3}=-\alpha
$$

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem \Rightarrow

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}
$$

where α, β are the roots of

$$
P(t)=t^{2}+3
$$

$$
\alpha=\sqrt{-3}, \quad \beta=-\sqrt{-3}=-\alpha
$$

$$
d \quad 1^{d}-\alpha^{d}-(-\alpha)^{d}+3^{d} \quad \# E\left(\mathbb{F}_{3^{d}}\right)
$$

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem \Rightarrow

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}
$$

where α, β are the roots of

$$
P(t)=t^{2}+3
$$

$$
\alpha=\sqrt{-3}, \quad \beta=-\sqrt{-3}=-\alpha
$$

d	$1^{d}-\alpha^{d}-(-\alpha)^{d}+3^{d} \quad \# E\left(\mathbb{F}_{3^{d}}\right)$
1	$1-\alpha+\alpha+3$

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem \Rightarrow

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d}
$$

where α, β are the roots of

$$
P(t)=t^{2}+3
$$

$$
\alpha=\sqrt{-3}, \quad \beta=-\sqrt{-3}=-\alpha
$$

d	$1^{d}-\alpha^{d}-(-\alpha)^{d}+3^{d}$	$\# E\left(\mathbb{F}_{3^{d}}\right)$
1	$1-\alpha+\alpha+3$	4

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem \Rightarrow

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d},
$$

where α, β are the roots of

$$
P(t)=t^{2}+3 .
$$

$$
\alpha=\sqrt{-3}, \quad \beta=-\sqrt{-3}=-\alpha
$$

d	$1^{d}-\alpha^{d}-(-\alpha)^{d}+3^{d}$	$\# E\left(\mathbb{F}_{3^{d}}\right)$
1	$1-\alpha+\alpha+3$	4
2	$1-(-3)-(-3)+9$	

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem \Rightarrow

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d},
$$

where α, β are the roots of

$$
P(t)=t^{2}+3 .
$$

$$
\alpha=\sqrt{-3}, \quad \beta=-\sqrt{-3}=-\alpha
$$

d	$1^{d}-\alpha^{d}-(-\alpha)^{d}+3^{d}$	$\# E\left(\mathbb{F}_{3^{d}}\right)$
1	$1-\alpha+\alpha+3$	4
2	$1-(-3)-(-3)+9$	16

+	$0 e_{1}$	$1 e_{1}$	$2 e_{1}$	$3 e_{1}$
$0 e_{2}$	$[0: 1: 0]$	$(\mathrm{i}, \mathrm{i}-1)$	$(0,0)$	$(\mathrm{i},-\mathrm{i}+1)$
$1 e_{2}$	$(\mathrm{i}+1, \mathrm{i}-1)$	$(\mathrm{i}-1,-\mathrm{i}+1)$	$(-\mathrm{i}+1,-\mathrm{i}-1)$	$(-\mathrm{i}-1,-i-1)$
$2 e_{2}$	$(1,0)$	$(-\mathrm{i}, \mathrm{i}+1)$	$(-1,0)$	$(-\mathrm{i},-\mathrm{i}-1)$
$3 e_{2}$	$(\mathrm{i}+1,-\mathrm{i}+1)$	$(-\mathrm{i}-1, \mathrm{i}+1)$	$(-\mathrm{i}+1, \mathrm{i}+1)$	$(\mathrm{i}-1, \mathrm{i}-1)$

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d},
$$

where α, β are the roots of

$$
P(t)=t^{2}+3 .
$$

$\Rightarrow \alpha=\sqrt{-3}, \quad \beta=-\alpha$

d	$1^{d}-\alpha^{d}-(-\alpha)^{d}+3^{d}$	$\# E\left(\mathbb{F}_{3^{d}}\right)$
1	$1-\alpha+\alpha+3$	4
2	$1-(-3)-(-3)+9$	16

$\# E\left(\mathbb{F}_{3^{d}}\right)$

Theorem

$$
\# E\left(\mathbb{F}_{q=3^{d}}\right)=1^{d}-\alpha^{d}-\beta^{d}+3^{d},
$$

where α, β are the roots of

$$
P(t)=t^{2}+3 .
$$

$\Rightarrow \alpha=\sqrt{-3}, \quad \beta=-\alpha$

d	$1^{d}-\alpha^{d}-(-\alpha)^{d}+3^{d}$	$\# E\left(\mathbb{F}_{3^{d}}\right)$
1	$1-\alpha+\alpha+3$	4
2	$1-(-3)-(-3)+9$	16
3	$1-\alpha^{3}+\alpha^{3}+27$	28

